
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #26 – April 14, 2004

Memory Minimization and Multiplication
Minimization of Gates in Memory Systems

For any number of address lines and word size in a memory system there is an
optimal arrangement of bits in the memory grid which minimizes the overall number of
required gates. The general layout of such a memory system is shown below, where
some of the address bits select one word line through a demultiplexer and the rest of the
address bits extract the desired portion of the selected word through a set of multiplexers.

For example, a 64K byte memory system requires 16 address bits and 8 data bits.
The grid contains 216×23=219 data bits. Arranging the memory as 64K rows (word lines)
by 8 columns (bit lines) requires a demultiplexer with 216 AND-gates, each with 16
inputs, and no multiplexers. This is 65536 separate AND-gates.

Arranging the same system with 10 bits to the demultiplexer and 6 bits to a bank
of multiplexers gives a grid with 210=1024 word lines and 8×26=29=512 bit lines. The
demultiplexer now requires 210 10-input AND-gates, and each of the eight multiplexers
requires 26 AND-gates, each with 7 inputs (6 for the address lines and 1 for the bit line).
The total is thus 210 + 8×26 = 1024 + 512 = 1536 AND-gates.

The far end of the spectrum has a single word line, no demultiplexer, and all of
the hardware load in the demultiplexers. Each of the eight demultiplexers now contains
65536 AND-gates; more than half a million gates in total. As you can see, somewhere
between the two extremes is the “sweet spot” that minimizes the total number of gates (a
separate problem is to minimize the number of gate inputs, which may return a slightly
different answer).

Page 1 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Multiplication

In binary the process of multiplication is very similar to the process in decimal.
Each digit of one operand is multiplied by the other operand to form a partial product.
The partial products are added together to generate the final answer. The process of
multiplying two 2-digit (or 2-bit) numbers together is shown below:

In binary each partial product is generated by multiplying an operand by either 0
or 1, resulting in either zero or a copy of the operand. This is the same behavior as a
group of AND-gates. One 2-input AND-gate is used for each pair of bits, then the bits
are added together with half-adders and full-adders to generate the final product. The
hardware for multiplying two 2-bit numbers together is shown below:

To add the partial products the circuit requires only a pair of half-adders, the
leftmost accepting a carry out of the rightmost. Notice that the rightmost partial product
bit appears in the answer directly; this will be the case for the product of two numbers of
any length.

Page 2 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Similarly, multiplying two 3-bit numbers together requires the addition of three
partial products. In this case, however, the addition circuitry for the partial products is
significantly more complex than in the case of 2-bit numbers.

The diagram below shows the addition block of the partial products. As before,
the rightmost partial product bit drops down to the answer directly, and the next bits are
added with a half adder. The carry out of that half adder goes into the column with three
partial product bits, requiring addition of four bits in a special “quad adder” circuit.

Notice that the quad adder circuit returns a 3-bit sum, emitting the sum bit to the
answer, a carry bit to the next stage of partial products, and a double-carry to the stage
beyond that.

Page 3 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 4 of 4

The quad adder circuit is composed of half adders and full adders, as shown in the
circuit below:

By extending this process even further, we will find that the adders for the partial
product columns get more and more complicated. We can extend the quad adder to a
“quint adder” by replacing one of the input half adders with a full adder, and then extend
it again to a “hex adder” by replacing both of them, as shown below:

Increasing the number of bits being multiplied, and being forced thereby to deal
with the corresponding complexity of the partial product adders, indicates that better
methods for multiplication must be developed.

	Lecture #26 – April 14, 2004
	Memory Minimization and Multiplication
	
	Minimization of Gates in Memory Systems
	Multiplication

