
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #24 – April 7, 2004

More about Flip-Flops
From the previous lecture we use the NAND-gate based flip-flop as a starting

point. This form, shown below, is called a set-reset flip-flop. Normally, the inputs are at
their resting state where both have the value 1. Bringing the top input line to 0 forces the
top output to 1 (and the bottom output to 0), thus setting the flip-flop. Bringing the
bottom input line to 0 forces the bottom output to 1 (and the top output to 0), thus
resetting the flip-flop. The inputs are labeled Set and Reset, with a bar over top to
indicate that they are active-when-0 instead of active-when-1. The outputs are
traditionally called Q and Q-bar (or Not-Q), where Q-bar is a Q with a line over top.
Under normal circumstances the outputs Q and Q-bar always have opposite values. (The
one case where they do not is when both Set and Reset are brought to 0; both will have
output values of 1, but this is an unstable condition. The flip-flop will settle into one of
the two legal states depending on which input line goes to 1 first. If both input lines go
from 0 to 1 simultaneously, minute differences in the manufacturing of the gates will
cause one to be slightly faster than the other and the flip-flop generally will settle into its
“preferred” state.)

By placing a NAND-gate in front of each input of the set-reset flip-flop, we can
control whether or not new values get written into the flip-flop. The control line common
to the new NAND-gates is normally 0, which forces their outputs to 1 (the resting state of
the NAND-based set-reset flip-flop). When the control line is brought to 1, the new
NAND-gates act like NOT-gates, and whichever of their data inputs is 1 forces the
corresponding input of the flip-flop to 0, setting or resetting it appropriately.

Now, if we take two of these new gated flip-flop modules and connect the outputs
of the first to the inputs of the second, we have a composite structure called a master-
slave flip-flop. The first stage is the master, and its control line determines whether new
values are written into its flip-flop. The second stage is the slave, and its control line
determines whether the values from the master are copied into its flip-flop. By making
the control lines of the two stages operate alternately, we can isolate the action of

Page 1 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

capturing an input value from the action of storing and displaying it. This is best done by
connecting the two control lines with an inverter (another name for a NOT-gate), and
calling the new control structure the clock line. When the clock is low (equal to 0), the
input stage to the master is turned off, and no changes at the data input lines (now called J
and K) affect the master flip-flop. Whatever happens to be in the master flip-flop is
copied to the slave flip-flop. When the clock goes high (equal to 1), the slave locks in its
current value, and the master reads its new value from the input lines. Bringing the clock
back down to 0 locks in the last value from the input lines into the master and copies it to
the slave. Since the J and K lines must contain opposite values, we can enforce this
condition through an extra inverter and call the new input the D line (D for Data). Also,
an extra set of inputs on the slave flip-flop allows us to set or reset the output as desired.
This complete new structure is shown below.

All the time that the clock is high, any changes to the D line are immediately
written into the master flip-flop (but the slave is locked). This is called a level-sensitive
or level-triggered flip-flop. This particular implementation is actually pretty bad. In this
design there is a potential race condition, which means that correct operation is
dependent on timing, the speed of the clock pulses, and the propagation delay of the
individual gates (how fast the gates operate, usually on the order of nanoseconds). For
example, when the clock line goes low (from 1 to 0) the control NAND-gates in the
master section must shut off before the control NAND-gates in the slave are activated,
otherwise last (nano-)second changes in the data line might propagate all the way to the
slave, causing a noisy output. The NOT-gate in the clock line probably introduces
enough delay to insure proper operation.

A variation is one in which the act of bringing the clock line high (from 0 to 1)
isolates the inputs from the master in a such a way that the isolation circuits themselves
determine when it is safe to update the slave, and then do so immediately. Thus, the
input value on the D line is copied safely to the Q output (and its complement to Q-bar)
within a few nanoseconds of whenever the clock line is brought high. This variation is
called an edge-triggered flip-flop, which is largely immune from race conditions.

Page 2 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

From now on we will consider D-type flip-flops to be of the edge-triggered
variety. In the symbol for a D flip-flop shown below the circle on top represents the Set
input and the circle on the bottom represents the Reset input. Those inputs are shown as
circles to indicate that they are active-low, resting normally at 1 but going to 0 to perform
their respective functions.

Now that we know how D flip-flops work we can consider circuits that make use
of them. The simplest form is to simply connect a bunch of them together as shown
below; where the Q output of one drives the D input of the next:

On each clock pulse, every flip-flop updates its value from the flip-flop to its left,
all at the same time. Any value present at the D line of the leftmost flip-flop will move
through the device, called a shift register, at a rate of one flip-flop per clock pulse. Any
value in the rightmost flip-flop is lost if no action is taken otherwise. By connecting the
rightmost Q output back around to the leftmost D input, any values in the shift register
will simply recirculate. For an N-bit shift register, the initial pattern is rotated back to its
original position after every N clock pulses. Clocking in N–1 pulses is equivalent to a
rotation in the opposite direction. Shift registers have numerous uses, including general
purpose arithmetic registers, pseudorandom number generators, and many more.

By connecting the Q-bar output of a flip-flop back to its own D input, the outputs
alternate after every clock pulse. For example, if Q=1, then Q-bar=0 and the next clock
pulse will copy the 0 into Q. If Q=0, then Q-bar=1 and the next clock pulse will copy the
1 into Q. Thus, the outputs go from 0 to 1 and back to 0 again at a rate exactly half of the
input clock rate. Stringing a bunch of these flip-flops together so that the Q output of one
drives the clock line of the next creates a divider chain, where the first flip-flop’s output
is half the frequency of the clock, the second’s output is half that rate or a quarter of the
frequency of the clock, the third’s output is one eighth of the clock, and so on. More
importantly, looking at the binary outputs of the flip-flops in reverse order (the circuit is
mirrored so that Bit 0 is on the right) reveals that the device is a binary counter. It starts
at zero, and then every clock pulse increases its value by 1. For N bits, the highest value
(unsigned, of course) is 2N-1. One more clock pulse brings the counter back to zero.
This is essentially the heart of the program counter on a computer; when we add the

Page 3 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 4 of 4

extra hardware necessary to allow placement of any arbitrary value into the counter we
can perform branch instructions.

The configuration just described, where the Q-bar output feeds back into the D
input, is so common that it has its own symbol. This symbol, shown below, is called a
triggered, toggle, or T flip-flop. The T input is just a relabeling of the clock input in the
D flip-flop, but it indicates that a clock pulse on the T line will cause the outputs of the
flip-flop to switch, or toggle, from one state to the opposite state.

The counter drawn earlier with D flip-flops is shown below using T flip-flops
instead. You can see how much simpler the circuit appears in this form.

As we increase the complexity of our circuits it is necessary to increase our level
of abstraction correspondingly. In future lectures we won’t worry so much about the
details of how many NAND-gates are in a D flip-flop, how a shift register works, or how
T flip-flops toggle their values every clock pulse, but instead we will simply say “here is
an N-bit shift register” or “assume an N-bit counter” and proceed from there. This is the
only way we can manage devices of such complexity without suffering from information
overload.

	Lecture #24 – April 7, 2004
	More about Flip-Flops

