
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #20 – March 29, 2004

Recursion
Subroutines written in the most general form will observe the following structure.

On the ARM, of course, the return address is the link register (LR=R14), and the pointer
to the stack frame is the instruction pointer register (IP=R12). Pushing registers onto
the stack to enforce transparency will also include these two. Reserving space for local
variables requires only adjusting (subtracting from) the stack pointer by the required
amount (on the ARM this should be a multiple of 4 bytes). Once the stack has been
configured, setting up the new stack frame is done by moving the final value of the stack
pointer (SP=R13) into IP so that the stack is free to receive pushes and pops within the
subroutine, and all parameters, registers, and local variables are referenced by the same
offsets relative to IP.

Sub Push Return Address
 Push Registers (Including Stack Frame)
 Push Space for local variables
 Set up new Stack Frame
 …
 …
 …
 Discard local variables
 Pop Registers
 Return

Using ARM code, the framework above is written as:

Sub STR LR,[SP,#-4]! Save Return Address
 STR IP,[SP,#-4]! Save Stack Frame Pointer
 STR R0,[SP,#-4]! Save General Register
 STR R1,[SP,#-4]! Save General Register
 STR R2,[SP,#-4]! Save General Register
 SUB SP,SP,#12 Reserve 12 Bytes Locally
 MOV IP,SP Set Up New Stack Frame
 …
 … “Do Useful Work”
 …
 ADD SP,SP,#12 Discard 12 Local Bytes
 LDR R2,[SP],#4 Restore General Register
 LDR R1,[SP],#4 Restore General Register
 LDR R0,[SP],#4 Restore General Register
 LDR IP,[SP],#4 Restore Stack Frame
 LDR PC,[SP],#4 Return

Page 1 of 5

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

NOTE: there are special LDR and STR instructions on the ARM which can store
and load multiple registers. Using these instructions you can push the LR, IP, and any
other registers that must be saved in one STR instruction, and can pop them back in one
LDR instruction. This is far more efficient than the individual pushes and pops shown in
the example, but I prefer to be explicit here in order to get the code correct first. We can
always optimize later.

Once a subroutine is properly initialized, it may call any other subroutine safely,
including itself. Such recursive subroutines are reasonably straightforward to create, as
long as the programmer is careful and disciplined enough to insure that the stack is
always correctly configured.

The classic first example of a recursive routine is the factorial function. In some
sense this is the worst possible example to use here, as no one in their right mind would
ever write factorial recursively. The factorial function is much more easily written using
non-recursive iterative techniques. I will not violate tradition, however, and we will go
through the description of recursion in assembly language using the old, hoary example
of factorial. It’s too useful an example not to. For review, the factorial of an integer N is
the product of all integers from 1 up to N. Under normal circumstances factorial is
meaningless for negative numbers. The factorial of N is written as N!, so 4! = 1×2×3×4.
Expressed recursively, N! = N × (N-1)! The basis case, which stops the recursion, is that
0! = 1, although we can also stop at 1! = 1 as well.

In a high-level language such as Pascal, the factorial function is written in the
following form. Notice that the parameter N is a call-by-value parameter. Notice, too,
that there is an If statement; in one branch of the If statement there is a recursive call,
but in the other branch the function simply returns the value 1. All recursive functions
require at least one such If in order to stop the recursion.

Function Factorial (N:Integer) : Integer ;
Begin
 If N <= 1 Then
 Factorial := 1
 Else
 Factorial := N * Factorial(N-1) ;
End ;

Calling this function from the main program may be as simple as writing out the
value of some factorial, as in:

Write (Factorial(5)) ;

Since the function subroutine expects to find its parameters for the current call in
the same place in the stack as for any other (recursive or non-recursive) call, every call
must be set up in exactly the same way, whether it is in the main program or in the
subroutine itself.

Page 2 of 5

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

For the call from the main program, Write (Factorial(5)), the setup for
the call in ARM code will look like this:

MOV R0,#5 Set up N=5
STR R0,[SP,#-4]! Push N
SUB SP,SP,#4 Reserve Space for Result
BL Factorial Call Factorial
LDR R0,[SP],#4 Pop Result
ADD SP,SP,#4 Discard N

Setting up the stack frame in Factorial is similar to the forms we have already
discussed, except that in this case we will not need any local variables (all of our
computations can be done in the registers that we save). The framework for the
subroutine is as follows:

Factorial STR LR,[SP,#-4]! Save Return Address
 STR IP,[SP,#-4]! Save Stack Frame Pointer
 STR R0,[SP,#-4]! Save General Register
 STR R1,[SP,#-4]! Save General Register
 MOV IP,SP Set Up New Stack Frame
 …
 LDR R1,[SP],#4 Restore General Register
 LDR R0,[SP],#4 Restore General Register
 LDR IP,[SP],#4 Restore Stack Frame
 LDR PC,[SP],#4 Return

Calling the subroutine places an activation record on the stack, which is a
complete environment for the current subroutine call. In our example, we want the “do
useful work” part of the subroutine to have the following view of the current activation
record on the stack:

Page 3 of 5

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

As far as the current activation record is concerned, it doesn’t know and doesn’t
care what is below it in the stack. There may not anything below it in the stack, or there
may be the activation record for a previous subroutine call. If the subroutine calls itself,
it will create a new identical activation record on the stack, which will then be the current
environment for the life of that call. This happens for as many recursive calls as required
(as long as the stack isn’t full). When any recursive call exits its activation record will be
discarded, and the one below it in the stack will become active once again. One
activation record will be discarded every time the recursion “unwinds”, eventually
unwinding all the way back to the original call from the main program.

We will define symbols ParamN to have the value 20 and ParamResult to
have the value 16. These symbols indicate the offsets into the current activation record of
input parameter N and the space reserved for the function result. The complete factorial
function in ARM assembly language is written as follows:

ParamN EQU 20
ParamResult EQU 16

Factorial STR LR,[SP,#-4]! Save Return Address
 STR IP,[SP,#-4]! Save Stack Frame Pointer
 STR R0,[SP,#-4]! Save General Register
 STR R1,[SP,#-4]! Save General Register
 MOV IP,SP Set Up New Stack Frame
 LDR R0,[IP,ParamN] If N <= 1 Then
 CMP R0,#1
 BGT Main
 MOV R0,#1 Store 1 into Result
 STR R0,[IP,ParamResult]
 B Done Else
Main LDR R0,[IP,ParamN]
 SUB R0,R0,#1
 STR R0,[SP,#-4]! Push (N-1)
 SUB SP,SP,#4 Reserve Space
 BL Factorial Call Factorial
 LDR R0,[SP],#4 Pop Result
 ADD SP,SP,#4 Discard (N-1)
 LDR R1,[IP,ParamN]
 MUL R0,R1,R0 Compute N * (N-1)!
 STR R0,[IP,ParamResult] Store into Result
Done
 LDR R1,[SP],#4 Restore General Register
 LDR R0,[SP],#4 Restore General Register
 LDR IP,[SP],#4 Restore Stack Frame
 LDR PC,[SP],#4 Return

Page 4 of 5

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 5 of 5

Study the ARM code carefully, and try running it for N=5 (your final result should
be 5! = 120). At the deepest level you will have five activation records on the stack, one
each for the environments where N=5, N=4, N=3, N=2, and N=1. Since each activation
record requires six 32-bit words on the stack, the stack at its deepest will be 30 words
(120 bytes) deep. For each activation record the offset of the function’s return value is 16
bytes into the stack (based on IP), which is popped off when the routine returns back to
the previous activation record.

As you can see, subroutine calls, and in particular recursive subroutine calls, are a
synergistic coordination between the calling routine and the called routine. Each places
specific items onto the stack and each is responsible for removing those same, possibly
modified, items from the stack. This dance must be perfect or the program will crash
(usually by branching to an incorrect location in memory).

	Lecture #20 – March 29, 2004
	Recursion

