
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #11 – February 23, 2004

Subroutines, PrintHex, and Transparency
Recall from the previous lecture how we created the code for the PrintHex

subroutine. In this version of the code there is a “placeholder” of question marks just
after the beginning of the subroutine:

PrintHex STR R0,SaveR0
 ??? placeholder (new)
 CMP R0,#9
 ADDGT R0,R0,#'A'-10
 ADDLE R0,R0,#'0'
 SWI &0
 LDR R0,SaveR0
 MOV PC,LR

The placeholder is where we will examine the question of what to do when the
input argument in R0 is outside the range of 0 through 15. In the previous version, we
assumed that the value in R0 was in the correct range. Assumptions like this are
generally pathways for errors to creep into a program. What we wish to do here is either
detect the presence of an error or insure that no error can possibly occur. If we choose to
detect the error, we must also choose whether to correct the error, report the error, ignore
the error (unlikely), or exit the subroutine without printing anything. We will examine
first the case of looking for an error and exiting the subroutine if one is found.

This first approach is to insert “guard code” in place of the question marks that
compares the input value in R0 both to 15 and to 0, and exits the subroutine when an out-
of-range value is found. In high-level pseudo code, our PrintHex task is roughly as
follows (liberally mixing high-level variables and ARM register names):

 If (R0 >= 0) And (R0 <= 15) Then
 If R0 > 9 Then
 CH := 'A' + R0 - 10
 Else
 CH := '0' + R0 ;
 Print (CH) ;
 Else
 Flag_an_Error ;

The code fragment for doing the test is:

 CMP R0,#15 If R0>15 Then Goto Done
 BGT Done
 CMP R0,#0 If R0<0 Then Goto Done
 BLT Done

Page 1 of 5

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

The phrase Flag_an_Error in our pseudo code indicates where the action
should be taken when the error is detected, and the corresponding ARM code will start
with the label Done on that line. If no action is to be taken, Done is placed on the line
that restores R0 just before exiting the subroutine.

If you examine the guard code, you can determine that because of the way it is
written we are assuming that the input value in R0 is treated as a signed integer. The first
comparison checks to see if R0 is in the range from 16 up through 231-1 (all supported
positive numbers greater than 15), and the second comparison checks to see if R0 is in
the range from –231 up through –1 (all supported negative numbers). If we assume for
the purposes of the guard code that the value in R0 is unsigned (whether or not it really
is), we can replace the guard code with the following fragment:

 CMP R0,#15
 BHI Done Unsigned greater-than

The HI condition on the branch instruction treats the result of the comparison as
unsigned, and branches if the value is greater than 15. Since there are no negative
numbers in unsigned integer representations, this effectively eliminates everything illegal
in one step, all numbers in the range from 16 through 232-1. It doesn’t matter if we
originally thought that R0 contained a signed integer; all negatives map onto large
positives and are eliminated at the same time as the “normal” (too large) positive values.

This shifting of representations occurs very frequently in assembly language.
Since every data value is fundamentally nothing more than a package of bits we can treat
each package in the most convenient representation for each specific task, and in multiple
representations, simultaneously.

Instead of detecting an error, whether or not we decide to do anything about it, we
can take the approach of insuring that no error can possibly occur. If the value in R0
must be between 0 and 15, we could extract the remainder of dividing R0 by 16. This
operation, R0 := R0 mod 16, always guarantees that the argument is in the range
from 0 through 15. Unfortunately, there is no integer division instruction on the ARM,
and without division it is difficult to perform a general-purpose “mod” function.

As it turns out, we need neither a general-purpose division nor a general-purpose
mod capability. The divisor, 16, is a power of two, so division can be performed with a
simple right-shift. Our first attempt might be to shift the value in R0 to the right by four
bits, then back to the left by four bits (thus setting the rightmost four bits to zero), and
subtracting that result from the original value in R0. We’ll need to burn an extra register
to do this (and must explicitly save and restore its value in the subroutine):

 MOV R1,R0,LSR #4 xxx…xxxyyyy 0000xxx…xxx
 MOV R1,R1,LSL #4 0000xxx…xxx xxx…xxx0000
 SUB R0,R0,R1 xxx…xxxyyyy – xxx…xxx0000 =
 000…000yyyy

Page 2 of 5

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

The result in R0 is 28 zero-bits followed by the rightmost four bits of the original
value (000…000yyyy). With four bits you can represent any value between 0 and 15,
which exactly matches the requirements of the PrintHex subroutine.

To extract the remainder from any division by a power of two you need only
change the amount of the shift: use #4 for computing the mod 16 of a number (since
24=16), use #5 for computing mod 32 (since 25=32), and so on. The smallest value that
remains after a mod operation is always zero. For a shift factor of N bits (i.e., mod 2N)
the largest value that can remain will consist of 1-bits in the low order N bits of the
number and 0-bits everywhere else. Thus, the result of a mod 2N operation is always a
number between 0 and 2N-1, which always fits exactly into the lowest N bits of the word.

It is this last observation that allows us to simplify our code. If all we want are
the low-order N bits of a word, with the upper bits set to zero, our task collapses to using
a single AND instruction with the correct bit pattern as the constant operand. We need
only AND our target register with 2N-1 to mask off (clear to zero) all but the low-order N
bits. Our single instruction to insure that R0 contains no number outside the range 0
through 15 is as follows:

 AND R0,R0,#15

Note that we cannot use this technique to compute the mod of any arbitrary
number such as 12, 20, or 37, because these numbers are not one less than a power of
two. We get away with using 15 because it is 24-1. Acceptable numbers for this
technique include 1 (one bit), 3 (two bits), 7 (three bits), 15 (four bits), 31 (five bits), etc.
Should we use a number such as 26, which has binary value 11010, we end up preserving
bits 1, 3, and 4 in the result, but we clear bits 0 and 2 along with all bits to the left of bit
4.

Which of the guard code methods we decide to use depends largely on the context
of the code that calls PrintHex. For example, a subroutine called PrintWord that
prints out all 32 bits of a word as eight hexadecimal digits must call PrintHex eight
times. If we choose to print out R0, we must rotate it correctly before each call to
PrintHex to align the desired four bits properly in the low-order part of the word. In
this case it is easiest to leave the rest of the bits in the word unmodified, so PrintHex
should use the AND technique as its guard code. Here is the final code for PrintHex:

PrintHex STR R0,PrintHexSaveR0
 AND R0,R0,#15

 CMP R0,#9
 ADDGT R0,R0,#'A'-10
 ADDLE R0,R0,#'0'
 SWI &0
 LDR R0,PrintHexSaveR0
 MOV PC,LR

Page 3 of 5

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Here is the code for PrintWord (since there is no rotate-left option on a MOV
instruction, we can use ROR #28 to simulate rotating left by 4 bits):

 PrintWord STR LR,PrintWordSaveLR
 STR R0,PrintWordSaveR0
 STR R1,PrintWordSaveR1

 MOV R1,#8
 Loop1 MOV R0,R0,ROR #28 (i.e., ROL #4)
 BL PrintHex
 SUBS R1,R1,#1
 BNE Loop1

 LDR R1,PrintWordSaveR1
 LDR R0,PrintWordSaveR0
 LDR PC,PrintWordSaveLR

Notice that we had to save LR in PrintWord because it must call PrintHex,
but PrintHex need not save LR because it never calls any other routine. Also notice
that we save R0 (and R1 and LR) to memory locations specifically associated with
PrintHex and PrintWord; we cannot save R0 to a location called SaveR0 in both
subroutines because that allows for the subroutines to communicate through a “back-
channel” pathway. We might get lucky and end up with the same value stored by both
routines, as will happen in this example (maybe?), but it is nearly always a very bad idea
for two subroutines to share storage for preserving their registers. Eventually you will
get a case where one subroutine retrieves a different value from what it thought it stored
because of a side effect from another routine. These errors are extremely difficult to find.

In PrintWord you can make the case that performing MOV R0,R0,ROR #28
(which as we’ve seen is the same as ROL #4) eight times ends up preserving the original
value of R0, and so saving and restoring its value is not really necessary. Yes, it will end
up with the same value as it started with if you’ve written the code correctly, and if this is
the case you can skip saving and restoring R0. How much do you trust your code? It is
almost always dangerous to continuously modify a register and hope you do it “enough”
times to restore its original value. You should always explicitly save and restore any
register that gets modified by a subroutine, even if you think it’ll naturally wind up with
its own starting value at the end of the computation. By explicitly saving and restoring
its value you isolate any errors to that one subroutine only, and prevent those errors from
propagating back to the calling routine.

The act of saving and restoring all registers in a subroutine that are modified
(except for those needed to pass values back to the calling code) is called transparency.
A fully transparent subroutine saves and restores everything it changes. The calling code
must not encounter any unexpected side effects from calling the subroutine. Any register
not used by the subroutine need not be saved, but if you must use a temporary register to
hold the result of a calculation, save it first and restore it afterwards.

Page 4 of 5

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 5 of 5

As we will see later, the use of a stack greatly simplifies transparency in
subroutines, but even without a stack transparency is still simple to implement by using
primary memory (as long as recursion is not required).

Always, always, always write completely transparent assembly language
subroutines!

	Lecture #11 – February 23, 2004
	Subroutines, PrintHex, and Transparency

