
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #10 – February 20, 2004

ASCII and a “PrintHex” Subroutine
In this lecture we will examine a programming problem that appears frequently in

assembly language projects. The task can be stated very simply: a numeric value
between 0 and 15 is passed in to an ARM subroutine through register R0, and the
subroutine must print out the corresponding hexadecimal character. In addition, any
changes to register R0 must be “undone” before exit so that the calling routine sees no
side effects from calling the subroutine.

In the widely used ASCII character set (American Standard Code for
Information Interchange) there are 128 defined characters, with values from 0 through
127. Values 0 through 31 represent control characters, which historically cause actions
to be performed instead of actual characters to be printed. For example, character 7 rings
the bell. On old mechanical teleprinters character 13 caused the print carriage to
physically move to the beginning of the current line; hence it was called the carriage
return or CR character. Similarly, character 10 caused the paper to be rolled up to the
next line, which is why it was called the line feed or LF character. With today’s
electronic displays the terms carriage return and line feed are obsolete, but those terms
persist in how lines of text are separated in a file. On the PC, lines are separated by both
a CR and an LF, while on the Mac lines are separated by just a CR, and on UNIX
systems lines are separated by just a LF. (This is why FTP programs have an ASCII
transfer mode; the FTP program is given permission to change the line breaks of a text
file to match the requirements of the target computer system.)

ASCII values 32 through 63 represent “special” characters (32 is the space, 33 the
exclamation point, and so on). Values 64 through 95 contain the upper case Roman
alphabet, and values 96 through 127 contain the equivalent lower case letters (each group
of letters also includes as a small number of special characters). All digit characters are
in an unbroken sequence from character 0 through character 9: the 0 is at index 48, 1 is
at index 49, and so on. Similarly, the Roman alphabets are also in unbroken sequences.
Capital letter A is at index 65, B is at index 66, up through Z at index 90. Lower case
letter a is at index 97, b is at index 98, and on up through z at index 122. We can depend
on these sequences for figuring out how to write our hexadecimal print subroutine. (Not
all character sets have these nice properties; the EBCDIC character set used on old IBM
mainframe computers did not have the letters in nice linear sequential order.)

In our routine, to be called PrintHex, input values from 0 through 9 must map
onto characters 0 through 9, and values from 10 through 15 must map onto characters A
through F. One solution is to create an array of 16 characters, and index into that array
with the input value to find the correct corresponding character. In non-ASCII character
sets this approach may be the most appropriate technique to implement. For ASCII, all
we need do is determine if the input value is in the range 0 to 9 or in the range 10 to 15,
and compute the correct character based on the starting index of the appropriate sequence.

Page 1 of 3

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

In a high-level language pseudo code, this process can be roughed out as follows:

Procedure PrintHex (C:Nybble)
 If C > 9 Then
 CH := C + 'A' – 10
 Else
 CH := C + '0'
 Print (CH)

In this pseudo code, the data type Nybble represents a number between 0 and 15
(we are not going to check for errors in the input value at this time). Notice that we are
mixing numeric and character data types in the computations, but in assembly language
this is a very natural thing to do.

Our first attempt at converting this into ARM code is to directly create an If-
Then-Else structure that matches the pseudo code, and do the appropriate character
conversion in each branch. In the following solution, the numeric value in R0 is
converted into the equivalent character, and then the character is printed by software
interrupt 0 (which in some ARM software prints the character passed to it though R0).

PrintHex CMP R0,#9 If R0 > 9 …
 BGT DoLetter
 ADD R0,R0,#'0' Else block
 B PrintIt
DoLetter ADD R0,R0,#'A'-10 Then block
PrintIt SWI &0 Print (R0)
 MOV PC,LR Return

This code will work, but it is overly complicated and it trashes the contents of
register R0 (the value passed back to the calling routine is not the same as the value
passed in). Since both the Then-block and the Else-block contain only one instruction
each, we can take advantage of the ARM’s ability to embed the conditional test directly
into those instructions. In the following version, the branch instructions are gone, and by
controlling the two ADD instructions with opposite condition tests only one of the two
instructions will ever be executed.

PrintHex CMP R0,#9
 ADDLE R0,R0,#'0'
 ADDGT R0,R0,#'A'-10
 SWI &0
 MOV PC,LR

This code is very fast, particularly since the flow of control is in a straight line.
As each instruction is being executed the processor is simultaneously fetching and
decoding subsequent instructions in the sequence; taking a branch requires that any such
preliminary work be discarded and restarted at the destination of the branch. If there are
no branches, there can be no hiccups in the execution sequence.

Page 2 of 3

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 3 of 3

Finally, we must save and restore the contents of R0. Since we are not using the
stack (yet), we must declare a location in primary memory to hold the value of R0 while
we are in the subroutine. We must also explicitly save the contents of R0 into that
location at the start of the subroutine, and restore R0 from memory just before exiting the
subroutine. The last, complete version of the PrintHex subroutine is as follows:

PrintHex STR R0,SaveR0
 CMP R0,#9
 ADDLE R0,R0,#'0'
 ADDGT R0,R0,#'A'-10
 SWI &0
 LDR R0,SaveR0
 MOV PC,LR

SaveR0 DCD 0

Every register modified by the subroutine is restored to its initial value before the
subroutine exits, the code contains no branches, and without using an array of characters
the code is as small and as fast as possible.

The SaveR0 DCD 0 command is a directive to the assembler to reserve a full
32-bit word in primary memory, referenced by the symbol SaveR0, and with zero as its
initial value.

One final comment about the notation used in these programs is necessary. The
instruction ADDGT R0,R0,#'A'-10 contains the interesting expression 'A'-10.
This expression is evaluated by the assembler at translation time, not at execution time.
Since the character 'A' in ASCII has the value 65, the instruction is converted by the
assembler into the equivalent instruction ADDGT R0,R0,#55. While this last form is
completely legal and will perform the correct computation, the 'A'-10 form is preferred
by most assembly language programmers because it most closely indicates the meaning
of the conversion task than does the “magic number” 55.

	Lecture #10 – February 20, 2004
	ASCII and a “PrintHex” Subroutine

