
Dr. Bill’s Notes on Mode-13 Graphics

©October, 2002

Dr. William T. Verts
Introduction

For beginning Intel 80x86 assembly language programmers, Mode-13 graphics provides
a simple mechanism for exploring some of the important issues of any graphics system. It also is
an excellent mechanism for understanding assembly language by developing more “interesting”
programs than the typical toy programs of introductory computer science classes.

Mode-13 requires at least a VGA (or MCGA) graphics adapter. It is fairly coarse by
today’s standards, with images only 320 pixels wide by 200 pixels tall, and but 1 byte (256
colors) per pixel. A complete image is thus 320×200×1 bytes in size, or 64000 bytes. This is a
particularly convenient size, as it is just under the 64K byte limit per segment on the earliest Intel
x86 processors. Any larger, and the programmer would have to manage segment registers a lot
more extensively.

Once the video mode has been set, the 64000 bytes are in a contiguous block starting at
fixed memory location A000:0000 (address A0000), and every pixel is a linear offset from
that base address. Each raster line is exactly 320 bytes in length, so the addresses of two
vertically adjacent pixels differ by exactly 320 bytes. The upper left pixel is at offset zero, as
shown in the following image of the screen with byte offsets:

Second Draft © October 2002, Dr. William T. Verts

– 1 –

Entering Graphics Mode

Entering graphics mode is a simple call to the BIOS. In assembly language, that call is as
follows:

 MOV AX,0013H
 INT 10H

Interrupt 10H is the BIOS call that controls the video system. The number 00H (the
value in AH) is the function number that corresponds to “Set the Video Mode”, and the number
13H (the value in AL) is the number of the desired mode.

Exiting Graphics Mode

Exiting graphics mode is as simple as entering graphics mode. In this case we wish to set
the video mode to text-only, 25 lines by 80 columns of text. This is mode 3, and is accomplished
by the following code:

 MOV AX,0003H
 INT 10H

It is the same interrupt (10H) and function (00H) as before, but a different mode (03H).

Clearing the Screen

Clearing the screen means that the same pixel color is stored into all 64000 bytes of the
video buffer area. If we assume that the pixel color is stored in memory at location Color, then
the following code will step through the video screen one byte (pixel) at a time, storing the color
value into each byte as it goes. The starting address of the video screen segment is put into the
extra segment (ES) register, and base register BX starts at offset zero. The CX (counter register)
is initialized with the number of steps to run a loop, and each pass through the loop stores one
byte at ES:BX, increments BX, then decrements CX and repeats if CX is still nonzero. In the
code fragment shown here, the comment fields represent a high-level pseudocode of the process
being performed by the assembly language.

 MOV AL,Color ; AL gets the color value
 MOV BX,0A000H ;
 MOV ES,BX ; ES set to start of VGA
 MOV BX,0 ; BX set to pixel offset 0
 MOV CX,64000 ; CX set to number of pixels
 ;
 ClrLoop: ; Repeat
 MOV [ES:BX],AL ; Memory[ES:BX] := Color
 INC BX ; BX := BX + 1
 LOOP ClrLoop ; CX := CX – 1
 ; Until CX = 0

Second Draft © October 2002, Dr. William T. Verts

– 2 –

There is a string instruction that makes this process more efficient. String instructions
use special registers SI (source index) and DI (destination index) to step through the bytes of a
string. The STOSB (Store-String-Byte) op-code can be interpreted as equivalent to
Memory[ES:DI] := AL followed directly by DI := DI + 1 in one instruction. Adding
the REP prefix to the instruction repeats the instruction and decrements the CX (counter) register
while CX is not zero. In order to use this one very fast instruction effectively, all of the prolog
code must set up the special registers AL, ES, CX, and DI appropriately. (The BX register is not
used, except in this example as a means of setting the ES register. In our example we could use
AX instead, as long as setting the color into AL occurs afterwards.) The REP STOSB does the
work of the entire While-loop to its right.

 MOV AL,Color ; AL gets the color value
 MOV BX,0A000H ;
 MOV ES,BX ; ES set to start of VGA
 MOV CX,64000 ; CX set to number of pixels
 MOV DI,0 ; DI set to pixel offset 0

 REP STOSB ; While CX <> 0 Do
 ; Memory[ES:DI] := AL
 ; DI := DI + 1
 ; CX := CX - 1

An even more efficient form uses STOSW (Store-String-Word). The STOSB example just
shown stores one byte at a time into memory. This process can be sped up by nearly a factor of
two by storing half as many two-byte words as there are individual bytes. Here the trick is to
duplicate the pixel color value in both halves of the AX register so that storing a word sets two
pixels at a time. Since there are half as many words as there are bytes, the number of times to
loop can be cut in half from 64000 to 32000. The STOSW instruction increments DI by 2, and
adding the REP prefix repeats the process while CX is not equal to zero.

 MOV AL,Color ; AL gets the color value
 MOV AH,AL ; Duplicate the color value
 MOV BX,0A000H ;
 MOV ES,BX ; ES set to start of VGA
 MOV CX,32000 ; CX set to number of words
 MOV DI,0 ; DI set to pixel offset 0

 REP STOSW ; While CX <> 0 Do
 ; Memory[ES:DI] := AX
 ; DI := DI + 2
 ; CX := CX - 1

This final form is the recommended method for setting all pixels in the screen to the same
color. A variation of this technique will be examined again in the section on drawing horizontal
lines.

Second Draft © October 2002, Dr. William T. Verts

– 3 –

Setting a Pixel

In order to set a pixel on screen, you need to know three things: the row address and
column address of the pixel, and the pixel’s new color. Valid row addresses are between 0 and
199, and valid column addresses are between 0 and 319. For these examples we are going to
assume that the row address is stored in integer variable Y and the column address is stored in
integer variable X, and that the values in those variables are in the appropriate legal ranges.

If the value of Y is less than 0 or greater than 199, or if the value of X is less than 0 or
greater than 319, then the pixel routine should exit immediately. For legal values, the byte offset
into the video area is determined by the computation:

Offset := Y * 320 + X

Thus, storing the new pixel color is implemented by the following pseudocode:

Memory[A000:Offset] := Color

In 80x86 assembly code, this same task is performed as follows:

 MOV AX,320 ;
 IMUL Y ;
 ADD AX,X ;
 MOV BX,AX ; BX := Y * 320 + X

 MOV AX,0A000H ; ES := A000
 MOV ES,AX ; start of VGA area

 MOV AL,Color ;
 MOV ES:[BX],AL ; Store pixel byte

Of course, if the ES register is preloaded with A000 and never changed, then this routine
can be made faster by not including it again here.

To make a general-purpose subroutine, the values of X and Y should be passed to the
routine on the stack instead of through memory. (The new pixel color can be passed through
memory, since it is not likely to change frequently.) The calling sequence for such a subroutine
is:

 {compute X into AX}
 PUSH AX
 {compute Y into AX}
 PUSH AX
 CALL Set_Pixel

Notice that the items pushed onto the stack before the call are not popped off after the
subroutine returns. In 80x86 assembly language, the RET (return from subroutine) instruction

Second Draft © October 2002, Dr. William T. Verts

– 4 –

can be modified to clear some number of bytes from the stack after the return address is popped.
Since both X and Y are two-byte integers, the instruction RET 4 will clear the parameters
appropriately.

Inside the subroutine the values should be clipped to eliminate off-screen coordinates,
and any registers used must be saved and restored to preserve their values outside of the
subroutine. A complete such routine is as follows:

 Set_Pixel PROC
 PUSH AX
 PUSH BX
 PUSH CX
 PUSH DX
 PUSH BP
 MOV BP,SP

 MOV AX,[BP+12] ; Get Y from Stack
 CMP AX,0 ;
 JL EndPixel ; Exit If Y<0
 CMP AX,199 ;
 JG EndPixel ; Exit If Y>199

 MOV BX,[BP+14] ; Get X from Stack
 CMP BX,0 ;
 JL EndPixel ; Exit If X<0
 CMP BX,319 ;
 JG EndPixel ; Exit If X>319

 MOV CX,320 ;
 IMUL CX ; BX := Y*320+X
 ADD BX,AX ; (pixel offset)

 MOV AX,0A000H ;
 MOV ES,AX ; ES := VGA segment

 MOV AL,Color ;
 MOV [ES:BX],AL ; [ES:BX] := Color

 EndPixel: POP BP
 POP DX
 POP CX
 POP BX
 POP AX
 RET 4
 Set_Pixel ENDP

Second Draft © October 2002, Dr. William T. Verts

– 5 –

While this routine is complete and effective, it is far too slow for many applications. In
particular, drawing a horizontal line, where both end points are visible on screen, need not do
any clipping and need only compute the byte offset for the first (leftmost) pixel of the line. This
problem is addressed in the next section.

Drawing a Horizontal Line

Drawing a horizontal line is very similar to flooding the entire screen with a single color.
The major difference is that the starting and ending pixels are within the same raster line, instead
of being the first and last pixels of the entire graphics screen area. We can thus reuse a lot of the
code for filling the screen (in particular the STOSB instruction) just as long as we set up the
correct starting pixel address and the total number of pixels.

For a horizontal line we need to know the X coordinate of the left end of the line, the X
coordinate of the right end of the line, and the Y coordinate of the line. Call these coordinates
X1, X2, and Y. For now assume that X1 is less than or equal to X2, and assume that all three
values are legal (i.e., point <X1,Y> and <X2,Y> are both on screen).

From this model we can calculate the offset into the graphics area of the starting pixel by
the expression:

 Offset := Y * 320 + X1

We can also calculate the number of pixels by the expression:

 Pixels := X2 - X1 + 1

The 80x86 assembly language code to do this would be as follows:

 MOV CX,X2 ;
 SUB CX,X1 ;
 INC CX ; CX := Number of pixels

 MOV AX,320 ; Compute pixel offset of
 MUL Y ; leftmost endpoint <X1,Y>
 ADD X1 ;
 MOV DI,AX ; DI := Y * 320 + X1

 MOV BX,0A000H ;
 MOV ES,BX ; ES := VGA segment

 MOV AL,Color ; AL := color value

 REP STOSB ; While CX <> 0 Do
 ; Memory[ES:DI] := AL
 ; DI := DI + 1
 ; CX := CX - 1

Second Draft © October 2002, Dr. William T. Verts

– 6 –

In order to make the horizontal line routine complete, we must first discard lines above or
below the screen, insure that X1 is less than or equal to X2, and we must clip the ends of lines
that extend beyond the left and right edges of the screen (possibly discarding the entire line in the
process). In a high-level pseudocode, the process is as follows:

 If Y < 0 Then Exit ;
 If Y > 199 Then Exit ;
 If X1 > X2 Then Swap(X1, X2) ;
 If X1 < 0 Then X1 := 0 ;
 If X2 > 319 Then X2 := 319 ;
 If X1 > X2 Then Exit ;
 { Plot what remains of the line }

By clipping X1 against 0 and X2 against 319, lines that are entirely off the left side or
right side of the screen will end up with X1 > X2 at the end of this process, so the last test
discards those cases.

A general-purpose subroutine to draw horizontal lines requires a calling sequence similar
to that of painting a single pixel on screen, except two X values must be pushed instead of one.
This is as follows:

 {compute X1 into AX}
 PUSH AX
 {compute X2 into AX}
 PUSH AX
 {compute Y into AX}
 PUSH AX
 CALL HLine

As with the paint pixel subroutine, the horizontal line subroutine will flush the parameters
from the stack as it exits. The complete subroutine with clipping, written as a procedure, starts
on the next page.

Second Draft © October 2002, Dr. William T. Verts

– 7 –

;---------------------------------------;
; Stack at start of useful work:
; X1 BP+18
; X2 BP+16
; Y BP+14
; RET ADR BP+12
; AX BP+10
; BX BP+8
; CX BP+6
; DX BP+4
; DI BP+2
; SP --> BP BP+0
;---------------------------------------;

HLine PROC NEAR
 PUSH AX
 PUSH BX
 PUSH CX
 PUSH DX
 PUSH DI
 PUSH BP
 MOV BP,SP

 MOV AX,[BP+14] ; Get Y from Stack
 CMP AX,0 ;
 JL HLine_Done ; Exit_If Y < 0
 CMP AX,199 ;
 JG HLine_Done ; Exit_If Y > 199

 MOV BX,320 ; Y := Y * 320
 IMUL BX ;
 MOV [BP+14],AX ; Replace Y on Stack

 MOV AX,[BP+18] ; Get X1 from Stack
 MOV BX,[BP+16] ; Get X2 from Stack

 CMP AX,BX ; If X1 > X2 Then Swap(X1,X2)
 JLE HLine_Sort ;
 XCHG AX,BX ;
 HLine_Sort: ;

 CMP AX,0 ; If X1 < 0 Then X1 := 0
 JGE DoneX1 ;
 MOV AX,0 ;
 DoneX1: ;

Second Draft © October 2002, Dr. William T. Verts

– 8 –

 CMP BX,319 ; If X2 > 319 Then X2 := 319
 JLE DoneX2 ;
 MOV BX,319 ;
 DoneX2: ;

 CMP AX,BX ; Exit_If X1 > X2 (clipped)
 JG HLine_Done ;

 SUB BX,AX ; CX := X2 - X1 + 1
 INC BX ; (pixel count)
 MOV CX,BX ;

 ADD AX,[BP+14] ; DI := Y * 320 + X1
 MOV DI,AX ; (product is on stack
 ; in Y's place)

 MOV AX,0A000H ; ES := VGA Segment
 MOV ES,AX ;

 MOV AX,Color ; AL := Color
 CLD ;
 REP STOSB ; While CX > 0 Do
 ; [ES:DI] := AL
 ; DI := DI + 1
 ; CX := CX – 1

 HLine_Done:
 POP BP
 POP DI
 POP DX
 POP CX
 POP BX
 POP AX
 RET 6
HLine ENDP

Second Draft © October 2002, Dr. William T. Verts

– 9 –

Drawing a Vertical Line

Drawing vertical lines is not as simple as drawing horizontal lines because adjacent
vertical pixels are not adjacent in memory, but instead are 320 bytes apart. Thus, the STOSB
instruction cannot be used in this circumstance. We will have to step from one raster line to the
next by adding 320 to an old address to get the new address.

A vertical line requires the X coordinate and two Y coordinates, called Y1, and Y2. As
with the horizontal line, we are assuming that the point values <X,Y1> and <X,Y2> represent
legitimate screen coordinates, and that Y1 is less than or equal to Y2. The starting pixel address
is computed by the expression:

 Offset := Y1 * 320 + X

and the number of pixels by the expression:

 Pixels := Y2 - Y1 + 1

The 80x86 assembly language code for this process is then:

 MOV CX,Y2 ;
 SUB CX,Y1 ;
 INC CX ; CX := Number of pixels

 MOV AX,320 ; Compute pixel offset of
 MUL Y1 ; topmost endpoint <X,Y1>
 ADD X ;
 MOV BX,AX ; BX := Y1 * 320 + X

 MOV AX,0A000H ;
 MOV ES,AX ; ES := VGA segment

 MOV AL,Color ; AL := color value

 VLine_Loop: ; Repeat
 MOV [ES:BX],AL ; Memory[ES:BX] := AL
 ADD BX,320 ; BX := BX + 320
 LOOP VLine_Loop ; CX := CX – 1
 ; Until CX = 0

Clipping is handled similar to that of the horizontal line routine: lines with X coordinate
less than zero or greater than 319 are discarded, the Y1 and Y2 values are sorted, Y1 is clipped
to 0, Y2 is clipped to 199, and whatever remains is plotted.

Second Draft © October 2002, Dr. William T. Verts

– 10 –

The calling sequence for a vertical line subroutine is as follows:

 {compute X into AX}
 PUSH AX
 {compute Y1 into AX}
 PUSH AX
 {compute Y2 into AX}
 PUSH AX
 CALL VLine

The complete subroutine starts below:

;---------------------------------------;
; Stack at start of useful work:
; X BP+16
; Y1 BP+14
; Y2 BP+12
; RET ADR BP+10
; AX BP+8
; BX BP+6
; CX BP+4
; DX BP+2
; SP --> BP BP+0
;---------------------------------------;

VLine PROC NEAR
 PUSH AX
 PUSH BX
 PUSH CX
 PUSH DX
 PUSH BP
 MOV BP,SP

 MOV AX,[BP+16] ; Get X from Stack
 CMP AX,0 ;
 JL VLine_Done ; Exit_If X < 0
 CMP AX,319 ;
 JG VLine_Done ; Exit_If X > 319

 MOV AX,[BP+14] ; Get Y1 from Stack
 MOV BX,[BP+12] ; Get Y2 from Stack

 CMP AX,BX ; If Y1 > Y2 Then Swap(Y1,Y2)
 JLE VLine_Sort ;
 XCHG AX,BX ;

Second Draft © October 2002, Dr. William T. Verts

– 11 –

 VLine_Sort: ;

 CMP AX,0 ; If Y1 < 0 Then Y1 := 0
 JGE DoneY1 ;
 MOV AX,0 ;
 DoneY1: ;

 CMP BX,199 ; If Y2 > 199 Then Y2 := 199
 JLE DoneY2 ;
 MOV BX,199 ;
 DoneY2: ;

 CMP AX,BX ; Exit_If Y1 > Y2 (clipped)
 JG VLine_Done ;

 SUB BX,AX ; CX := Y2 - Y1 + 1
 INC BX ; (pixel count)
 MOV CX,BX ;

 MOV BX,320 ;
 IMUL BX ; (Y1 still in AX)
 ADD AX,[BP+16] ;
 MOV BX,AX ; BX := Y1 * 320 + X

 MOV AX,0A000H ; ES := VGA Segment
 MOV ES,AX ;

 MOV AL,Color ; AL := Color

 VLine_Loop: ; Repeat
 MOV [ES:BX],AL ; Memory[ES:BX] := AL
 ADD BX,320 ; BX := BX + 320
 LOOP VLine_Loop ; CX := CX – 1
 ; Until CX = 0

 VLine_Done:
 POP BP
 POP DX
 POP CX
 POP BX
 POP AX
 RET 6
VLine ENDP

Second Draft © October 2002, Dr. William T. Verts

– 12 –

Second Draft © October 2002, Dr. William T. Verts

– 13 –

General Lines

Plotting Circles

Saving and Plotting Image Regions

	Dr. Bill’s Notes on Mode-13 Graphics
	©October, 2002
	Dr. William T. Verts
	
	Introduction
	Entering Graphics Mode
	Exiting Graphics Mode
	Clearing the Screen
	Setting a Pixel
	Drawing a Horizontal Line
	Drawing a Vertical Line
	General Lines
	Plotting Circles
	Saving and Plotting Image Regions

