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COMPSCI 145
Representing, Storing, and Retrieving 

Information
LECTURE #3

CHANGING REPRESENTATIONS

Professor William T. Verts

Why Change Representations?

• Changing representations often means replacing a hard task with an 
easier one, but

• Doing so may actually make certain other tasks harder.

• Sometimes that doesn’t matter!
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Back to Arithmetic

• Addition and Subtraction are fairly simple:

• Multiplication is harder:

• Division is significantly worse.
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Reduction in Strength

• We can get a speed‐up by replacing hard operations with easier ones:
• Replace x ÷ 4 with x × 0.25 (replace division with multiplication)
• Replace 2 × x with x + x (replace multiplication with addition)

• This reduction in strength tends to make complicated operations 
both simpler and faster.
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A Classic Problem

• Back in the 15TH and 16TH Centuries, problems such as computing planetary 
orbits (Kepler) were all done by hand, and contained a significant number of 
multiplications.

• If the problems can be recast to exploit a reduction in strength, then the 
computations can go faster and need not be quite so tedious.

• Can we then recast multiplication as addition?

• YES!
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Reduction of Strength on Multiplication

• Here’s the initial problem: N = A × B

• Take the log of each side: log(N) = log(A × B)

• Exploit a property of logs: log(N) = log(A) + log(B)

• Take the antilog of each side: N = antilog(log(A) + log(B))
• Voila!  Multiplication has been replaced by Addition!  Reduction in 
Strength!  Problem solved, right?

• But…
• Didn’t we just make the problem worse with log and antilog?

• Maybe.  Maybe not.  Let’s investigate…
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Take two sticks, with linear scales

• Start here:

• Move the 0 on the top to above the 3 on the bottom.
• The 1 is above the 4,

• The 2 is above the 5,

• The 3 is above the 6, etc.

• This is obviously an adder.  Lengths are added directly.
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Now do it with log scales

• Start here:

• Move the 1 on the top to above the 3 on the bottom.
• The 2 is above the 6,
• The 3 is above the 9, etc.

• We’re still adding lengths, but because the scales give us the log and 
antilog for free, we got the reduction in strength we wanted.  We can 
now multiply by adding.
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This is a slide rule (from Wikipedia)

• The C and D scales do multiplication (and division):

• Other scales (front and back) do logs, square root, sine & cosine, etc.
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A Problem with Precision

• Start here:

• Move the 1 on the top to above the 2.1 on the bottom.

• Look at the 2.1 on top; what is it above?

• It is near to, but not exactly on, 4.4 (the exact value is 2.1×2.1=4.41)

• This device as shown is only precise to two digits.  (Well, it’s analog!)
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