
CMPSCI 119
Spring 2019

Final Exam Solution Key
Friday, May 3, 2019

Professor William T. Verts

CMPSCI 119 – Spring 2019 – Professor William T. Verts

– Page 1 of 5 –

<1> 15 Points – Answer any 15 questions. Answer more for extra credit. Blank answers will

be ignored, correct answers as +1 and incorrect answers as -1. –½ for wrong type in

either Result or Type column (for lists, list is only thing needed, no need to say list

of type). For each statement show the computed result and the data type of the result

(int, float, bool, list, string, tuple, etc.) Questions are all independent of one another. If a

calculation would result in an error, answer ERROR in the Result box. Variables have

values as follows:
 Mercury = 59

 Venus = 224.7

 Earth = "Pale Blue Dot"

 Mars = ["Angry", "Red", "Planet"]

 JupiterMoons = ["Ganymede", "Europa", "Io", "Callisto"]

 Discoveries = {"Uranus":1781, "Neptune":1846, "Pluto":1930}

 Moons = [0,0,1,2,79,62,27,14,5]

 Result Type Statement

29.5 float Mercury / 2

29 int Mercury // 2

29.0 float Mercury // 2.0

224 int int(Venus)

ERROR len(Venus)

13 int len(Earth)

3 int len(Mars)

"Angry" string Mars[0]

"P" string Earth[0]

"Callisto" string JupiterMoons[-1]

"Blue" string Earth[5:9]

1930 int Discoveries["Pluto"]

ERROR Discoveries[1846]

["Uranus","Neptune",

"Pluto"]

list of string
Discoveries.keys()

ERROR Discoveries[Mars[1]]

"Pale Blue Dot Planet" string Earth + " " + Mars[-1]

[0,1,2,3,4] list of int range(Moons[-1])

[59,60,61] list of int range(Mercury,Moons[5])

[] list empty range(Moons[4],Mercury)

["I","o"] list of string [Q for Q in JupiterMoons[2]]

[2, 62, 0] list of int [Moons[I] for I in [3,5,1]]

[5, 3, 6] list of int [len(X) for X in Mars]

ERROR [Z+1 for Q in Earth]

[0,0,0,0] list of int [0 for Frog in JupiterMoons]

["B","l","u","e"] list of string [Earth[I] for I in range(5,9)]

CMPSCI 119 – Spring 2019 – Professor William T. Verts

– Page 2 of 5 –

<2> 20 Points – The following flowchart represents a real program.

A: (10 points) “Run” the program below and show how the variables change over

time and show what is printed on the output. As each variable is assigned a value,

scratch out the old value in the variable box and write in the new value. There

will be exactly four lines of output; write the first thing printed next to LINE #1:,
the second thing printed next to LINE #2:, etc..

 Scoring: In this section the outputs for the four lines is more important than the

variables boxes (although related). Assign 2 points for each of the four output

lines, and the remaining 2 points to the variables showing anything close to the

correct sequencing.

B: (10 points) Convert the flowchart into an equivalent, runnable Python 3 program.

Your result needs only assignment statements, the print statement, and the

while, (no functions or anything fancy). The first statement has been done for

you.

 Scoring: Assign 1 point for each of the seven lines of code that students have to

write; remove ½ point per minor error (forgetting colon or parentheses,

indentation, etc.), up to 2 occurrences per line. Assign the remaining 3 points to

any overall errors (1 per error) not covered here.

T = 0

 P = 1

 N = 1

 while N <= 4:

 T = T + P

 print (N,T)

 P = P + 2

 N = N + 1

CMPSCI 119 – Spring 2019 – Professor William T. Verts

– Page 3 of 5 –

<3> 10 Points – Write a new Python function called Ranger with three parameters N1, N2,

and N3, in that order (and make N3 have the default parameter value of 1), that computes

and returns a list that starts at N1, goes up to but does not include N2, in increments of

N3. Your solution must NOT use the range function! (That is, you cannot simply use

range(N1,N2,N3) – your solution must build the list the hard way!)

 def Ranger(N1,N2,N3=1):

 Result = []

 Counter = N1

 while (Counter < N2):

 Result = Result + [Counter]

 Counter = Counter + N3

 return Result

Scoring: Remove 1 point per minor error, but do not go below zero. Possible errors

include, but are not limited to:

 Wrong name of function

 Wrong parameter list

 Omitting default parameter value

 Not using a counter loop

 Wrong values on counter loop

 Omitting brackets on [Counter]

 Not returning constructed list

 etc.

-5 for using the range function in any way, even if the result is correct.

<4> 5 Points – Re-write the code below as a list comprehension:

 L = []

 for Z in range(5): L = L + [Z*Z]

 L = [Z*Z for Z in range(5)]

Scoring: Remove 1 point per error, but do not go below zero. Possible errors include, but

are not limited to:

 Using Z instead of Z*Z as the expression

 Forgetting to assign result to L

 Using a variable different from L

 Omitting the brackets

 Illegal syntax on the for-loop part

 etc.

CMPSCI 119 – Spring 2019 – Professor William T. Verts

– Page 4 of 5 –

<5> 5 Points – In someone’s classroom, students get an A for any grade 90 or above, a B for

80 to 90 (that is, grades at least 80 but less than 90), a C for 70 to 80, a D for 60 to 70,

and an F otherwise. Complete the code fragment below to print the correct letter grade.

 Grade = int(input("Enter a grade --- "))

 if Grade >= 90: Result = "A"

 elif Grade >= 80: Result = "B"

 elif Grade >= 70: Result = "C"

 elif Grade >= 60: Result = "D"

 else: Result = "F"

 print (Result)

 Grade = int(input("Enter a grade --- "))

 if Grade >= 90: print("A")

 elif Grade >= 80: print("B")

 elif Grade >= 70: print("C")

 elif Grade >= 60: print("D")

 else: print("F")

 Grade = int(input("Enter a grade --- "))

 if (Grade >= 90): print("A")

 if (Grade >= 80) and (Grade < 90): print("B")

 if (Grade >= 70) and (Grade < 80): print("C")

 if (Grade >= 60) and (Grade < 70): print("D")

 if (Grade < 60): print("F")

 Any of these approaches are OK. Others may be appropriate as well. Accept any

approach that gives the correct result. For any legitimate approach, remove 1 point per

syntax or logic error, but do not go below zero. Students should receive some credit for

any legitimate code that approximates any correct solution.

CMPSCI 119 – Spring 2019 – Professor William T. Verts

– Page 5 of 5 –

<6> 5 Points – The following code is full of errors, both syntax and run-time. Find and

correct them.

 Ddef Stuff (N): # N is an integer

 X = N

 while (N > 0):

 print (nN)

 N = N – 2

 Result = X + N

 if Result == 0:

 Result = Result + 1

 print ("Error")

 return Result

 Def should be def

 Comment is missing leading #

 Colon missing on end of while

 print (n) should be print (N)

 N – 2 should be N = N – 2

 = should be == in if statement

 Second print is at wrong indentation level (increase by one space)

 return is at wrong indentation level (increase by four spaces)

Scoring: Remove ½ point for every mistake not found (total of 4 points), and remove ½

point for every correct item misidentified as a mistake, but do not go below zero.

CMPSCI 119 – Spring 2019 – Professor William T. Verts

– Page 6 of 5 –

<7> 15 Points – What is printed by the following code when Main is run?

 Scoring: 3 Points per answer.

def F1(Frog):

 global X

 Result = Frog + X

 X = X + 1

 return Result

def F2(M,N=3):

 global X

 X = X - 2

 Result = F1(M + N + X)

 return Result

def Main():

 global X

 X = 1

 F0 = lambda Q : Q+2

 print (F1(3)) # Result 1: _____4____

 print (F2(3)) # Result 2: _____6____

 print (F2(1,1)) # Result 3: _____0____

 print (F2(1,1)) # Result 4: ____-2____

 print (F0(5)) # Result 5: _____7____

 return

CMPSCI 119 – Spring 2019 – Professor William T. Verts

– Page 7 of 5 –

<8> 10 Points – The two code fragments below are almost but not quite the same. What is

printed out by each one?

try: try:

 print (10//2) print (10//2)

 print (10//1) print (10//1)

 print (10//0) print (10//1)

 print (10//2) print (10//2)

except: except:

 print ("Error") print ("Error")

 5 5

 10 10

 Error 10

 5

 Scoring: 5 points for each set of answers.

Remove 2 points for printing 5-10-10-5-Error in either set of answers.

<9> 5 Points – Fill in the blanks to write all numbers from 1 through 1000, one per line, to the

file named in Filename:

def Creator(Filename):

 Handle = open(Filename, "w")

 for I in range(1,1001):

 Handle.write(str(I) + "\n")

 Handle.close()

 return

 Scoring: 1 point for each line. Remove ½ point per error (max two of these per line),

including but not limited to:

 Not using Filename in first parameter of open,

 Not specifying "w" in second parameter of open (or forgetting quotes),

 Wrong starting value in range,

 Wrong ending value in range,

 Not using str() in write,

 Forgetting the "\n" in write,

 Using , instead of + in write,

 Forgetting () in close,

 etc.

CMPSCI 119 – Spring 2019 – Professor William T. Verts

– Page 8 of 5 –

<10> 10 Points – Short Answer – Please use the back of this page for your answer.

A. (5 points) Can I always write a for-loop as a while-loop? Why or why not?

 YES (2 points)

A for-loop always uses a list to control the number of times through the loop and what

values are used in each pass; lists have a finite number of elements. For example:

for MyVar in MyList:

 # Do loop payload with MyVar

This can always be written with a counter loop in a while-loop that steps through the

same list sequentially, and from the counter we can extract the appropriate item from the

list:

Counter = 0

while (Counter < len(MyList)):

 MyVar = MyList[Counter]

 # Do loop payload with MyVar

 Counter = Counter + 1

(3 points for a reasonable explanation, 2 points for an almost correct explanation, 1 point

for anything marginally appropriate.)

B. (5 points) Can I always write a while-loop as a for-loop? Why or why not?

 NO (2 points)

A while-loop can run an arbitrary and unknown number of times based on whether the

loop condition is controlled by user input, some random process, or is infinite. A for-

loop can’t do any of that. For example:

while True:

 # Do loop payload

while int(input("Enter a positive number -- ")) > 0:

 # Do loop payload

while random.randrange(100) != 0:

 # Do loop payload

(3 points for a reasonable explanation, 2 points for an almost correct explanation, 1 point

for anything marginally appropriate.)

