
CMPSCI 119
Fall 2019

Monday, November 18, 2019
Midterm #2 Solution Key
Professor William T. Verts

CMPSCI 119 – Midterm #2 Solution Key – Fall 2019 – Professor William T. Verts

– Page 1 –

<1> 25 Points – What is the value of each expression below? Answer any 25; answer more for

extra credit. Answer “Error” if an expression cannot be computed for any reason. Scoring:

 +1: Completely correct answers

 +½: Incorrect data types, lists without square brackets, strings without quotes, etc.

 0: Blank answers

–½: Incorrect answers (better to leave it blank than to guess)

Ruby = 13

Weiss = 4.8

Blake = [3, 7, "Cat", 7.5, 4]

Yang = {"Age":17, "Color":"Yellow", "Semblance":"Burn"}

RWBY = ("Red", "White", "Black", "Yellow")

1. 6.5 float Ruby / 2

2. 6 int Ruby // 2

3. 5 int round(Weiss)

4. 4 int int(Weiss)

5. 4.8 float float(Weiss)

6. 13.0 float float(Ruby)

7. "13" string str(Ruby)

8. 5 int len(Blake)

9. 4 int len(RWBY)

10. ERROR len(Ruby)

11. 3 int len(Blake[2])

12. 6 int len(Yang["Color"])

13. ERROR len(Yang[Color])

14. 1 int len(str(Blake[-1]))

15. True bool Yang["Color"] == RWBY[3]

16. ERROR Yang["Frog"]

17. "Black Cat" string RWBY[2] + " " + Blake[2]

18. [7,"Cat",7.5] list Blake[1:4]

19. [7,"Cat",7.5,4] list Blake[1:]

20. [3,7,"Cat",7.5] list Blake[:4]

21. [13,14,15,16] list list(range(Ruby, Yang["Age"]))

22. [3,5,7,9,11] list list(range(Blake[0], Ruby, 2))

23. [0,1,2,3] list list(range(Blake[-1]))

24. [0,4,8] list list(range(0, 10, Blake[4]))

25. [] list list(range(Ruby,5))

26. [0,0,0] list [0 for N in range(Ruby // 4)]

27. [13,14,15,16,17] list [N+Ruby for N in range(5)]

28. ERROR [Frog+Ruby for N in range(5)]

29. [0,0,0,0] list [0] * 4

30. [13,4.8,13,4.8,13,4.8] [Ruby, Weiss] * 3

CMPSCI 119 – Midterm #2 Solution Key – Fall 2019 – Professor William T. Verts

– Page 2 –

<2> 20 Points – (2 points each answer) When Main() is called there will be exactly ten lines

of output printed. What are they?

def Chalk(A,B,C=5): # Line 1 ___-3___

 Blackboard = A + B

 print (Blackboard) # Line 2 ___-2___

 return Blackboard + C

Line 3 ____1___

def Erasers(X,Y,Z):

 Q = Y + Chalk(X,Z) # Line 4 ____9___

 print (Q)

 return # Line 5 ____4___

def Main(): # Line 6 ____9___

 print (Chalk(2,-5, 1))

 Erasers(5,3,-4) # Line 7 ___-3___

 print (Chalk(3,1))

 Erasers(-4,2,1) # Line 8 ____4___

 print (Chalk(1,1,1))

 return # Line 9 ____2___

Line 10 ____3___

CMPSCI 119 – Midterm #2 Solution Key – Fall 2019 – Professor William T. Verts

– Page 3 –

<3> 15 Points – Complete the Process function below to flip a coin N times. Use the

random.random() function to generate each coin flip; print out HEADS if the random

value is less than 0.5 but print out TAILS otherwise. The command import random

is already at the top of the program. Remove 1 point per error in each section.

 5 Points max for a properly constructed loop of some kind

 5 Points max for correct use of random.random()

 5 Points max for testing and printing

 def Process (N):

 for I in range(N):

 Value = random.random()

 if Value < 0.5:

 print ("HEADS")

 else:

 print ("TAILS")

 return

-or-

 def Process (N):

 I = 0

 while I < N:

 Value = random.random()

 if Value < 0.5:

 print ("HEADS")

 else:

 print ("TAILS")

 I = I + 1

 return

-or-

 def Process (N):

 for I in range(N):

 if random.random() < 0.5: print ("HEADS")

 else: print ("TAILS")

 return

-or-

 def Process (N):

 I = 0

 while I < N:

 if random.random() < 0.5: print ("HEADS")

 else: print ("TAILS")

 I = I + 1

 return

CMPSCI 119 – Midterm #2 Solution Key – Fall 2019 – Professor William T. Verts

– Page 4 –

<4> 15 Points – Write a counter-loop code fragment (not a complete function) using Index

as the counter variable, which starts at 37, goes up to but does not include 914, and counts

by 7s. The payload of the loop is to call the Strange function with Index as its (only)

parameter.

 10 Points max for a properly constructed loop of some kind

 5 Points max for calling Strange(Index)

 Accept a for-loop solution, even though the first version is what is expected

 Remove 1 point per error in each section

 Index = 37

 while Index < 914:

 Strange(Index)

 Index = Index + 7

-or-

 for Index in range(37,914,7):

 Strange(Index)

-or-

 for Index in range(37,914,7): Strange(Index)

<5> 10 Points – The following function attempts to write the square roots of all integers from

0 up to and including N, one per line, to the text file indicated by file name F. However,

there are both syntax errors and logic errors in the code. Locate and fix all the errors.

 I count 8 unique errors. Start with 10 points and remove 1 point for each error not found,

and remove 1 point for each correct item miss-identified as an error, but do not go below

zero.

import Mmath # Math  math

def WriteSQRT (F,N): # Missing :

 Handle = open(F, "wb") # "wb"  "w"

 for I in range(N+1): # N  N+1

 hHandle.write(str(math.sqrt(I))+"\n")

 # Missing)

 # Missing +"\n"

 # handle  Handle

 Handle.close() # Missing ()

 return

CMPSCI 119 – Midterm #2 Solution Key – Fall 2019 – Professor William T. Verts

– Page 5 –

<6> 10 Points – I have a variable L containing a list of floats that represent an audio sound (to

be saved with the WriteWAV function in the book). L contains a bunch of sound samples

(that is, it isn’t empty). The variable SamplesPerSecond is already defined and

contains the number of sound samples needed for each second the sound will play. Write

a code fragment (not a function!) to add five seconds of silence to the end of L (silence is

where the sample value is zero).

 for I in range(SamplesPerSecond * 5): L = L + [0.0]

-or-

 for I in range(SamplesPerSecond * 5): L.append(0.0)

-or-

 TotalSamples = SamplesPerSecond * 5

 for I in range(TotalSamples): L = L + [0.0]

-or-

 TotalSamples = SamplesPerSecond * 5

 for I in range(TotalSamples): L.append(0.0)

-or-

 TotalSamples = SamplesPerSecond * 5

 I = 0

 while (I < TotalSamples):

 L.append(0.0)

 I = I + 1

-or-

 TotalSamples = SamplesPerSecond * 5

 I = 0

 while (I < TotalSamples):

 L = L + [0.0]

 I = I + 1

Scoring:

 3 Points max for computing the number of new samples needed

 4 points max for an appropriate loop, either a for-loop or while-loop

 3 points max for adding the 0.0 (int 0 is allowed) to the end of the list L

 Remove 1 point per error in each section (do not go below 0 in each section)

In talking with students after the exam, I found that a number of them had used the

makeEmptySound function referred to on page 430 of the Companion. The description on that

page clearly says that this function is specific to the Python 2 JES environment, which we are

not using. The Python 2/3 code on page 431 is far more relevant. Give those students 4 points

max for this approach, but again remove 1 point per error (syntax, mostly). Do not go below zero.

CMPSCI 119 – Midterm #2 Solution Key – Fall 2019 – Professor William T. Verts

– Page 6 –

<7> 5 Points – Short Answer – There are two major ways we can represent polynomials in

Python. One is to create a list where each item in the list is a two-element list containing

the coefficient and the exponent. For example the polynomial 3x10 – 6x4 + 2 would be

encoded in Python as [[3,10], [-6,4], [2,0]]. The other way is to create a list

where each entry is the coefficient and the index is the exponent. The same polynomial

3x10 – 6x4 + 2 would be encoded as [2, 0, 0, 0, -6, 0, 0, 0, 0, 0, 3].

What are the advantages and disadvantages of each approach?

 The first way (a list of [coefficient,exponent] lists) is very good for large, sparse

polynomials, such as 3x10000000 – 6x4000 + 2 as this approach stores information for only

the needed non-zero terms. The Python code would be somewhat complicated.

However, the second way (a simple list of coefficients) is far simpler for the large

majority of expected cases, both to represent the polynomials and to process them in

Python code. It is less efficient for large, sparse polynomials, as a lot of zero coefficients

would be present in the list.

Scoring:

5 points for correctly discussing both the efficiency of the representation and the

complexity of the Python code.

3 points for correctly describing one or the other (efficiency or complexity), but

either omitting the other discussion or getting it wrong.

1 point for anything marginally reasonable.

0 points for any answer that is way off base.

