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Abstract

As pre-trained language models have got-
ten larger, there has been growing inter-
est in parameter-efficient methods to apply
these models to downstream tasks. Build-
ing on the PROMPTTUNING approach of Lester
et al. (2021), which learns task-specific soft
prompts to condition a frozen language model
to perform downstream tasks, we propose a
novel prompt-based transfer learning approach
called SPOT: Soft Prompt Transfer. SPOT
first learns a prompt on one or more source
tasks and then uses it to initialize the prompt
for a target task. We show that SPOT sig-
nificantly boosts the performance of PROMPT-
TUNING across many tasks. More importantly,
SPOT either matches or outperforms MODEL-
TUNING, which fine-tunes the entire model on
each individual task, across all model sizes
while being more parameter-efficient (up to
27,000× fewer task-specific parameters). We
further conduct a large-scale study on task
transferability with 26 NLP tasks and 160 com-
binations of source-target tasks, and demon-
strate that tasks can often benefit each other
via prompt transfer. Finally, we propose a sim-
ple yet efficient retrieval approach that inter-
prets task prompts as task embeddings to iden-
tify the similarity between tasks and predict
the most transferable source tasks for a given
novel target task.

1 Introduction

The past few years have seen the rapid develop-
ment of ever larger pre-trained language models,
where it has repeatedly been shown that scaling
up the model size is a key ingredient for achieving
the best performance (Devlin et al., 2019; Raffel
et al., 2020; Brown et al., 2020). While this trend
has continued to push the boundaries of possibility
across various NLP benchmarks, the sheer size of
these models presents a major challenge for their
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Figure 1: Our SPOT approach outperforms the vanilla
PROMTTUNING (Lester et al., 2021) and GPT-3’s few-
shot PROMPTDESIGN (Brown et al., 2020) on the Super-
GLUE benchmark by a substantial margin, obtaining
competitive or significantly better results than MODEL-
TUNING across all model sizes. At the XXL model size,
SPOT even outperforms the MULTI-TASKMODELTUNING

by over one point.

practical application. For 100B+ parameter mod-
els, fine-tuning and deploying a separate instance
of the model for each downstream task would be
prohibitively expensive.

To get around the infeasibility of fine-tuning,
Brown et al. (2020) propose PROMPTDESIGN, where
every downstream task is cast as a language mod-
eling task and the frozen pre-trained model per-
forms different tasks by conditioning on manual
text prompts provided at inference time. Brown
et al. (2020) demonstrate impressive few-shot per-
formance with a single frozen GPT-3 model, al-
though its performance depends highly on the
choice of the prompt (Zhao et al., 2021) and still
lags far behind state-of-the-art fine-tuning results.

More recent work has explored methods for
learning soft prompts (Liu et al., 2021b; Qin and
Eisner, 2021; Li and Liang, 2021; Lester et al.,
2021), which can be seen as additional learnable pa-
rameters injected into the language model. Lester



et al. (2021) propose PROMPTTUNING, a simple
method that learns a small task-specific prompt
(a sequence of tunable tokens prepended to each
example) for each downstream task during adap-
tation to condition the frozen language model to
perform the task. Strikingly, as model capacity in-
creases, PROMPTTUNING becomes competitive with
MODELTUNING, which fine-tunes the entire model on
each downstream task. Nevertheless, at small and
moderate model sizes (less than 11B parameters),
there are still large gaps between PROMPTTUNING

and MODELTUNING.
In this paper, we propose SPOT: Soft Prompt

Transfer, a novel transfer learning approach in the
context of prompt tuning. SPOT first trains a prompt
on one or more source tasks and then uses the re-
sulting prompt to initialize the prompt for a target
(downstream) task. Our experiments show that
SPOT offers significant improvements over PROMPT-

TUNING across tasks and model sizes. For instance,
for the T5 BASE (220M parameter) and T5 XXL

(11B parameter) models (Raffel et al., 2020), we
obtain a +10.1 and +2.4 point average accuracy im-
provement respectively on the SuperGLUE bench-
mark (Wang et al., 2019b). More importantly, SPOT

performs competitively or significantly better than
MODELTUNING across all model sizes (see Figure 1).

Motivated by these results, we investigate trans-
ferability between tasks, through the lens of task
prompts. Our goal is to answer the following ques-
tions: (a) For a given target task, when does ini-
tializing the prompt to that of a source task help
improve performance?; (b) Can we use the task
prompts to make more principled choices about
which source tasks to use for a given novel target
task? To answer (a), we conduct a systematic study
of the T5 model using 26 NLP tasks and 160 com-
binations of source and target tasks. Our results
indicate that tasks can often benefit each other via
prompt transfer. To address (b), we interpret the
learned task prompts as task embeddings to con-
struct a semantic space of tasks and formalize the
similarity between tasks. We design an efficient
retrieval algorithm that measures task embedding
similarity, allowing practitioners to identify source
tasks that are likely to yield positive transferability
for a given novel target task.

To summarize, our contributions are as follows:

• We propose SPOT, a novel prompt-based trans-
fer learning approach, and show that scale is
not necessary for PROMPTTUNING to match the

performance of MODELTUNING. SPOT yields
competitive or significantly better results than
MODELTUNING across all model sizes.

• We conduct a large-scale and systematic study
on task transferability, which demonstrates
conditions under which tasks can benefit each
other via prompt transfer.

• We propose an efficient retrieval approach that
interprets task prompts as task embeddings to
construct a semantic space of tasks, and mea-
sures task embedding similarity to identify
which tasks could benefit each other.

• To facilitate future work on prompt-based
learning, we will release our library of task
prompts and pre-trained models, and provide
practical recommendations for adapting our
library to NLP practitioners.

2 Improving PROMPTTUNING with SPOT

To improve performance of PROMPTTUNING, SPOT

introduces source prompt tuning, an intermediate
training stage between language model pre-training
and target prompt tuning (Figure 2, left), to learn
a prompt on one or more source tasks (while still
keeping the base model frozen), which is then used
to initialize the prompt for a target task. Our ap-
proach retains all the computational benefits of
PROMPTTUNING, i.e., for each target task, it only re-
quires storing a small task-specific prompt while
enabling the reuse of a single frozen pre-trained
model for all tasks. In this section, we present a
task-agnostic SPOT approach where a single trans-
ferred prompt is reused for all target tasks. In Sec-
tion 3, we explore a task-specific approach that re-
trieves different prompts for different target tasks.

2.1 Experimental setup

Our frozen models are built on top of the pre-
trained T5 checkpoints of all sizes: SMALL, BASE,
LARGE, XL, XXL with 60M, 220M, 770M, 3B, and
11B parameters, respectively. In our experiments
with SPOT, we leverage the LM adapted version of
T51, which was found to be easier to optimize for
PROMPTTUNING (Lester et al., 2021).

1T5 1.1 checkpoints trained for an additional 100K steps
using the “prefix LM” objective (Raffel et al., 2020), avail-
able at https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md

https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md
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Figure 2: An illustration of our task-agnostic (left) and task-specific (right) SPOT approaches. Left: We learn a
single prompt on one or more source tasks, which is then used to initialize the prompt for each target task. Right:
We learn prompts for source tasks, and save early checkpoints as task embeddings and best checkpoints as source
prompts. These form the keys and values of our prompt library. Given a novel target task, a user: (i) computes a
task embedding, (ii) retrieves an optimal source prompt, and (iii) trains a target prompt, which is initialized with
the source prompt.

2.1.1 Baselines
We compare SPOT to the following baselines:

PROMPTTUNING: The vanilla prompt tuning ap-
proach of Lester et al. (2021), where an indepen-
dent prompt is directly trained on each target task.

MODELTUNING & MULTI-TASKMODELTUNING: We
compare prompt tuning approaches to MODELTUN-

ING, the standard fine-tuning approach (Devlin
et al., 2019; Raffel et al., 2020), where all of the
pre-trained parameters are fine-tuned on each target
task separately. For an apples-to-apples compari-
son, we also include MULTI-TASKMODELTUNING, a
more competitive baseline that first fine-tunes the
entire model on the same mixture of source tasks
used for SPOT before fine-tuning it individually on
each target task.2

2.1.2 Evaluation datasets
We study downstream performance on a diverse
set of tasks from the GLUE (Wang et al., 2019c)
and SuperGLUE (Wang et al., 2019b) benchmarks
(each with 8 datasets).3 Due to restricted test set

2In preliminary experiments, we found that using the orig-
inal version of T5 1.1 (which is pre-trained exclusively on
span corruption) results in better performance than using the
LM adapted version for model tuning approaches. We there-
fore report results corresponding to the original T5 1.1 for
MODELTUNING and MULTI-TASKMODELTUNING.

3These datasets include grammatical acceptability judg-
ments (CoLA (Warstadt et al., 2019)), sentiment analysis
(SST-2 (Socher et al., 2013)), paraphrasing/semantic simi-
larity (MRPC (Dolan and Brockett, 2005), STS-B (Cer et al.,
2017), QQP (Iyer et al., 2017)), natural language inference
(MNLI (Williams et al., 2018), QNLI (Wang et al., 2019c),
RTE (Dagan et al., 2005, et seq.), CB (De Marneffe et al.,
2019)), coreference resolution (WSC (Levesque et al., 2012)),
sentence completion (COPA (Roemmele et al., 2011)), word
sense disambiguation (WiC (Pilehvar and Camacho-Collados,
2019)), and question answering (MultiRC (Khashabi et al.,

access for GLUE and SuperGLUE, we train for
a fixed number of steps and report results on the
validation set associated with each dataset.4

2.1.3 Data for source prompt tuning
As with language model pre-training, the choice of
training data is crucial for successful prompt trans-
fer. To investigate the impact of source training
data on downstream performance, we compare a
diverse set of source tasks.

A single unsupervised learning task: We first
consider training a prompt on a fraction of the
C4 (Colossal Clean Crawled Corpus) dataset (Raf-
fel et al., 2020) using the “prefix LM” objective
discussed in Raffel et al. (2020). Although this
task was used to pre-train our frozen T5 models al-
ready, it could still be helpful for learning a general-
purpose prompt.

A single supervised learning task: Alterna-
tively, we can train the prompt using a supervised
task. We use either MNLI (Williams et al., 2018)
or SQuAD (Rajpurkar et al., 2016) as single source
tasks. MNLI was shown to be helpful for many
sentence-level classification tasks (Phang et al.,
2019), while SQuAD was found to generalize well
to QA tasks (Talmor and Berant, 2019).

A multi-task mixture: So far, we have been
training the prompt on a single source task. An
alternative approach is multi-task training. Within
T5’s unified text-to-text framework, this sim-
ply corresponds to mixing different datasets to-

2018), ReCoRD (Zhang et al., 2018), BoolQ (Clark et al.,
2019)). We exclude the problematic WNLI (Levesque et al.,
2012) dataset from GLUE, following Devlin et al. (2019).

4For tasks with multiple metrics, we use an average of the
metrics.



gether. We explore mixing datasets from different
NLP benchmarks or families of tasks, including
GLUE, SuperGLUE, natural language inference
(NLI), paraphrasing/semantic similarity, sentiment
analysis, question answering on MRQA (Fisch
et al., 2019), commonsense reasoning on RAIN-
BOW (Lourie et al., 2021), machine translation,
summarization, and natural language generation on
GEM (Gehrmann et al., 2021).5 We create a mix-
ture of source tasks from each of the NLP bench-
marks/families of tasks above, using the examples-
proportional mixing strategy in Raffel et al. (2020)
with an artificial dataset size limit K = 219 train-
ing examples. Finally, we include a mixture of C4
and all the labeled datasets in the NLP benchmark-
s/families of tasks mentioned above (55 datasets).

2.1.4 Training details

For both source and target prompt tuning, we
closely follow the training procedure in Lester et al.
(2021). Specifically, for each target task, the only
new parameters introduced during tuning are a
shared prompt ρ ∈ RL×E prepended to each (em-
beded) input sequence, where L, E are the prompt
length and the embedding size, respectively. In
all cases, we set L = 100 tokens. We tune the
prompt with a batch size of 32 for a fixed number of
steps S. We use the Adafactor optimizer (Shazeer
and Stern, 2018) with default parameters except
with a constant learning rate of 0.3, weight decay
of 1e−5, and parameter scaling turned off. The
dropout probability is always kept at 0.1. All of
our models are implemented using JAX (Bradbury
et al., 2018) and Flax (Heek et al., 2020). During
source prompt tuning, the prompt tokens are ini-
tialized using the SAMPLEDVOCAB scheme (where
embeddings are sampled from the 5,000 most com-
mon tokens in T5’s vocabulary). During target
prompt tuning, we initialize the prompts with the
final prompt checkpoint from source prompt tun-
ing. We save a checkpoint every 500 steps and
report results on the checkpoint corresponding to
the highest validation performance.

For PROMPTTUNING, following Lester et al.
(2021), we initialize the prompt using the CLASS-

LABEL scheme (where the prompt tokens are ini-
tialized with embeddings that represent an enu-
meration of the output classes) with a back off to
the SAMPLEDVOCAB scheme to fill any remaining
prompt positions). Training details for model tun-

5See Appendix A.1 for details about datasets.

Method GLUE SuperGLUE

BASELINE

PROMPTTUNING 81.20.4 66.60.2

− longer tuning 78.41.7 63.11.1

SPOT with different source mixtures
GLUE (8 tasks) 82.80.2 73.20.3

− longer tuning 82.00.2 70.70.4

C4 82.00.2 67.70.3

MNLI 82.50.0 72.60.8

SQuAD 82.20.1 72.00.4

SuperGLUE (8 tasks) 82.00.1 66.60.2

NLI (7 tasks) 82.60.1 71.40.2

Paraphrasing/similarity (4 tasks) 82.20.1 69.70.5

Sentiment (5 tasks) 81.10.2 68.60.1

MRQA (6 tasks) 81.80.2 68.40.2

RAINBOW (6 tasks) 80.30.6 64.00.4

Translation (3 tasks) 82.40.2 65.30.1

Summarization (9 tasks) 80.90.3 67.11.0

GEM (8 tasks) 81.90.2 70.50.5

All (C4 + 55 supervised tasks) 81.80.2 67.90.9

Table 1: GLUE and SuperGLUE results achieved by
applying T5 BASE with different prompt tuning ap-
proaches. We report the mean and standard deviation
(in the subscript) across three random seeds. SPOT
significantly improves performance and stability of
PROMPTTUNING across the two benchmarks.

ing can be found in Appendix A.

Longer tuning: While the number of tuning
steps S is set to 30K in Lester et al. (2021), we find
that additional tuning is helpful when training on
large datasets. As such, we set S to 218 = 262,144,
following Raffel et al. (2020), with the exception
of ablation experiments (rows “− longer tuning”)
in Table 1 which use S = 30K.

2.2 Effect of SPOT

We compare the results of SPOT and other ap-
proaches in Figure 1 and Table 1. Below, we sum-
marize and analyze each of our findings in detail.

SPOT significantly improves performance and
stability of PROMPTTUNING: Our results on the
GLUE and SuperGLUE benchmarks with T5 BASE

are shown in Table 1. Overall, the results suggest
that prompt transfer provides an effective means of
improving performance for PROMPTTUNING. For ex-
ample, the best-performing variant of SPOT outper-
forms the vanilla PROMPTTUNING approach on both
GLUE and SuperGLUE by a substantial margin,
obtaining +4.4 and +10.1 point average accuracy
improvements, respectively. Our ablation study
indicates that longer tuning is also an important
ingredient for achieving our best performance, and



is complementary to prompt transfer. Additionally,
when longer tuning is omitted, we observe that
SPOT improves stability across runs.

Different source mixtures can lead to perfor-
mance gains: Within our SPOT approach, we can
compare the effectiveness of different source mix-
tures (see Table 1). Source prompt tuning on GLUE
performs best on both GLUE and SuperGLUE, ob-
taining average scores of 82.8 and 73.2, respec-
tively.6 Interestingly, unsupervised source prompt
tuning on C4 (the same task used to pre-train our
frozen models) still yields considerable improve-
ments, even outperforming source prompt tuning
on SuperGLUE for SuperGLUE tasks. Addition-
ally, using MNLI or SQuAD as a single source
dataset is particularly helpful for both GLUE and
SuperGLUE. Finally, other source mixtures can
also lead to significant gains, and some NLP bench-
marks/families of tasks (e.g., NLI and paraphras-
ing/semantic similarity) are more beneficial than
others.

SPOT helps close the gap with MODELTUNING

across all model sizes: We compare the perfor-
mance of different approaches across model sizes
on SuperGLUE in Figure 1. For SPOT, we show the
performance resulting from source prompt training
on a mixture of GLUE tasks. As shown in Lester
et al. (2021), PROMPTTUNING becomes more compet-
itive with scale, and at the XXL size (11B param-
eters), it even matches the performance of MODEL-

TUNING. However, at smaller model sizes, there are
still large gaps between the two approaches. We
show that SPOT helps close these gaps and even ex-
ceeds MODELTUNING’s performance by a large mar-
gin at several model sizes, while retaining all the
computational benefits conferred by PROMPTTUNING.
Finally, SPOT produces competitive performance to
the strong MULTI-TASKMODELTUNING baseline while
being more parameter-efficient in both multi-task
source tuning and target tuning; at the XXL size,
SPOT achieves the best average score of 91.2, +1.1
points better than MULTI-TASKMODELTUNING, despite
having 27,000× fewer task-specific parameters.

3 Investigating task transferability

Having established that prompt transfer is helpful
for prompt tuning, we now shift our focus to in-
vestigating task transferability, through the lens of

6SuperGLUE tasks benefit less from source prompt tuning
on SuperGLUE likely due to the small size of these datasets.

Name Task type |Train|
16 source tasks
C4 language modeling 365M
DocNLI NLI 942K
Yelp-2 sentiment analysis 560K
MNLI NLI 393K
QQP paraphrase detection 364K
QNLI NLI 105K
ReCoRD QA 101K
CxC semantic similarity 88K
SQuAD QA 88K
DROP QA 77K
SST-2 sentiment analysis 67K
WinoGrande commonsense reasoning 40K
HellaSWAG commonsense reasoning 40K
MultiRC QA 27K
CosmosQA commonsense reasoning 25K
RACE QA 25K

10 target tasks
BoolQ QA 9K
CoLA grammatical acceptability 9K
STS-B semantic similarity 6K
WiC word sense disambiguation 5K
CR sentiment analysis 4K
MRPC paraphrase detection 4K
RTE NLI 2K
WSC coreference resolution 554
COPA QA 400
CB NLI 250

Table 2: Tasks used in our task transferability experi-
ments, sorted by training dataset size.7

task prompts. To shed light on the transferability
between different tasks, we conduct a large-scale
empirical study with 26 NLP tasks (including one
unsupervised task) and 160 combinations of source
and target tasks. We demonstrate that tasks can
help each other via prompt transfer in various situ-
ations, and task similarity plays an important role
in determining transferability. Additionally, we
show that by interpreting the task prompts as task
embeddings, we can construct a semantic space of
tasks and formulate a more rigorous notion of task
similarity. Finally, we propose a retrieval algorithm
that measures task embedding similarity to choose
which source tasks to use for a given novel target
task (Figure 2, right).

3.1 Experimental setup

We study a diverse set of 16 source datasets and
10 target datasets (see Table 2).8 We consider all

7C4 contains 365M documents but the actual number of
examples created for the prefix LM task was much larger.

8In addition to the datasets mentioned in Section 2, we
also use DocNLI (Yin et al., 2021), Yelp-2 (Zhang et al.,
2015), CxC (Parekh et al., 2021), DROP (Dua et al., 2019),
WinoGrande (Sakaguchi et al., 2020), HellaSWAG (Zellers
et al., 2019), CosmosQA (Huang et al., 2019), RACE (Lai
et al., 2017), and CR (Hu and Liu, 2004).



160 possible pairs of source and target datasets,
and perform transfer from each source task to each
target task.

3.1.1 Source and target tasks
The source tasks comprise one unsupervised task
(C4) and 15 supervised tasks covering natural lan-
guage inference (NLI), paraphrasing/semantic simi-
larity, sentiment analysis, question answering (QA),
and commonsense reasoning. All source tasks are
data-rich or have been shown to yield positive trans-
fer in prior work. To simulate a realistic scenario,
we use low-resource tasks (less than 10K training
examples) as target tasks. These tasks cover the
above types of tasks, and additionally include gram-
matical acceptability, word sense disambiguation,
and coreference resolution.

3.1.2 Training details
To limit computational costs, we use T5 BASE in all
of our task transferability experiments. We perform
262,144 prompt tuning steps on each source task.
The prompt checkpoint with the highest source
task validation performance is selected to initialize
prompts for different target tasks. Since the target
datasets are small, we only perform 100K prompt
tuning steps on each target task. We repeat each
experiment three times with different random seeds.
Other training details are the same as mentioned in
Section 2.1.4.

3.1.3 Constructing a semantic space of tasks
Since only the prompt parameters are updated
during prompt tuning on specific tasks, the task
prompts likely encode task-specific knowledge.
This suggests that they could be used to reason
about the nature of tasks and their relationships. To
test this idea, we interpret task prompts as task em-
beddings and construct a semantic space of tasks.
Note that while we use the best prompt checkpoints
from the source tasks for transfer to the target tasks,
we use earlier prompt checkpoints as our task em-
beddings. This enables fast computation of task em-
beddings for novel target tasks. In our experiments,
the task embedding is derived from a fixed prompt
checkpoint, i.e., at 10K steps, for every task.9 We
estimate the similarity between two tasks t1, t2 by
measuring the similarity between their correspond-
ing task embeddings e1, e2, using the following
metrics:

9Our experiments with other checkpoint alternatives
yielded worse performance.

COSINE SIMILARITY OF AVERAGE TOKENS: We
compute the cosine similarity between the aver-
age pooled representations of the prompt tokens:

sim(t1, t2) = cos(
1

L
∑

i e
1
i ,

1

L
∑

j e
2
j ), where

e1i , e
2
j denote the respective prompt tokens of

e1, e2, and cos denotes the cosine similarity.

PER-TOKEN AVERAGE COSINE SIMILARITY: We
compute the average cosine similarity between
every prompt token pair (e1i , e

2
j ): sim(t1, t2) =

1

L2

∑
i

∑
j cos(e

1
i , e

2
j ).

3.2 Predicting and exploiting transferability

We leverage our task embeddings to predict and
exploit task transferability. Specifically, we explore
methods to predict the most beneficial source tasks
for a given target task and then make use of their
prompts to improve performance on the target task.
To enlarge our set of source prompts, we use the
prompts from all the three different prompt tuning
runs on each source task, resulting in 48 source
prompts. Given a target task t with task embedding
et, we rank all the source prompts ρs in descending
order by the similarity between their corresponding
task embeddings es and the target embedding et:
sim(es, et). We denote the ranked list of source
prompts as ρsr , where r denotes the rank (r =
1, 2, . . . , 48). We experiment with the following
methods:

BEST OF TOP-k: We select the top-k source
prompts and use each of them individually to ini-
tialize the target prompt. This procedure requires
prompt tuning k times on the target task t, once for
each source prompt. The best individual result is
then used for evaluating the effectiveness of this
method.

TOP-k WEIGHTED AVERAGE: We initialize the tar-
get prompt with a weighted average of the top-
k source prompts

∑k
r=1 αrρ

sr so that we only
perform prompt tuning on the target task t
once. The weights αr are computed as αr =
sim(esr , et)∑k
l=1 sim(esl , et)

, where esr denotes the corre-

sponding task embedding of ρsr .

TOP-k MULTI-TASK MIXTURE: We first identify
the source tasks whose prompts are in the top-
k prompts and mix their datasets and the target
dataset together, using the examples-proportional
mixing strategy of Raffel et al. (2020). Then, we



perform source prompt tuning on this multi-task
mixture and use the final prompt checkpoint to ini-
tialize the prompt for target prompt tuning.

3.2.1 Evaluation
We report the average score across the target tasks
achieved by using each of the methods described
above. For each target task t, we measure the aver-
age and standard deviation of performance across
the three different prompt tuning runs (which re-
sult in different task embeddings et). For com-
parison, we report the absolute and relative im-
provements over the baseline when prompt tuning
on each target task from scratch (i.e., without any
prompt transfer). Additionally, we include the ora-
cle results achieved by using a brute-force search to
identify the best possible out of 48 source prompts
for each target task.

3.3 Effect of prompt-based task embeddings

In this section, we first analyze our task transferabil-
ity results. Then, we demonstrate the effectiveness
of using prompt-based task embeddings for repre-
senting tasks, and for predicting and exploiting task
transferability.

Tasks can help each other via prompt transfer
in various scenarios: The results of our task
transferability experiments (see Table 4 in Ap-
pendix C) indicate that in many cases, transfer-
ring the prompt from a source task to a target task
(SOURCE→ TARGET) can provide significant gain
on the target task. The transfer MNLI→ CB yields
the largest relative error reduction of 58.9% (from
an average score of 92.7 to 97.0), followed by
MNLI→ COPA (29.1%) and ReCoRD→ WSC
(20.0%). Using the best source prompt (out of 48)
for each target task dramatically improves the aver-
age score across 10 target tasks from 74.7 to 80.7.
Overall, our results show effective transfer from
large source tasks that involve high-level reason-
ing about semantic relationships among sentences
(e.g., MNLI), or when the source and target tasks
are similar (e.g., CxC → STS-B). Interestingly,
positive transfer can occur in cases where the tasks
are relatively dissimilar (e.g., ReCoRD→ WSC,
SQuAD→MRPC, CxC→WiC).10

Task embeddings capture task relationships:
Figure 3 shows a hierarchically-clustered heatmap
of cosine similarities between the task embeddings

10Table 5 in Appendix C contains more cases.
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Figure 3: A clustered heatmap of cosine similarities
between the task embeddings of the 26 NLP tasks we
study. Our prompt-based task embeddings capture task
relationships: similar tasks are grouped together into
clusters.
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Figure 4: Correlation between task similarity and task
transferability. Each point represents a source prompt.
Cosine similarity (x-axis) is between that source task
embedding and the indicated target task’s embedding
(orange title), averaged over three runs for the target
task. Relative error reduction (y-axis) measures the im-
provement on the target task when performing prompt
transfer from that source prompt. We include the Pear-
son correlation coefficient (r) and p-value.

of the 26 NLP tasks we study using the COSINE SIM-

ILARITY OF AVERAGE TOKENS metric.11 We observe
that our learned task embeddings capture many in-
tuitive task relationships. Specifically, similar tasks

11To obtain the highest resolution of similarity between two
tasks, we use the average of cosine similarities between their
task embeddings obtained with all the three different prompt
tuning runs (9 combinations).



are grouped together into clusters, including ques-
tion answering (SQuAD, ReCoRD, and DROP;
MultiRC and BoolQ), sentiment analysis (Yelp-2,
SST-2, and CR), NLI (MNLI and CB; DocNLI and
RTE), semantic similarity (STS-B and CxC), para-
phrasing (MRPC and QQP), and commonsense
reasoning (WinoGrande, HellaSWAG, and Cos-
mosQA). We note that QNLI, which is an NLI
task built from the SQuAD dataset, is not closely
linked to SQuAD; this suggests that our task em-
beddings are more sensitive to the type of task than
domain similarity. Interestingly, they also capture
the unintuitive case of ReCoRD’s high transferabil-
ity to WSC. Additionally, task embeddings that
are derived from different prompts of the same task
have high similarity scores (see Appendix D).

Correlation between task embedding similarity
and task transferability: Figure 4 shows how
the relative error reduction on a target task changes
as a function of the similarity between the source
and target task embeddings. Overall, we find that
there is a significantly positive correlation between
task embedding similarity and task transferability
on four (out of 10) target tasks we study, including
STS-B (p < 0.001), CB (p < 0.001, not shown) ,
WSC (p < 0.01), and RTE (p < 0.05), while it is
less significant on the other tasks.

Task embeddings can be used to predict and ex-
ploit task transferability: We compare the re-
sults of different methods for identifying which
source prompts could be beneficial for a given tar-
get task in Table 3. We find that using the PER-

TOKEN AVERAGE COSINE SIMILARITY metric yields bet-
ter results than using the COSINE SIMILARITY OF AV-

ERAGE TOKENS metric for small values of k (≤ 9).
Our results also suggest that BEST OF TOP-k provides
an effective means of predicting and exploiting task
transferability. Simply choosing the source prompt
whose associated task embedding has the highest
similarity to the target embedding using the PER-

TOKEN AVERAGE COSINE SIMILARITY metric improves
over the baseline by a large margin (from an aver-
age score of 74.7 to 76.7, a 12.1% average relative
error reduction). Trying all the top-3 (out of 48)
source prompts for each target task yields an av-
erage score of 77.5. With larger values of k, we
can retain most of the benefits of oracle selection
of source prompts (80% of the gain in terms of
average score with k = 9 and 90% with k = 15),
while still eliminating over 2/3 of the candidate

Method Change Avg. score
Abs. Rel.

BASELINE - - 74.70.7

BRUTE-FORCE SEARCH (k = 48)
ORACLE 6.00.5 26.51.1 80.70.0

COSINE SIMILARITY OF AVERAGE TOKENS
BEST OF TOP-k

k = 1 1.50.5 11.71.1 76.20.1

k = 3 2.70.6 16.61.1 77.40.3

k = 6 3.80.1 20.01.1 78.50.5

k = 9 4.50.4 22.21.1 79.2 0.1

k = 12 5.00.9 23.62.2 79.7 0.4

k = 15 5.40.8 24.91.8 80.10.3

PER-TOKEN AVERAGE COSINE SIMILARITY
BEST OF TOP-k

k = 1 2.00.4 12.11.1 76.70.7

k = 3 2.90.6 17.00.6 77.50.4

k = 6 4.50.5 22.11.2 79.20.1

k = 9 4.60.5 22.60.9 79.50.2

k = 12 5.00.6 23.51.4 79.60.1

k = 15 5.30.9 24.52.2 80.00.4

TOP-k WEIGHTED AVERAGE
best k = 3 1.90.5 11.52.7 76.60.1

TOP-k MULTI-TASK MIXTURE
best k = 12 3.10.5 15.32.8 77.80.1

Table 3: Task embeddings provides an effective means
of predicting and exploiting task transferability. Using
BEST OF TOP-k with k = 3 improves over the baseline
by +2.8 points. With larger values of k (≤ 15), we can
retain most of the benefits conferred by prompt trans-
fer). For TOP-k WEIGHTED AVERAGE and TOP-k MULTI-
TASK MIXTURE, we experiment with different values of
k ∈ {3, 6, 9, 12} and report the best results.

source prompts. Although this approach requires
prompt tuning on the target task k times, the cost
of prompt tuning is relatively inexpensive, com-
pared to model tuning. TOP-k WEIGHTED AVERAGE

has similar average performance to BEST OF TOP-k

with k = 1, but achieves lower variance. Thus, this
may be an appealing alternative to BEST OF TOP-k

in scenarios where multiple tuning runs on the tar-
get task are prohibited. Finally, TOP-k MULTI-TASK

MIXTURE also provides a means of obtaining strong
performance with an average score of 77.8, even
outperforming BEST OF TOP-k with k ≤ 3.

4 Related Work

Parameter-efficient transfer learning & lan-
guage model prompting Pre-trained language
models have been shown to be an effective means
for improving state-of-the-art results on many NLP
benchmarks (Devlin et al., 2019; Liu et al., 2019b;
Yang et al., 2019; Lan et al., 2020; Raffel et al.,
2020; Brown et al., 2020; He et al., 2021). How-
ever, MODELTUNING (a.k.a fine-tuning)—the cur-



rent dominant approach for applying these models
to downstream tasks—can become impractical, as
fine-tuning all of the pre-trained parameters for
each task can be prohibitively expensive, especially
as model size continues to increase.

To address this issue, early work uses com-
pression techniques, such as knowledge distilla-
tion (Sanh et al., 2019; Jiao et al., 2020; Sun
et al., 2020) and model pruning (Fan et al., 2020;
Sanh et al., 2020; Chen et al., 2020), to obtain
lightweight pre-trained models. Other work in-
volves updating only small parts of the language
model (Zaken et al., 2021) or training task-specific
modules, such as adapters (Houlsby et al., 2019;
Karimi Mahabadi et al., 2021) and/or low-rank
structures (Mahabadi et al., 2021; Hu et al., 2021),
while keeping most or all of the pre-trained param-
eters fixed. Notably, Brown et al. (2020) demon-
strate remarkable few-shot learning performance
with a single frozen GPT-3 model using PROMPTDE-

SIGN, where every task is cast as feeding the model
a manual text prompt at inference time for context
and asking it to produce some output text.

Several efforts have since focused on develop-
ing prompt-based learning approaches with care-
fully handcrafted prompts (Schick and Schütze,
2021), prompt mining and paraphrasing (Jiang
et al., 2020b), gradient-based search for improved
prompts (Shin et al., 2020), and automatic prompt
generation (Gao et al., 2021). The use of hard
prompts, however, was found to be sub-optimal
and sensitive, i.e., there is no obvious correlation
between downstream performance and the prompt
format, and minor changes in the prompt can lead
to significant differences in downstream perfor-
mance (Liu et al., 2021b). As such, recent work
has shifted toward learning soft prompts (Liu et al.,
2021b; Qin and Eisner, 2021; Li and Liang, 2021;
Lester et al., 2021), which can be seen as some
additional learnable parameters injected into the
language model. We refer readers to Liu et al.
(2021a) for a recent survey on prompt-based learn-
ing research.

Concurrent work (Gu et al., 2021) also explores
the effectiveness of prompt pre-training. Their ap-
proach uses hand-crafted pre-training tasks tailored
to different types of downstream tasks, which limits
its application to novel downstream tasks. In con-
trast, we use existing tasks as source tasks and show
that prompt transfer can confer benefits even when
there are mismatches (e.g., task type, input/output

format) between the source and target tasks. Their
work also focuses on the few-shot setting, whereas
we work in context of larger datasets. Additionally,
we study task transferability and demonstrate that
tasks can often help each other via prompt transfer,
and task prompts can be interpreted as task embed-
dings to formalize task similarity to identify which
tasks could benefit each other.

Task transferability We also build on existing
work on task transferability in NLP (Phang et al.,
2019; Wang et al., 2019a; Liu et al., 2019a; Tal-
mor and Berant, 2019; Pruksachatkun et al., 2020;
Vu et al., 2020; Poth et al., 2021) and computer
vision (Zamir et al., 2018; Achille et al., 2019; Yan
et al., 2020). Prior work shows effective transfer
from data-rich source tasks (Phang et al., 2019),
those that require complex reasoning and infer-
ence (Pruksachatkun et al., 2020), or those that are
similar to the target task (Vu et al., 2020). There
have also been efforts to predict transferability be-
tween tasks (Bingel and Søgaard, 2017; Vu et al.,
2020; Poth et al., 2021). Vu et al. (2020) use task
embeddings derived from either the input text or the
diagonal Fisher information matrix of the language
model, while Poth et al. (2021) explore adapter-
based approaches. Here, our use of T5 allows us
to better model the space of tasks, as every task
is cast into a unified text-to-text format and the
same model (without task-specific components) is
used across tasks. Additionally, prompt-based task
embeddings are comparatively cheaper to obtain.

5 Conclusion

In this paper, we study transfer learning in the
context of prompt tuning. We show that scale
is not necessary for PROMPTTUNING to match the
performance of MODELTUNING. Our SPOT approach
matches or even exceeds the performance of MODEL-

TUNING by a large margin across model sizes while
being more parameter-efficient (up to 27,000×
fewer task-specific parameters). Our large-scale
study on task transferability indicates that tasks
can benefit each other via prompt transfer in var-
ious scenarios. Finally, we demonstrate that task
prompts can be interpreted as task embeddings to
formalize the similarity between tasks. We propose
a simple yet efficient retrieval approach that mea-
sures task similarity to identify which source tasks
could confer benefits to a novel target task. Taken
as a whole, we hope that our work will spur more
research into prompt-based transfer learning.



Acknowledgements

We thank Mohit Iyyer, Sebastian Ruder, Kalpesh
Krishna, Thang Luong, Quoc Le, and the mem-
bers of the Descartes team for helpful discussion
and feedback. We would also like to thank Lucas
Dixon, Grady Simon, and Slav Petrov for their com-
ments on this manuscript. Finally, we are grateful
to Vamsi Aribandi for his work on preprocessing
several datasets used in our experiments.

References
Alessandro Achille, Michael Lam, Rahul Tewari,

Avinash Ravichandran, Subhransu Maji, Charless C.
Fowlkes, Stefano Soatto, and Pietro Perona. 2019.
Task2vec: Task embedding for meta-learning. In
Proceedings of the IEEE International Conference
on Computer Vision (ICCV 2019), pages 6430–
6439.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Scott Wen-tau Yih, and
Yejin Choi. 2020. Abductive commonsense reason-
ing. In Proceedings of the 8th International Confer-
ence on Learning Representations (ICLR 2020).

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL 2017), pages
164–169.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI 2020), 34(05):7432–7439.
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Appendices

A Additional training details

For model tuning approaches, we use the default
hyperparameters for T5 (Raffel et al., 2020), i.e.,
learning rate 0.001, Adafactor optimizer with pre-
training parameter states restored, and dropout
probability 0.1. To improve the model tuning base-
lines, we perform a sweep over the batch size hy-
perparameter and select 216 tokens per batch, fol-
lowing Lester et al. (2021).

B Source datasets used in our SPOT

experiments in Section 2

Figure 5 displays the datasets used in our PROMPT-

TUNING with SPOT experiments in Section 2. In
addition to the C4 unlabeled dataset (Raffel et al.,
2020), we use 55 labeled datasets. These datasets
come from common NLP benchmarks/families of
tasks, namely:

• GLUE (Wang et al., 2019c), including
CoLA (Warstadt et al., 2019), SST-2 (Socher
et al., 2013), MRPC (Dolan and Brockett,
2005), QQP (Iyer et al., 2017), STS-B (Cer
et al., 2017), MNLI (Williams et al., 2018),
QNLI (Wang et al., 2019c), and RTE (Dagan
et al., 2005, et seq.).

• SuperGLUE (Wang et al., 2019b), including
BoolQ (Clark et al., 2019), CB (De Marn-
effe et al., 2019), COPA (Roemmele
et al., 2011), MultiRC (Khashabi et al.,
2018), ReCoRD (Zhang et al., 2018), RTE,
WiC (Pilehvar and Camacho-Collados, 2019),
and WSC (Levesque et al., 2012).

• Natural language inference (NLI), includ-
ing ANLI (Nie et al., 2020), CB, Doc-
NLI (Yin et al., 2021), MNLI, QNLI, RTE,
and SNLI (Bowman et al., 2015).

• Paraphrasing/semantic similarity, including
CxC (Parekh et al., 2021), MRPC, QQP, and
STS-B.

• Sentiment analysis, including CR (Hu and Liu,
2004), Goemotions (Demszky et al., 2020),
Sentiment140 (Go et al., 2009), SST-2, and
Yelp-2 (Zhang et al., 2015).

• Question answering on MRQA (Fisch et al.,
2019), including SQuAD (Rajpurkar et al.,

2016), NewsQA (Trischler et al., 2017), Triv-
iaQA (Joshi et al., 2017), SearchQA (Dunn
et al., 2017), HotpotQA (Yang et al., 2018),
and NaturalQuestions (NQ (Kwiatkowski
et al., 2019)).

• Commonsense reasoning on RAIN-
BOW (Lourie et al., 2021) includ-
ing αNLI (Bhagavatula et al., 2020),
CosmosQA (Huang et al., 2019), Hel-
laSWAG (Zellers et al., 2019), PIQA (Bisk
et al., 2020), SocialIQa (Sap et al., 2019), and
WinoGrande (Sakaguchi et al., 2020).

• Machine translation, including WMT
EnDe (Bojar et al., 2014), WMT EnFr (Bojar
et al., 2015), and WMT EnRo (Bojar et al.,
2016).

• Summarization, including Aeslc (Zhang and
Tetreault, 2019), BillSum (Kornilova and Ei-
delman, 2019), CNN/Dailymail (Hermann
et al., 2015; See et al., 2017), Wikilingua (Lad-
hak et al., 2020), Gigaword (Graff et al., 2003;
Rush et al., 2015), MultiNews (Fabbri et al.,
2019), Newsroom (Grusky et al., 2018), SAM-
Sum (Gliwa et al., 2019), and XSum (Narayan
et al., 2018).

• Natural language generation on
GEM (Gehrmann et al., 2021), including
CommonGen (Lin et al., 2020), DART (Nan
et al., 2021), E2E (Dušek et al., 2019),
SGD (Rastogi et al., 2020), WebNLG (Gar-
dent et al., 2017), WikiAuto (Jiang et al.,
2020a), XSum, and Wikilingua.

C Task transferability results

The full results of our task transferability exper-
iments can be found in Table 4. We show that
in many cases, initializing the prompt to that of a
source task can provide significant gain on a target
task. Table 5 displays positive transfers with more
than 10% relative error reduction on the target task.

D Task embedding similarity

In Figure 6, we show a clustered heatmap of cosine
similarities between the task embeddings of the 26
NLP tasks we study in our task transferability ex-
periments. For each task, we include the resulting
task embeddings from all the three different prompt
tuning runs on the task. As can be seen, our task em-
beddings capture task relationships: similar tasks



are grouped together into clusters. Additionally,
task embeddings that are derived from different
prompts of the same task are linked together.
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Figure 5: Datasets used in our PROMPTTUNING with SPOT experiments in Section 2. C4, MNLI, and SQuAD were
all used by themselves as single source tasks in addition to being mixed in with other tasks.

CoLA STS-B CR MRPC RTE BoolQ WiC WSC COPA CB
Baseline 52.91.2 88.10.6 93.50.2 86.10.7 68.71.2 73.01.2 63.61.6 71.51.7 56.71.7 92.71.9
C4 54.81.1 87.80.6 93.90.1 88.00.6 69.11.9 75.80.5 66.30.8 68.00.5 54.30.9 83.15.7
DocNLI 52.70.9 87.30.9 93.60.4 86.20.8 67.42.6 72.71.4 64.70.3 71.13.6 56.05.9 87.21.7
Yelp-2 53.90.2 88.10.3 93.80.3 86.60.8 69.21.1 74.80.7 64.70.5 70.81.2 55.00.0 87.81.6
MNLI 54.20.7 89.50.3 93.90.4 88.40.6 74.71.3 77.60.4 69.50.5 71.83.3 69.32.1 97.01.1
QQP 55.61.3 89.40.2 93.70.5 88.10.7 72.00.5 75.90.5 67.90.2 71.50.9 62.02.2 88.74.2
QNLI 55.52.0 89.20.2 93.80.2 87.80.1 71.10.8 75.60.5 69.61.3 71.52.5 59.73.9 92.51.1
ReCoRD 54.71.3 87.70.7 93.70.1 88.70.3 67.51.3 73.10.9 65.50.9 77.22.3 59.31.2 74.15.2
CxC 55.00.2 90.00.0 93.90.2 88.00.4 70.30.5 75.90.4 70.20.1 68.62.5 60.33.9 89.32.4
SQuAD 54.91.2 87.60.1 93.90.5 88.70.7 71.20.4 76.00.7 66.80.3 72.40.5 63.01.6 91.31.3
DROP 53.01.0 86.90.9 93.70.2 88.20.3 65.73.1 73.61.3 67.51.2 73.42.0 60.03.6 78.58.6
SST-2 52.30.3 87.90.3 93.80.5 85.60.9 66.91.1 73.30.5 63.81.7 68.60.4 57.02.2 92.91.3
WinoGrande 52.81.6 87.80.3 93.70.1 86.10.5 67.91.3 74.10.8 62.42.5 71.52.5 56.71.2 83.90.8
HellaSWAG 32.723.6 87.50.2 93.60.0 86.61.4 63.95.4 70.02.6 60.13.9 70.22.1 58.02.2 85.52.6
MultiRC 50.04.6 88.20.2 93.40.1 86.41.3 67.61.0 74.00.5 66.40.5 69.24.1 56.04.1 80.08.6
CosmosQA 52.12.3 87.70.5 93.60.3 87.90.8 68.71.6 73.41.3 65.91.0 69.63.2 62.35.0 83.98.8
RACE 52.52.8 87.50.5 93.40.2 86.50.8 66.52.0 73.60.5 63.15.3 68.91.2 57.31.2 84.83.4

Table 4: Tasks can benefit each other via their prompts. The orange-colored row shows the results of prompt
tuning T5 BASE on the target tasks without any prompt transfer. Each cell in the other rows represents the target
task performance when transferring the prompt from the associated source task (row) to the associated target task
(column). Positive transfers are shown in green and the best results are highlighted in bold (green). Numbers in
the subscript indicate the standard deviation across 3 random seeds.



Transfer Increase (relative)
MNLI → CB 58.9
MNLI → COPA 29.1
ReCoRD → WSC 20.0
MNLI → RTE 19.2
ReCoRD → MRPC 18.7
SQuAD → MRPC 18.7
CxC → WiC 18.1
MNLI → BoolQ 17.0
MNLI → MRPC 16.5
QNLI → WiC 16.5
MNLI → WiC 16.2
CxC → STS-B 16.0
DROP → MRPC 15.1
SQuAD → COPA 14.5
QQP → MRPC 14.4
CxC → MRPC 13.7
C4 → MRPC 13.7
CosmosQA → MRPC 12.9
CosmosQA → COPA 12.9
QQP → COPA 12.2
QNLI → MRPC 12.2
QQP → WiC 11.8
MNLI → STS-B 11.8
SQuAD → BoolQ 11.1
QQP → STS-B 10.9
QQP → BoolQ 10.7
CxC → BoolQ 10.7
DROP → WiC 10.7
QQP → RTE 10.5
C4 → BoolQ 10.4

Table 5: Positive transfers with more than 10% relative error reduction on the target task. s → t denotes the
transfer from source task s to target task t.
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Figure 6: Our prompt-based task embeddings capture task relationships: similar tasks are grouped together into
clusters. Additionally, task embeddings that are derived from different prompts of the same task are linked together.
t_1, t_2, t_3 correspond to three different prompt tuning runs on task t.


