The Appeal of Parameter-efficient Transfer Learning

Tu Vu

June 7, 2022

Agenda

Background on Transfer Learning & Prompt Tuning

SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer ACL 2022

Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation EMNLP 2022 submission

Future work

The dominant transfer learning paradigm

Transfer Learning

• pre-train a model on a task before fine-tuning it on another (downstream) task

Language Model (LM) Pre-training & Fine-tuning

Unsupervised Pre-training

Supervised Fine-tuning

Scaling up the model size is a key ingredient for achieving the best performance

The trend has continued to push the boundaries of possibility in NLP

Drawback: Large-scale pre-trained language models are costly to share and serve

Lester et al., 2021

Prompt Tuning (Lester et al., 2021) to the rescue!

Lester et al., 2021

Prompt Tuning becomes competitive with Model Tuning as model capacity increases

8

Other parameter-efficient tuning methods

differ in what they tune during adaptation

- a small number of model parameters (**BiTFiT**; <u>Zakhen et al., 2019</u>)
- added task-specific modules, e.g.,
 - prefixes (Prefix Tuning; Li and Liang, 2021)
 - adapters (<u>Houlsby et al., 2019</u>)
 - low-rank structures (LoRA; <u>Hu et al., 2022</u>)
 - rescaling vectors ((IA)³; Liu et al., 2022)

Advantages of Prompt Tuning over other parameter-efficient tuning methods

Parameter efficiency

• < 0.01% task-specific parameters

Simplicity

• no model architecture modifications

Mixed-task inference

Improved performance with scale

Interpretability

• could possibly be interpreted as natural language instructions

Research questions

R1: How to facilitate transfer learning as model capacity increases?

⇒ SPoT

R2: Can current transfer learning methods extend successfully to a zero-shot cross-lingual transfer setting?

⇒ xGen

Research questions

R1: How to facilitate transfer learning as model capacity increases? ➡ SPoT

R2: Can current transfer learning methods extend successfully to a zero-shot cross-lingual transfer setting?

➡ xGen

SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer

Tu Vu^{1,2}Brian Lester¹Noah Constant¹Rami Al-Rfou¹Daniel Cer¹

Google Research¹ UMass² Amherst

Parameter-efficient Prompt Tuning (Lester et al., 2021)

Lester et al., 2021

Significant headroom remains

Our generic SPoT approach

We learn a single generic source prompt on one or more source tasks, which is then used to initialize the prompt for each target task.

Mixing datasets from different benchmarks / task families

Datasets used in our experiments. C4, MNLI, and SQUAD were all used by themselves as single source tasks in addition to being mixed in with other tasks.

SPoT significantly improves performance and stability of Prompt Tuning

GLUE and SUPERGLUE results achieved by applying T5 BASE with different prompt tuning approaches. We report the mean and standard deviation (in the subscript) across three random seeds.

Method	GLUE	SUPERGLUE
BASELINE		
PROMPTTUNING	$81.2_{0.4}$	$66.6_{0.2}$
 longer tuning 	$78.4_{1.7}$	63.1 _{1.1}
SPOT with different source mixtures		
GLUE (8 tasks)	82.8 _{0.2}	73.2 _{0.3}
 longer tuning 	$82.0_{0.2}$	$70.7_{0.4}$
C4	82.0 _{0.2}	67.7 _{0.3}
MNLI	$82.5_{0.0}$	$72.6_{0.8}$
SQUAD	$82.2_{0.1}$	$72.0_{0.4}$
SUPERGLUE (8 tasks)	$82.0_{0.1}$	$66.6_{0.2}$
NLI (7 tasks)	$82.6_{0.1}$	$71.4_{0.2}$
Paraphrasing/similarity (4 tasks)	$82.2_{0.1}$	69.7 _{0.5}
Sentiment (5 tasks)	$81.1_{0.2}$	$68.6_{0.1}$
MRQA (6 tasks)	$81.8_{0.2}$	$68.4_{0.2}$
RAINBOW (6 tasks)	80.3 _{0.6}	$64.0_{0.4}$
Translation (3 tasks)	$82.4_{0.2}$	$65.3_{0.1}$
Summarization (9 tasks)	80.9 _{0.3}	$67.1_{1.0}$
GEM (8 tasks)	81.9 _{0.2}	70.5 _{0.5}
All (C4 + 55 supervised tasks)	$81.8_{0.2}$	67.9 _{0.9}

SPoT helps close the gap with Model Tuning across model sizes

Our SPoT approach—which transfers a prompt learned from a mixture of source tasks (here, GLUE) onto target tasks—outperforms vanilla PROMTTUNING and GPT-3 on SUPERGLUE by a large margin, matching or outperforming MODELTUNING across all model sizes.

SPoT is competitivi parameters

	Model	Total parameters	Tuned parameters	SCORE
	ST-MoE-32B	269B	269B	91.2
Top 7	TURING NLR V5	5.4B	5.4B	90.9
submissions	ERNIE 3.0	12B	12B	90.6
5001115510115	T5 + UDG	11B	11B	90.4
	DEBERTA / TURINGNLRV4	3.1B	3.1B	90.3
	HUMAN BASELINES	-	-	89.8
	Τ5	11 B	11 B	89.3
	Frozen T5 1.1 + SPoT	11 B	410K	89.2
Parameter-	GPT-3 FEW-SHOT	175B	0	71.8
adaptation	WARP FEW-SHOT	223M	25K	48.7
	CBoW	15M	33K	44.5

SUPERGLUE results of our SPOT XXL submission and competitors from the leaderboard as of 2022/02/09.

A large-scale study on task transferability in the context of prompt tuning

26 NLP tasks

- 16 source tasks, 10 target tasks, 160 source-target combinations of tasks
- covering various task types

Name	Task type	Train
16 source tasks		
C4	language modeling	365M
DocNLI	NLI	942K
Yelp-2	sentiment analysis	560K
MNLI	NLI	393K
QQP	paraphrase detection	364K
QNLI	NLI	105K
RECORD	QA	101K
CxC	semantic similarity	88K
SQUAD	QA	88K
DROP	QA	77K
SST-2	sentiment analysis	67K
WINOGRANDE	commonsense reasoning	40K
HellaSWAG	commonsense reasoning	40K
MULTIRC	QA	27K
CosmosQA	commonsense reasoning	25K
RACE	QA	25K
10 target tasks		
BOOLQ	QA	9K
CoLA	grammatical acceptability	9K
STS-B	semantic similarity	6K
WIC	word sense disambiguation	5K
CR	sentiment analysis	4K
MRPC	paraphrase detection	4K
RTE	NLI	2K
WSC	coreference resolution	554
COPA	QA	400
CB	NLI	250

Tasks used in our task transferability experiments,sorted by training dataset size.21

Many tasks can benefit each other via prompt transfer

A heatmap of our task transferability results. Each cell shows the relative error reduction on the target task of the transferred prompt from the associated source task (row) to the associated target task (column).

Measuring task similarity through prompt similarity

Cosine Similarity of Average Tokens

• cosine similarity between the average pooled representations of the prompt tokens:

$$sim(t^1,t^2) = cos(rac{1}{\mathcal{L}}\sum_i e_i^1,rac{1}{\mathcal{L}}\sum_j e_j^2)$$

Per-token Average Cosine Similarity

average cosine similarity between every prompt token pair:

$$sim(t^1, t^2) = \frac{1}{\mathcal{L}^2} \sum_i \sum_j cos(\mathbf{e}_i^1, \mathbf{e}_j^2)$$

Prompt-based task embeddings capture task relationships

A clustered heatmap of cosine similarities between the task embeddings of the 26 NLP tasks we study. Our prompt-based task embeddings capture task relation-ships: similar tasks cluster together.

Correlation between task similarity & task transferability

Correlation between task similarity and task transferability. Each point represents a source prompt. The x-axis shows the cosine similarity between the associated source and target task embeddings, averaged over three runs for the target task (orange title). The y-axis measures the relative error reduction on the target task achieved by each source prompt. We include the Pearson correlation coefficient (r) and p-value.

Our targeted SPoT approach

We learn separate prompts for various source tasks, saving early checkpoints as task embeddings and best checkpoints as source prompts. These form the keys and values of our prompt library. Given a novel target task, a user: (i) computes a task embedding, (ii) retrieves an optimal source prompt, and (iii) trains a target prompt, initialized from the source prompt

Predicting task transferability via task similarity

Best of Top-k

• use the top-k source prompts individually

Top-k Weighted Average

• use a weighted average of the top-k source prompts

Top-k Multi-task Mixture

• pre-train the prompt on a mixture of source datasets whose prompts are in the top-k

Retrieving source tasks via task embeddings is helpful

Task embeddings provide an effective means of predicting and exploiting task transferability, eliminating 69% of the source task search space while keeping 90% of the best-case quality gain obtained by oracle selection.

Method	Avg. score
BASELINE	$74.7_{0.7}$
Brute-force search ($k = 48$) ORACLE	80.7 _{0.0}
Best of Top- k k = 1 k = 3 k = 6 k = 9 k = 12 k = 15	$76.7_{0.7} \\ 77.5_{0.4} \\ 79.2_{0.1} \\ 79.5_{0.2} \\ 79.6_{0.1} \\ 80.0_{0.4}$
TOP-k WEIGHTED AVERAGE best $k = 3$	76.6 _{0.1}
TOP- k MULTI-TASK MIXTURE best $k = 12$	77.8 _{0.1}

Take-aways

1. Scale is not necessary for Prompt Tuning to match Model Tuning SPoT can match or beat Model Tuning across model sizes

2. Tasks can benefit each other via prompt transfer

3. Retrieving similar tasks via task embeddings is helpful

R1: How to facilitate transfer learning as model capacity increases? ➡ use parameter-efficient transfer methods, e.g., SPoT

Research questions

R1: How to facilitate transfer learning as model capacity increases? ➡ SPoT

R2: Can current transfer learning methods extend successfully to a zero-shot cross-lingual transfer setting?

⇒ xGen

Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation

Tu Vu^{1,2}

Aditya Barua¹

Brian Lester¹

Daniel Cer¹

Mohit lyyer²

Noah Constant¹

Google Research¹ UMass² Amherst

WikiLingua-0

A demonstration of WIKILINGUA-0, a challenging zeroshot cross-lingual generation (XGEN) task, which requires a model to learn a generative task from labeled data in one language (i.e., English), and then perform the equivalent task in another language at inference time. **Training time**: Adapt a pretrained multilingual LM to English summarization using prompt tuning or model tuning

Evaluation metrics

SP-Rouge

• SentencePiece Rouge that measures summarization quality

LID_lang

• the average confidence score given by <u>cld3</u> when detecting the language *lang*

ASCII

• the average percentage of ASCII characters present in the text

Prompt Tuning is preferred when there is a significant language shift at inference time

		Тн		
Size	Method	SP-ROUGE	LID_{EN}	LID_{TH}
SMALL	Prompt	14.9	45.9	3.3
SMALL	Model	17.3	78.1	0.1
BASE	Prompt	17.3	34.3	33.5
BASE	MODEL	17.9	89.0	0.3
LARGE	Prompt	24.7	29.0	45.9
LARGE	MODEL	25.9	36.5	35.4
XL	Prompt	33.2	19.8	66.0
XL	MODEL	25.6	54.7	24.9
XXL	Prompt	37.4	13.5	75.5
XXL	Model	30.1	32.7	16.8

PROMPTTUNING usually produces better results than MODELTUNING when there is a significant language shift at inference time.

Learning curves showing how PROMPTTUNING (top) and MODELTUNING (bottom) progress in terms of summarization quality (left) and unwanted English output (right), at the XXL model size. Note, MODELTUNING quality is lower overall, and predictions contain high (>40%) levels of unwanted ASCII.

Training step	5K	10K	30K	50K
Prompt	กำหนดเป้าหมายของคุณ. แบ่งเป้าหมายของคุณออก เป็นเป้าหมายย่อยๆ. ตั้งเป้า หมาย ในทุกๆ วัน. ตั้งเป้า หมาย ในระยะยาว.	กำหนดเป้าหมายของคุณ. แบ่งเป้าหมายของคุณเป็น เป้าหมายย่อยๆ. ติดตาม ความก้าวหน้าของคุณ. ถามตัวเองว่า "ฉันสามา รถทำอะไรในวันนี้เพื่อบรรลุ เป้าหมายของฉัน? ฉันสา มารถทำอะไรในอีก 3 สัปดาห์ข้างหน้าเพื่อบรรลุ เป	Define your goal. Divide your goal into smaller goals. Keep track of your progress. Ask yourself what you can do today. Ask yourself what you can do in 3 weeks. Ask yourself what you can do in a year.	Establish a time frame for your goals. Divide your goals into smaller steps. Ask yourself what you can do today. Ask yourself what you can do in the next 3 weeks. Ask yourself what you can do in the n
Model	Set a time limit for your goal	Set a time limit for your goal	Be specific about your goals. Set benchmarks for yourself. Keep track of your progress. Ask yourself questions.	Be specific with your goals. Set benchmarks and routines to help you achieve your goals. Keep track of your progress. Ask yourself questions to help you stay on track

Bigger models are less prone to forget

		Тн		
Size	Method	SP-ROUGE	LID _{EN}	LID_{TH}
SMALL	Prompt	14.9	45.9	3.3
BASE	Prompt	17.3	34.3	33.5
LARGE	Prompt	24.7	29.0	45.9
XL	Prompt	33.2	19.8	66.0
XXL	Prompt	37.4	13.5	75.5
SMALL	Model	17.3	78.1	0.1
BASE	MODEL	17.9	89.0	0.3
LARGE	MODEL	25.9	36.5	35.4
XL	Model	25.6	54.7	24.9
XXL	Model	30.1	32.7	16.8

For both MODELTUNING and PROMPTTUNING, moving to larger model sizes mitigates catastrophic forgetting to a remarkable extent.

Too much capacity is harmful for Prompt Tuning

			Тн	
Size	Method	SP-ROUGE	LID _{EN}	LID_{TH}
	PROMPT, L=1	19.2	3.3	80.2
D	PROMPT, L=10	21.0	11.8	53.7
BASE	PROMPT, L=100	17.3	34.3	33.5
	PROMPT, L=1000	16.3	47.5	18.9
	PROMPT, L=1	36.4	0.1	99.3
XXL	PROMPT, L=10	41.2	2.0	91.3
	PROMPT, L=100	37.4	13.5	75.5
	PROMPT, L=1000	37.8	7.4	81.7

An interesting "paradox of capacity" with regard to prompt length. One the one hand, greater capacity (in the form of longer prompts) clearly helps to better learn the summarization task. On the other hand, the greater the capacity to learn from English training data, the more the model forgets other languages. For each language and model size, we observe a "balance point" past which adding extra capacity becomes harmful.

Significant headroom remains

		Тн	
Size Method	SP-ROUGE	LID _{EN}	LID_{TH}
xxl Prompt	37.4	13.5	75.5
XXL PROMPT, TRANS-TEST	28.7	0.0	100.0
XXL PROMPT, TRANS-TRAIN	37.1	0.0	100.0
XXL PROMPT, SUP	45.0	0.1	99.6
XXL MODEL	30.1	32.7	16.8
XXL MODEL, TRANS-TEST	31.7	0.0	100.0
XXL MODEL, TRANS-TRAIN	38.7	0.0	100.0
XXL MODEL, SUP	48.8	0.0	99.9

When tuning the XXL model directly on supervised training data in each language (SUP), SP-ROUGE scores are much higher than our highest zero-shot results. For some languages, like Thai, the supervised baseline greatly exceeds any approach using machine translation (TRANS*).

Mitigating catastrophic forgetting

Mixing in unlabeled training data

- 1%: an unsupervised training task (i.e., span corruption) from the target language
- 99%: WikiLingua-0

Factorized prompts (specifically designed for Prompt Tuning)

 each prompt is decomposed into "task" and "language" sub-prompts that can be recombined in novel pairings (FP); inspired by MAD-X (<u>Pfeiffer et al., 2021</u>)

Factorized prompts

Our "factorized prompts" approach learns recomposable language and task sub-prompts by training on all language / task combinations from a set of 7 unsupervised language modeling tasks covering all 18 WIKILINGUA-0 languages.

Mixing in multilingual data prevents catastrophic forgetting

	,	Тн		
Size Method	SP-ROUGE	LID _{EN}	LID_{TH}	
BASE PROMPT	17.3	34.3	33.5	
BASE PROMPT, MIX-UNSUP	20.9	4.1	76.9	
XXL PROMPT	37.4	13.5	75.5	
XXL PROMPT, MIX-UNSUP	37.4	16.2	74.0	
Base MODEL	17.9	89.0	0.3	
BASE MODEL, MIX-UNSUP	25.2	16.2	56.8	
XXL MODEL	30.1	32.7	16.8	
XXL MODEL, MIX-UNSUP	32.4	17.0	32.4	

Mixing in unsupervised multilingual data generally helps prevent catastrophic forgetting. It significantly improves XGEN capacities for MODELTUNING. For PROMPTTUNING, it provides a benefit where catastrophic forgetting is more severe.

Factorized prompts are helpful when Prompt Tuning shows the most severe forgetting

		Тн	
Size Method	SP-ROUGE	LID _{EN}	LID_{TH}
BASE PROMPT	17.3	34.3	33.5
BASE PROMPT, MIX-UNSUP	20.9	4.1	76.9
BASE PROMPT, FP	21.1	19.8	40.0
XXL PROMPT	37.4	13.5	75.5
XXL PROMPT, MIX-UNSUP	37.4	16.2	74.0
XXL PROMPT, FP	36.9	9.0	80.8

Factorized prompts are successful at improving target language accuracy. However, this does not always translate to higher SP-ROUGE. In settings where vanilla PROMPTTUNING shows the most severe forgetting (e.g., at BASE size), factorized prompts provide large gains.

Take-aways

1. Prompt Tuning is preferred over Model Tuning when there is a significant language shift at inference time

2. Increasing model scale + decreasing tunable parameter capacity are both effective for xGen

3. Methods like mixing in unlabeled multilingual data and factorized prompts are helpful

R2: Can current transfer learning methods extend successfully to a zero-shot cross-lingual transfer setting?

➡ significant headroom remains

Future work: Parameter-efficient Multi-task Multimodal Multilingual Knowledge Sharing

How to share knowledge across tasks, modalities, and languages effectively and efficiently?

Thank you!

Q & A