
Proprietary + Confidential

STraTA: Self-Training with Task Augmentation
for Better Few-shot Learning

Tu Vu

November, 2021

STraTA: Self-Training with Task Augmentation

for Better Few-shot Learning

1 2

Tu Vu1,2 Thang Luong1 Quoc Le1 Grady Simon1 Mohit Iyyer2

Agenda

•Motivation 

•STraTA: Self-training with Task Augmentation

•Results and Discussion 

•Conclusion 

The current dominant learning paradigm

High

stability

Low

performance

Credit to Jay Alammar for creating the BERT image

Fine-tuning

labeled

data

target task

Pre-training

Exploiting task-specific unlabeled data

Credit to Jay Alammar for creating the BERT image

Task augmentationPre-training Self-training

synthetic

training data

labeled

data

pseudo-labeled

data

auxiliary task

labeled

data

unlabeled

data

target task

labeled examples per class

Ac
cu

ra
cy

Ac
cu

ra
cy

labeled examples per class

Ac
cu

ra
cy

STraTA substantially improves sample efficiency

What is self-training?

Student

Model

Labeled

Data

Pseudo-labeled
Data

Inference

Repeat until
convergence

Teacher

Model

what pseudo-labeled
examples to use?

Self-training on a broad distribution of pseudo-labeled data

self-training iterations

La
be

lin
g

ac
cu

ra
cy

Use a broad

distribution

Our self-training algorithm

Student

Model

Labeled

Data

Pseudo-labeled
Data

Inference

Repeat until
convergence

Teacher

Model

Use a broad

distribution

Our self-training algorithm (cont.)

Student

Model

Labeled

Data

Pseudo-labeled
Data

Inference

Repeat until
convergence

Teacher

Model

what model to use?

Task Augmentation

Task-specific

Unlabeled

Texts

Synthetic

In-domain

Auxiliary-task

Data

Pre-trained
Language Model

Auxiliary-task
Model

Data
Generation

Model

Task augmentation

in-domain 
NLI data

MNLI

text-to-text

1. Train an NLI data
generator by fine-tuning a

pre-trained generative
model on the MNLI dataset

in a text-to text format

[entailment: I have met a
woman whom I am attracted

to] → I am attracted to a
woman I met

task-specific 
unlabeled text

2. Use the model to simulate a

large amount of NLI data using

target-task unlabeled text

[contradiction: his acting was really awful]

→ he gave an incredible performance

his acting was really awful

3. Create synthetic in-domain

NLI training examples

[his acting was really awful,

he gave an incredible performance]

→ contradiction

T5

Example outputs

Use a broad

distribution

STraTA: Self-training with Task Augmentation

Self-training

Task-specific

Unlabeled

Texts

Synthetic

In-domain

Auxiliary-task

Data

Pre-trained
Language Model

Auxiliary-task
Model

Student
Model

Labeled

Data

Pseudo-labeled
Data

Inference

Repeat until
convergence

Teacher
Model

Data
Generation

Model

Task Augmentation

Experimental setup: datasets

Experimental setup: baselines
LMFT & ITFT

• LMFT: target-task language model fine-tuning (Howard and Ruder, 2018;
Gururangan et al., 2020)

• ITFT: intermediate-task fine-tuning with MNLI (Phang et al., 2019)

Prompt/entailment-based fine-tuning

• LM-BFF: prompt-based fine-tuning (Gao et al., 2021)

• EFL: entailment-based fine-tuning (Wang et al., 2021)

Du et al. (2021)

• SentAugST: Retrieval-based augmentation (SentAug) + self-training (ST)

https://arxiv.org/pdf/1801.06146.pdf
https://arxiv.org/pdf/2004.10964.pdf
https://arxiv.org/pdf/1811.01088.pdf
https://arxiv.org/pdf/2012.15723.pdf
https://arxiv.org/pdf/2104.14690.pdf
https://arxiv.org/pdf/2010.02194.pdf

Main resultsTask |Train|
text classification/regression
SNLI (Bowman et al., 2015) 570K
MNLI (Williams et al., 2018) 393K
QQP (Iyer et al., 2017) 364K
QNLI (Wang et al., 2019b) 105K
SST-2 (Socher et al., 2013) 67K
SciTail (Khot et al., 2018) 27K
SST-5 (Socher et al., 2013) 8.5K
STS-B (Cer et al., 2017) 7K
SICK-E (Marelli et al., 2014) 4.5K
SICK-R (Marelli et al., 2014) 4.5K
CR (Hu and Liu, 2004) 4K
MRPC (Dolan and Brockett, 2005) 3.7K
RTE (Dagan et al., 2005, et seq.) 2.5K

Table 1: Datasets used in our experiments.

report results on the original development set. The
training set without ground-truth labels is used as
unlabeled data UT for each task.

We consider three data regimes by varying the
amount of labeled training data across the down-
stream tasks: FULL (all labeled training data),
LIMITED (1024 random labeled training examples),
and FEW-SHOT (8 random labeled training exam-
ples per class).12 Since fine-tuning BERT can be
unstable on small datasets (Devlin et al., 2019), we
perform 10 random restarts where there are less
than 10K training examples and report the mean
and standard deviation.13 Since large development
sets are impractical in low-resource settings (Oliver
et al., 2018; Kann et al., 2019), we randomly sam-
ple 256 development examples for each task in the
LIMITED and FEW-SHOT regimes. Additionally,
in the FEW-SHOT regime, we experiment with a
real-world scenario where there is no development
set access.

4.2 Setup

As in Devlin et al. (2019), our input format for
all tasks contains a [CLS] token followed by a sin-
gle text segment or a concatenation of text seg-
ments (e.g., a premise-hypothesis pair) separated
with a [SEP] token. We feed the final [CLS] rep-
resentation into a task-specific classification layer
and fine-tune all the parameters end-to-end on the
downstream tasks. For both fine-tuning and self-
training, we perform early stopping based on devel-
opment set performance. We use the Transformers

12For regression tasks, we partition the output interval [0, 5]
into five bins and sample 8 examples from each bin.

13We resample examples for each restart.

Model SNLI QQP QNLI SST-2 SciTail SST-5 STS-B

FULL
BERTLARGE 91.1 88.4 91.9 92.4 95.3 53.70.9 89.60.2

+ LMFT 91.0 88.1 90.4 93.5 95.3 54.00.4 89.50.2

+ ITFTMNLI 91.1 88.2 91.6 93.5 96.5 54.00.8 90.30.3

+ TA 91.9 88.5 92.5 94.7 96.9 55.70.8 90.90.2

LIMITED (1024 total training examples)
BERTLARGE 77.40.6 74.11.0 81.70.9 89.80.6 90.90.7 49.11.3 88.20.4

+ LMFT 75.81.5 71.60.5 80.52.0 88.90.8 87.72.3 49.23.1 88.40.4

+ ITFTMNLI 85.20.4 74.00.5 83.50.5 90.00.8 92.11.1 49.41.2 87.80.8

+ TA 87.30.3 75.70.5 85.00.5 91.70.7 92.31.1 51.41.0 89.00.6

FEW-SHOT (8 training examples per class)
BERTLARGE 43.14.4 58.54.7 64.46.1 66.18.7 68.89.5 35.21.3 74.63.8

+ LMFT 39.62.6 52.74.7 52.21.6 66.39.3 66.410.6 36.82.9 75.49.4

+ ITFTMNLI 79.93.1 62.69.0 64.54.4 80.75.0 72.311.2 36.42.1 75.54.0

+ TA 84.80.7 64.66.3 71.54.0 85.51.4 79.04.5 38.53.0 78.92.4

+ ST 69.39.2 74.31.2 85.41.7 81.912.2 79.94.8 42.01.5 82.82.3

+ STraTA 87.30.3 75.10.2 86.40.8 91.70.7 87.32.9 43.02.3 84.51.6

Prompt-based (LM-BFF; Gao et al., 2021) and entailment-based (EFL; Wang et al., 2021) methods
RoBERTaLARGE 38.41.3 58.89.9 52.71.8 60.53.1 – – 24.58.4

+ LM-BFF 52.01.7 68.21.2 61.83.2 79.96.0 – – 66.03.2

+ EFL 81.01.1 67.32.6 68.03.4 90.81.0 – – 71.01.3

STraTA significantly improves results across 12 NLP
benchmark datasets (numbers in the subscript indicate
the standard deviation across 10 random seeds).

library (Wolf et al., 2019) and its recommended
hyperparameters for all experiments.14

4.3 Methods

Beside STraTA, we also experiment with task aug-
mentation (TA) and self-training (ST) individually.
We compare to the following strong baselines:

LMFT & ITFTMNLI: We compare our meth-
ods against commonly-used fine-tuning ap-
proaches, including target-task language model
fine-tuning (LMFT; Howard and Ruder, 2018; Gu-
rurangan et al., 2020)—in which a model is first
trained with the language model objective on task-
specific unlabeled data before being fine-tuned on
the target task—and intermediate-task fine-tuning
on MNLI (ITFTMNLI; Phang et al., 2019)—which
first trains a model on MNLI before fine-tuning it
on the target task.

Prompt-based/entailment-based fine-tuning ap-

proaches: We also include results from recent
work on prompt-based (LM-BFF; Gao et al., 2021)
and entailment-based (EFL; Wang et al., 2021)
fine-tuning,15 which has been shown to outper-
form the GPT-3-style “in-context learning” ap-
proach (Brown et al., 2020) for few-shot learning.
These approaches do not assume access to task-
specific unlabeled data and are not directly compa-

14While individual task performance can likely be further
improved with more involved hyperparameter tuning, we stan-
dardize hyperparameters across tasks to cut down on compu-
tational expense. Our experiments were conducted on Google
Cloud with 100% renewable energy.

15Results taken from Wang et al. (2021).

Task |Train|
text classification/regression
SNLI (Bowman et al., 2015) 570K
MNLI (Williams et al., 2018) 393K
QQP (Iyer et al., 2017) 364K
QNLI (Wang et al., 2019b) 105K
SST-2 (Socher et al., 2013) 67K
SciTail (Khot et al., 2018) 27K
SST-5 (Socher et al., 2013) 8.5K
STS-B (Cer et al., 2017) 7K
SICK-E (Marelli et al., 2014) 4.5K
SICK-R (Marelli et al., 2014) 4.5K
CR (Hu and Liu, 2004) 4K
MRPC (Dolan and Brockett, 2005) 3.7K
RTE (Dagan et al., 2005, et seq.) 2.5K

Table 1: Datasets used in our experiments.

report results on the original development set. The
training set without ground-truth labels is used as
unlabeled data UT for each task.

We consider three data regimes by varying the
amount of labeled training data across the down-
stream tasks: FULL (all labeled training data),
LIMITED (1024 random labeled training examples),
and FEW-SHOT (8 random labeled training exam-
ples per class).12 Since fine-tuning BERT can be
unstable on small datasets (Devlin et al., 2019), we
perform 10 random restarts where there are less
than 10K training examples and report the mean
and standard deviation.13 Since large development
sets are impractical in low-resource settings (Oliver
et al., 2018; Kann et al., 2019), we randomly sam-
ple 256 development examples for each task in the
LIMITED and FEW-SHOT regimes. Additionally,
in the FEW-SHOT regime, we experiment with a
real-world scenario where there is no development
set access.

4.2 Setup

As in Devlin et al. (2019), our input format for
all tasks contains a [CLS] token followed by a sin-
gle text segment or a concatenation of text seg-
ments (e.g., a premise-hypothesis pair) separated
with a [SEP] token. We feed the final [CLS] rep-
resentation into a task-specific classification layer
and fine-tune all the parameters end-to-end on the
downstream tasks. For both fine-tuning and self-
training, we perform early stopping based on devel-
opment set performance. We use the Transformers

12For regression tasks, we partition the output interval [0, 5]
into five bins and sample 8 examples from each bin.

13We resample examples for each restart.

Model SNLI QQP QNLI SST-2 SciTail SST-5 STS-B

FULL
BERTLARGE 91.1 88.4 91.9 92.4 95.3 53.70.9 89.60.2

+ LMFT 91.0 88.1 90.4 93.5 95.3 54.00.4 89.50.2

+ ITFTMNLI 91.1 88.2 91.6 93.5 96.5 54.00.8 90.30.3

+ TA 91.9 88.5 92.5 94.7 96.9 55.70.8 90.90.2

LIMITED (1024 total training examples)
BERTLARGE 77.40.6 74.11.0 81.70.9 89.80.6 90.90.7 49.11.3 88.20.4

+ LMFT 75.81.5 71.60.5 80.52.0 88.90.8 87.72.3 49.23.1 88.40.4

+ ITFTMNLI 85.20.4 74.00.5 83.50.5 90.00.8 92.11.1 49.41.2 87.80.8

+ TA 87.30.3 75.70.5 85.00.5 91.70.7 92.31.1 51.41.0 89.00.6

FEW-SHOT (8 training examples per class)
BERTLARGE 43.14.4 58.54.7 64.46.1 66.18.7 68.89.5 35.21.3 74.63.8

+ LMFT 39.62.6 52.74.7 52.21.6 66.39.3 66.410.6 36.82.9 75.49.4

+ ITFTMNLI 79.93.1 62.69.0 64.54.4 80.75.0 72.311.2 36.42.1 75.54.0

+ TA 84.80.7 64.66.3 71.54.0 85.51.4 79.04.5 38.53.0 78.92.4

+ ST 69.39.2 74.31.2 85.41.7 81.912.2 79.94.8 42.01.5 82.82.3

+ STraTA 87.30.3 75.10.2 86.40.8 91.70.7 87.32.9 43.02.3 84.51.6

Prompt-based (LM-BFF; Gao et al., 2021) and entailment-based (EFL; Wang et al., 2021) methods
RoBERTaLARGE 38.41.3 58.89.9 52.71.8 60.53.1 – – 24.58.4

+ LM-BFF 52.01.7 68.21.2 61.83.2 79.96.0 – – 66.03.2

+ EFL 81.01.1 67.32.6 68.03.4 90.81.0 – – 71.01.3

STraTA significantly improves results
across 12 NLP benchmark datasets
(numbers in the subscript indicate the
standard deviation across 10 random
seeds).

library (Wolf et al., 2019) and its recommended
hyperparameters for all experiments.14

4.3 Methods

Beside STraTA, we also experiment with task aug-
mentation (TA) and self-training (ST) individually.
We compare to the following strong baselines:
LMFT & ITFTMNLI: We compare our meth-
ods against commonly-used fine-tuning ap-
proaches, including target-task language model
fine-tuning (LMFT; Howard and Ruder, 2018; Gu-
rurangan et al., 2020)—in which a model is first
trained with the language model objective on task-
specific unlabeled data before being fine-tuned on
the target task—and intermediate-task fine-tuning
on MNLI (ITFTMNLI; Phang et al., 2019)—which
first trains a model on MNLI before fine-tuning it
on the target task.
Prompt-based/entailment-based fine-tuning ap-

proaches: We also include results from recent
work on prompt-based (LM-BFF; Gao et al., 2021)
and entailment-based (EFL; Wang et al., 2021)
fine-tuning,15 which has been shown to outper-
form the GPT-3-style “in-context learning” ap-
proach (Brown et al., 2020) for few-shot learning.
These approaches do not assume access to task-
specific unlabeled data and are not directly compa-
rable to our methods due to differences in model
architecture and experimental settings.
Du et al. (2021)’s self-training approach: Most
related to our work, Du et al. (2021) propose a data

14While individual task performance can likely be further
improved with more involved hyperparameter tuning, we stan-
dardize hyperparameters across tasks to cut down on compu-
tational expense. Our experiments were conducted on Google
Cloud with 100% renewable energy.

15Results taken from Wang et al. (2021).

Main results (cont.)augmentation method called SentAugment, which
retrieves a large amount of “in-domain” data for
a given task from a large bank of Web sentences.
A base model trained using task-specific labeled
data is then applied to obtain pseudo-labels for the
retrieved sentences. Their approach is complemen-
tary to ours and combining these approaches is a
promising direction for future work.

4.4 Results and Discussion

Table ?? shows the main results of our experiments
with task augmentation and self-training. Below,
we first provide an overview of these results before
analyzing them in more detail.

Baselines: LMFT is not always helpful and can
even hurt performance (e.g., on QNLI, a task built
from Wikipedia, which is part of BERT’s pre-
training data). Du et al. (2021) also observe a
decrease in performance when using LMFT with
task-specific in-domain unlabeled data retrieved
from Web data. ITFTMNLI significantly outper-
forms LMFT in many cases, particularly on target
tasks closely related to MNLI.

Task augmentation significantly improves re-

sults on downstream tasks: The first three
blocks of Table ?? show the results for TA, which
improves almost all target tasks across all three
data regimes. TA even improves results on SNLI
in the FULL regime, where there is a large amount
of labeled data available (570K examples). Chang-
ing the data regimes significantly impacts the av-
erage absolute performance gain over the vanilla
BERTLARGE across target tasks, which is lowest
in FULL regime (+2.7%) and highest in the FEW-
SHOT regime (+13.0%). SNLI (+41.7%) and RTE
(+23.9%) benefit the most from TA in the FEW-
SHOT regime. TA also significantly outperforms
both LMFT and ITFTMNLI, particularly in the low-
data regimes (+16.4% and +4.8%, respectively).

Adding self-training further boosts down-

stream performance when task-specific unla-

beled examples are available: The third block
of Table ?? shows that in the FEW-SHOT regime,
adding ST to TA, which results in STraTA, fur-
ther boosts downstream performance. In particu-
lar, STraTA performs the best across target tasks,
achieving up to +44.2% absolute improvement on
SNLI over BERTLARGE. Overall, STraTA provides
an average absolute performance gain of +20.9%
and +18.4% for BERTBASE and BERTLARGE, re-

Model SST-2 SST-5 CR

Ours (8 examples per class)
BERTBASE 69.86.5 32.82.0 73.10.5

+ TA 85.50.6 41.00.8 88.70.2

+ ST 74.99.0 38.30.8 85.61.8

+ STraTA 90.80.6 43.11.1 91.40.2

BERTLARGE 75.63.3 36.60.4 79.30.7

+ TA 87.30.3 41.71.1 90.00.4

+ ST 90.60.3 43.80.4 89.01.1

+ STraTA 92.40.1 45.50.7 90.60.0

Du et al. (2021) (20 examples per class)
RoBERTaLARGE 83.62.7 42.31.6 88.91.7

+ SentAugST 86.72.3 44.41.0 89.72.0

Table 2: Compared to Du et al. (2021),
our approach leads to better downstream
performance, despite using a weaker
base model (BERT vs. RoBERTa) and
with less labeled examples.

spectively. Using ST alone also leads to large im-
provements over the vanilla BERT models.

Using a better base model leads to better self-

training results: Our experiment results show
that self-training is complementary to different
BERT base models across target tasks—the better
the BERT base model, the better self-training re-
sults. BERT + TA yields better self-training results
than BERT + ITFTMNLI, and both are better than the
vanilla BERT. Combinations of BERTLARGE and
ST typically outperform that of BERTBASE and ST.
Interestingly, BERTLARGE+ ST is competitive with
BERTLARGE+ STraTA on several tasks (e.g., QQP
and QNLI), and this does not hold for BERTBASE.

Comparison to recent published work: The
last three rows of Table ?? and the last two rows of
Table 2 show results from recent published work.16

Broadly, our methods lead to better performance
compared to these approaches. However, due to
differences in evaluation methodology (e.g., mod-
els, training/development data subsets, number of
random restarts, and other factors), we refrain from
explicitly ranking the approaches.

16While Wang et al. (2021) report results for LM-BFF and
EFL across 5 random data subsets using a fixed set of seeds,
Du et al. (2021) tried 10 seeds for each of their 5 random data
subsets and report the mean of the top 3 seeds. To be more
comparable to (Du et al., 2021), we report the mean of our top
3 random seeds in Table 2.

augmentation method called SentAugment, which
retrieves a large amount of “in-domain” data for
a given task from a large bank of Web sentences.
A base model trained using task-specific labeled
data is then applied to obtain pseudo-labels for the
retrieved sentences. Their approach is complemen-
tary to ours and combining these approaches is a
promising direction for future work.

4.4 Results and Discussion

Table ?? shows the main results of our experiments
with task augmentation and self-training. Below,
we first provide an overview of these results before
analyzing them in more detail.

Baselines: LMFT is not always helpful and can
even hurt performance (e.g., on QNLI, a task built
from Wikipedia, which is part of BERT’s pre-
training data). Du et al. (2021) also observe a
decrease in performance when using LMFT with
task-specific in-domain unlabeled data retrieved
from Web data. ITFTMNLI significantly outper-
forms LMFT in many cases, particularly on target
tasks closely related to MNLI.

Task augmentation significantly improves re-

sults on downstream tasks: The first three
blocks of Table ?? show the results for TA, which
improves almost all target tasks across all three
data regimes. TA even improves results on SNLI
in the FULL regime, where there is a large amount
of labeled data available (570K examples). Chang-
ing the data regimes significantly impacts the av-
erage absolute performance gain over the vanilla
BERTLARGE across target tasks, which is lowest
in FULL regime (+2.7%) and highest in the FEW-
SHOT regime (+13.0%). SNLI (+41.7%) and RTE
(+23.9%) benefit the most from TA in the FEW-
SHOT regime. TA also significantly outperforms
both LMFT and ITFTMNLI, particularly in the low-
data regimes (+16.4% and +4.8%, respectively).

Adding self-training further boosts down-

stream performance when task-specific unla-

beled examples are available: The third block
of Table ?? shows that in the FEW-SHOT regime,
adding ST to TA, which results in STraTA, fur-
ther boosts downstream performance. In particu-
lar, STraTA performs the best across target tasks,
achieving up to +44.2% absolute improvement on
SNLI over BERTLARGE. Overall, STraTA provides
an average absolute performance gain of +20.9%
and +18.4% for BERTBASE and BERTLARGE, re-

Model SST-2 SST-5 CR

Ours (8 examples per class)
BERTBASE 69.86.5 32.82.0 73.10.5

+ TA 85.50.6 41.00.8 88.70.2

+ ST 74.99.0 38.30.8 85.61.8

+ STraTA 90.80.6 43.11.1 91.40.2

BERTLARGE 75.63.3 36.60.4 79.30.7

+ TA 87.30.3 41.71.1 90.00.4

+ ST 90.60.3 43.80.4 89.01.1

+ STraTA 92.40.1 45.50.7 90.60.0

Du et al. (2021) (20 examples per class)
RoBERTaLARGE 83.62.7 42.31.6 88.91.7

+ SentAugST 86.72.3 44.41.0 89.72.0

Compared to Du et al. (2021), our
approach leads to better downstream
performance, despite using a weaker
base model (BERT vs. RoBERTa)
and with less labeled examples.

spectively. Using ST alone also leads to large im-
provements over the vanilla BERT models.

Using a better base model leads to better self-

training results: Our experiment results show
that self-training is complementary to different
BERT base models across target tasks—the better
the BERT base model, the better self-training re-
sults. BERT + TA yields better self-training results
than BERT + ITFTMNLI, and both are better than the
vanilla BERT. Combinations of BERTLARGE and
ST typically outperform that of BERTBASE and ST.
Interestingly, BERTLARGE+ ST is competitive with
BERTLARGE+ STraTA on several tasks (e.g., QQP
and QNLI), and this does not hold for BERTBASE.

Comparison to recent published work: The
last three rows of Table ?? and the last two rows
of Table ?? show results from recent published
work.16 Broadly, our methods lead to better per-
formance compared to these approaches. However,
due to differences in evaluation methodology (e.g.,
models, training/development data subsets, number
of random restarts, and other factors), we refrain
from explicitly ranking the approaches.

16While Wang et al. (2021) report results for LM-BFF and
EFL across 5 random data subsets using a fixed set of seeds,
Du et al. (2021) tried 10 seeds for each of their 5 random data
subsets and report the mean of the top 3 seeds. To be more
comparable to (Du et al., 2021), we report the mean of our top
3 random seeds in Table ??.

STraTA improves a randomly-initialized base model 

Model SST-2 SciTail

RANDBASE 50.01.6 50.72.4

+ STraTA 78.60.9 64.43.1

BERTBASE 59.18.4 67.16.6

+ STraTA 90.10.8 86.33.5

BERTLARGE 66.18.7 68.89.5

+ STraTA 91.70.7 87.32.9

Our approach yields improvements
even when starting with a randomly-
initialized model, but pre-training helps
considerably.

5 Analysis of few-shot learning results

Having established the effectiveness of both task
augmentation and self-training in the few-shot set-
ting, we conduct a series of analysis experiments
in this section to explore the source of the observed
improvements.

Sample efficiency with STraTA: Figure 1 illus-
trates how STraTA improves sample efficiency as
the number of examples per class increases. For
the SST-2 sentiment dataset, despite using only
K = 8 training examples per class, STraTA has
already nearly saturated its performance, achiev-
ing results competitive with standard fine-tuning
over the whole dataset of 67K labeled examples.
On the harder task of SciTail, STraTA continues
to improve as K increases, and surpasses the per-
formance of standard fine-tuning with the whole
dataset of 27K labeled examples at K = 512.

STraTA improves a randomly-initialized base

model: Table ?? shows that our STraTA ap-
proach does not require a powerful pre-trained
base model to exhibit improvements: when
applied to a randomly initialized Transfomer
model (RANDBASE) with the same architecture
as BERTBASE, RANDBASE+ STraTA outperforms
the vanilla BERTBASE by a large margin on SST-2,
while being competitive on SciTail. Additionally,
BERTBASE+ STraTA substantially outperforms the
vanilla BERTLARGE by 24% and 17.5% on SST-2
and SciTail, respectively.

Self-training on a broad distribution of

pseudo-labeled data: Previous self-training
algorithms (Rosenberg et al., 2005; McClosky
et al., 2006; Sohn et al., 2020; Du et al., 2021)
typically add a small set of unlabeled examples

self-training iterations

La
be

lin
g

ac
cu

ra
cy

Figure 3: On the SST-2 sentiment dataset, traditional
confidence filtering-based self-training (left) yields
poor results compared to our approach, which trains on
all pseudo-labels at each iteration (right).

with the highest-confidence pseudo labels to
the labeled data set L at each iteration. In
contrast, our approach adds all pseudo-labeled
examples to L at every iteration regardless of
confidence. We compare the two approaches in
Figure 3, which shows the labeling accuracy (%
of unlabeled examples that are labeled correctly)
on the development set (dev), the test set (test),
and the unlabeled data pool (predict) of the SST-2
sentiment dataset. In the iterative confidence
filtering-based approach (left plot), a fixed number
(in this plot, 32) of most confidently labeled
examples are added to the labeled set L at each
iteration (the self-train line shows the labeling
accuracy of these examples); once they have been
added, they are not removed, and this process is
repeated until the unlabeled set U is exhausted.
As can be seen, this approach works well for
the several first self-training iterations (3-5), but
then labeling accuracy begins to degrade. In
contrast, our algorithm (right plot) gradually
and consistently improves labeling accuracy
before converging at some iteration. These results
suggest that strong base models benefit from
including even significantly noisy pseudo-labels in
self-training, as opposed to training on a narrow
distribution of high-confidence predictions.

Does self-training work with out-of-

domain/distribution (OOD) unlabeled ex-

amples? We investigate this question by
applying self-training on top of BERTBASE+ TA.
We consider SOURCE ! TARGET task pairs
where training data from the source task without
ground-truth labels is used as OOD unlabeled data
for the target task. We experiment with several task
pairs, including MNLI ! SciTail, SST-2 ! CR,
QQP ! MRPC, and MNLI ! RTE. As shown

Does self-training work with out-of-domain/
distribution unlabeled data?

Model SciTail CR MRPC RTE

BERTBASE 67.16.6 65.28.2 72.410.2 51.42.5

BERTBASE+ TA 78.53.2 86.52.2 74.56.5 67.67.1

+ STIN 86.33.5 90.50.8 81.00.8 70.62.4

+ STOUT 81.43.7 88.31.9 80.31.9 71.23.2

+ STIN + OUT 82.62.6 88.31.5 80.21.1 69.94.0

Self-training with out-of-domain unlabeled examples
also results in improvements, but using in-domain data
works significantly better.

Model SST-2 SciTail

BERTBASE 58.88.4 (# 0.3) 61.55.4 (# 5.6)
+ LMFT 64.08.1 (# 0.9) 59.35.6 (# 4.7)
+ ITFTMNLI 76.57.2 (# 0.3) 76.25.4 (" 0.4)
+ TA 79.86.3 (# 0.5) 77.83.3 (# 0.7)
+ STraTA 86.62.6 (# 3.5) 80.63.0 (# 5.7)

In a realistic evaluation without a development set,
our STraTA approach still leads to significant im-
provements on top of BERTBASE. In parentheses,
we show the absolute increase (") or decrease (#)
in performance compared to the same method used
with a development set.

in Table ??, self-training with OOD unlabeled
examples (STOUT) is also helpful, offering an
average absolute performance gain of +3.5% over
the strong BERTBASE+ TA baseline. However,
using OOD unlabeled examples typically leads
to worse self-training results compared to using
in-domain unlabeled examples (STIN), except for
the case MNLI ! RTE, and combining the two
types of unlabeled examples (STIN + OUT) does not
bring further improvements over STIN.

Towards realistic evaluation in few-shot learn-

ing: In real-world low-resource scenarios, it is of-
ten impractical to rely on a development set (Oliver
et al., 2018; Kann et al., 2019). With so little data,
it may be more effective to use all labeled data
for training. To examine the applicability of our
methods to this real-world setting, here we con-
sider an evaluation that does not make use of a
development set. Rather than using early stopping,
we fine-tune each model for a fixed number of 512
steps. We checkpoint every 30 steps and evaluate
a single model obtained by averaging the last 5
model checkpoints. For self-training, we perform
a fixed number of 30 self-training iterations, each
following the same fine-tuning procedure.

Table ?? summarizes our results. Broadly, all
models perform worse in this setting than when

a development set is available. Our STraTA ap-
proach still provides significant improvements over
BERTBASE, but much worse than the same method
used with a development set. We conjecture that
this is because without a development set, the
model achieves somewhat lower accuracy in each
self-training iteration, and these errors compound
through later iterations.

6 Related Work

Improving language model fine-tuning: Fine-
tuning has been the most common approach for
applying pre-trained language models to down-
stream tasks. However, it typically requires a tar-
get dataset of thousands to hundreds of thousands
of examples to work well (Yogatama et al., 2019;
Brown et al., 2020). Many methods have been
proposed to improve performance and stability of
pre-trained language models on small datasets, in-
cluding language model fine-tuning on unlabeled
data from the target domain (Howard and Ruder,
2018; Gururangan et al., 2020), intermediate-task
fine-tuning (Phang et al., 2019), multi-task pre-
finetuning (Aghajanyan et al., 2021a), better de-
sign choices and training strategies (Mosbach et al.,
2021; Zhang et al., 2021), and regularization-
oriented techniques (Jiang et al., 2020; Aghajanyan
et al., 2021b). More related to our work is research
on intermediate-task fine-tuning that makes use
of data-rich tasks (Phang et al., 2019), tasks that
require complex reasoning and inference (Pruk-
sachatkun et al., 2020), and beneficial relationships
among tasks (Vu et al., 2020).

Few-shot learning: In previous work, fine-
tuning is combined with other learning strate-
gies to improve few-shot performance, includ-
ing consistency training (Xie et al., 2020a), meta-
learning (Bansal et al., 2020), self-training (Du
et al., 2021; Sun et al., 2020), and contrastive learn-
ing (Gunel et al., 2021). Other work has focused
on prompt-based/entailment-based few-shot learn-
ing approaches (Brown et al., 2020; Schick and
Schütze, 2021; Gao et al., 2021; Tam et al., 2021;
Wang et al., 2021). Notably, Brown et al. (2020)
demonstrate remarkable few-shot learning perfor-
mance with a single frozen GPT-3 model, although
its performance still lags far behind state-of-the-art
fine-tuning results.

Generative data augmentation: Recent work
explores the generation capabilities of large-scale

Towards realistic evaluation in few-shot learning

Model SciTail CR MRPC RTE

BERTBASE 67.16.6 65.28.2 72.410.2 51.42.5

BERTBASE+ TA 78.53.2 86.52.2 74.56.5 67.67.1

+ STIN 86.33.5 90.50.8 81.00.8 70.62.4

+ STOUT 81.43.7 88.31.9 80.31.9 71.23.2

+ STIN + OUT 82.62.6 88.31.5 80.21.1 69.94.0

Self-training with out-of-domain unlabeled examples
also results in improvements, but using in-domain data
works significantly better.

Model SST-2 SciTail

BERTBASE 58.88.4 (# 0.3) 61.55.4 (# 5.6)
+ LMFT 64.08.1 (# 0.9) 59.35.6 (# 4.7)
+ ITFTMNLI 76.57.2 (# 0.3) 76.25.4 (" 0.4)
+ TA 79.86.3 (# 0.5) 77.83.3 (# 0.7)
+ STraTA 86.62.6 (# 3.5) 80.63.0 (# 5.7)

In a realistic evaluation without a development set,
our STraTA approach still leads to significant im-
provements on top of BERTBASE. In parentheses,
we show the absolute increase (") or decrease (#)
in performance compared to the same method used
with a development set.

in Table ??, self-training with OOD unlabeled
examples (STOUT) is also helpful, offering an
average absolute performance gain of +3.5% over
the strong BERTBASE+ TA baseline. However,
using OOD unlabeled examples typically leads
to worse self-training results compared to using
in-domain unlabeled examples (STIN), except for
the case MNLI ! RTE, and combining the two
types of unlabeled examples (STIN + OUT) does not
bring further improvements over STIN.

Towards realistic evaluation in few-shot learn-

ing: In real-world low-resource scenarios, it is of-
ten impractical to rely on a development set (Oliver
et al., 2018; Kann et al., 2019). With so little data,
it may be more effective to use all labeled data
for training. To examine the applicability of our
methods to this real-world setting, here we con-
sider an evaluation that does not make use of a
development set. Rather than using early stopping,
we fine-tune each model for a fixed number of 512
steps. We checkpoint every 30 steps and evaluate
a single model obtained by averaging the last 5
model checkpoints. For self-training, we perform
a fixed number of 30 self-training iterations, each
following the same fine-tuning procedure.

Table ?? summarizes our results. Broadly, all
models perform worse in this setting than when

a development set is available. Our STraTA ap-
proach still provides significant improvements over
BERTBASE, but much worse than the same method
used with a development set. We conjecture that
this is because without a development set, the
model achieves somewhat lower accuracy in each
self-training iteration, and these errors compound
through later iterations.

6 Related Work

Improving language model fine-tuning: Fine-
tuning has been the most common approach for
applying pre-trained language models to down-
stream tasks. However, it typically requires a tar-
get dataset of thousands to hundreds of thousands
of examples to work well (Yogatama et al., 2019;
Brown et al., 2020). Many methods have been
proposed to improve performance and stability of
pre-trained language models on small datasets, in-
cluding language model fine-tuning on unlabeled
data from the target domain (Howard and Ruder,
2018; Gururangan et al., 2020), intermediate-task
fine-tuning (Phang et al., 2019), multi-task pre-
finetuning (Aghajanyan et al., 2021a), better de-
sign choices and training strategies (Mosbach et al.,
2021; Zhang et al., 2021), and regularization-
oriented techniques (Jiang et al., 2020; Aghajanyan
et al., 2021b). More related to our work is research
on intermediate-task fine-tuning that makes use
of data-rich tasks (Phang et al., 2019), tasks that
require complex reasoning and inference (Pruk-
sachatkun et al., 2020), and beneficial relationships
among tasks (Vu et al., 2020).

Few-shot learning: In previous work, fine-
tuning is combined with other learning strate-
gies to improve few-shot performance, includ-
ing consistency training (Xie et al., 2020a), meta-
learning (Bansal et al., 2020), self-training (Du
et al., 2021; Sun et al., 2020), and contrastive learn-
ing (Gunel et al., 2021). Other work has focused
on prompt-based/entailment-based few-shot learn-
ing approaches (Brown et al., 2020; Schick and
Schütze, 2021; Gao et al., 2021; Tam et al., 2021;
Wang et al., 2021). Notably, Brown et al. (2020)
demonstrate remarkable few-shot learning perfor-
mance with a single frozen GPT-3 model, although
its performance still lags far behind state-of-the-art
fine-tuning results.

Generative data augmentation: Recent work
explores the generation capabilities of large-scale

Conclusion

STraTA

✦ two complementary and and independently effective methods to leverage
task-specific unlabeled data for improved downstream performance

• task augmentation: synthesizes a large amount of in-domain data for
auxiliary-task fine-tuning from target-task unlabeled texts

• self-training: trains on a broad distribution of pseudo-labeled data

✦ substantially improves sample efficiency across 12 NLP benchmark datasets

Thank you!

Code will be available at

https://github.com/google-research/
google-research/tree/master/STraTA

