Streaming Algorithms for Matchings in Low Arboricity Graphs

Sofya Vorotnikova
University of Massachusetts Amherst

Joint work with Andrew McGregor
Streaming Model(s)

- Vertex set is fixed
- Edge updates arrive in a sequence
- One pass

<table>
<thead>
<tr>
<th></th>
<th>insertions</th>
<th>deletions</th>
<th>arbitrary order</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>insert-only</td>
<td>✓</td>
<td>🚭</td>
<td>✓</td>
</tr>
<tr>
<td>adjacency-list</td>
<td>✓</td>
<td>🚭</td>
<td>🚭</td>
</tr>
</tbody>
</table>

edges incident to the same vertex arrive together; see every edge twice
Approximating Size of Maximum Matching

Matching is a set of edges that don’t share endpoints.

In insert-only stream can easily obtain *maximal* matching, which is a 2-approximation of *maximum* matching.

Maximum matching can be as large as \(n/2 \).

By approximating the **size** of the matching without finding the matching itself, we can use smaller space.
Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α.

Arboricity is the minimum number of forests into which the edges of the graph can be partitioned.

Property: Every subgraph on r vertices has at most αr edges.

Planar graphs have arboricity at most 3.

In dynamic stream, intermediate graphs can have high arboricity.
Results

<table>
<thead>
<tr>
<th></th>
<th>space</th>
<th>approx factor</th>
<th>work</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>$\tilde{O}(\alpha n^{4/5})$</td>
<td>$(5\alpha + 9)(1 + \epsilon)$</td>
<td>CCEHMMMV16</td>
</tr>
<tr>
<td></td>
<td>$\tilde{O}(\alpha n^{4/5})$</td>
<td>$(\alpha + 2)(1 + \epsilon)$</td>
<td>MV16</td>
</tr>
<tr>
<td></td>
<td>$\tilde{O}(\alpha^{10/3} n^{2/3})$</td>
<td>$(22.5\alpha + 6)(1 + \epsilon)$</td>
<td>CJMM17*</td>
</tr>
<tr>
<td></td>
<td>$\Omega(\sqrt{n}/\alpha^{2.5})$</td>
<td>$O(\alpha)$</td>
<td>AKL17</td>
</tr>
<tr>
<td>insert-only</td>
<td>$\tilde{O}(\alpha n^{2/3})$</td>
<td>$(5\alpha + 9)(1 + \epsilon)$</td>
<td>EHLMO15</td>
</tr>
<tr>
<td></td>
<td>$\tilde{O}(\alpha n^{2/3})$</td>
<td>$(\alpha + 2)(1 + \epsilon)$</td>
<td>MV16</td>
</tr>
<tr>
<td></td>
<td>$O(\alpha \epsilon^{-3} \log^2 n)$</td>
<td>$(22.5\alpha + 6)(1 + \epsilon)$</td>
<td>CJMM17</td>
</tr>
<tr>
<td></td>
<td>$O(\epsilon^{-2} \log n)$</td>
<td>$(\alpha + 2)(1 + \epsilon)$</td>
<td>MV18</td>
</tr>
<tr>
<td>adj</td>
<td>$O(1)$</td>
<td>$\alpha + 2$</td>
<td>MV16</td>
</tr>
</tbody>
</table>

*Restriction: $O(\alpha n)$ deletions.

Space is specified in words. An edge or a counter = one word.
Approach

All our results have the following two parts:

- **Structural result**: define Σ that is an $(\alpha + 2)$ approximation of $\text{match}(G)$

- **Algorithm**: $(1 + \epsilon)$ approximation of Σ in streaming (exact computation in adjacency list stream)

Dynamic: Σ_{dyn}

- $(1 + \epsilon)$-approximation in $\tilde{O}(\alpha n^{4/5})$ space

- Also gives $\tilde{O}(\alpha n^{2/3})$ space algorithm in insert-only streams

Insert-only: Σ_{ins}

- $(1 + \epsilon)$-approximation in $O(\epsilon^{-2} \log n)$ space

Adjacency list: Σ_{adj}

- Exact computation in $O(1)$ space
Structural Results
Structural Results: Definitions

- V^H = heavy vertices of degree $\geq \alpha + 2$
- E^H = heavy edges with 2 heavy endpoints
- V^L = light vertices
- E^L = light edges
Structural Results: Definitions: Σ_{adj}

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H|$$
Structural Results: Definitions: Σ_{dyn}

$$x_e = x_{uv} = \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right)$$
Structural Results: Definitions: Σ_{dyn}

$$x_e = x_{uv} = \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right)$$
Structural Results: Definitions: Σ_{dyn}

\[x_e = x_{uv} = \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right) \]
Structural Results: Definitions: Σ_{dyn}

\[x_e = x_{uv} = \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right) \]

\[\Sigma_{dyn} = (\alpha + 1) \sum_e x_e \]
Structural Results: \(\Sigma_{\text{dyn}} \) and \(\Sigma_{\text{adj}} \)

\[
\text{match}(G) \leq |V^H| + |E^L|
\]

since a matched edge is either light or incident to a heavy vertex

\[
\leq |E^L| + |V^H| (\alpha + 1) - |E^H| = \Sigma_{\text{adj}}
\]

since \(|E^H| \leq \alpha |V^H| \)

\[
\leq (\alpha + 1) \sum_e x_e = \Sigma_{\text{dyn}}
\]

Lemma 1

\[
\leq (\alpha + 2) \text{match}(G)
\]

Lemma 2
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

Lemma

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \leq (\alpha + 1) \sum_{e} x_e = \Sigma_{dyn}$$
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

Light edge:

$$x_e = \min \left(\frac{1}{d(\ell_1)}, \frac{1}{d(\ell_2)}, \frac{1}{\alpha + 1} \right)$$
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

Light edge:

$$x_e = \min \left(\frac{1}{d(l_1)} \geq \frac{1}{\alpha + 1}, \frac{1}{d(l_2)} \geq \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right)$$
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

Light edge:

\[
x_e = \min \left(\frac{1}{d(l_1)} \geq \frac{1}{\alpha + 1}, \frac{1}{d(l_2)} \geq \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right) = \frac{1}{\alpha + 1}
\]
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

Light edge:

$$x_e = \min \left(\frac{1}{d(\ell_1)} \geq \frac{1}{\alpha + 1}, \frac{1}{d(\ell_2)} \geq \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right) = \frac{1}{\alpha + 1}$$

Edge with 1 light and 1 heavy endpoints:

$$x_e = \min \left(\frac{1}{d(\ell)}, \frac{1}{d(h)}, \frac{1}{\alpha + 1} \right)$$
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

Light edge:

$$x_e = \min \left(\frac{1}{d(l_1)} \geq \frac{1}{\alpha + 1}, \frac{1}{d(l_2)} \geq \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right) = \frac{1}{\alpha + 1}$$

Edge with 1 light and 1 heavy endpoints:

$$x_e = \min \left(\frac{1}{d(l)} \geq \frac{1}{\alpha + 1}, \frac{1}{d(h)} < \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right)$$
Light edge:

\[x_e = \min \left(\frac{1}{d(l_1)} \geq \frac{1}{\alpha + 1}, \frac{1}{d(l_2)} \geq \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right) = \frac{1}{\alpha + 1} \]

Edge with 1 light and 1 heavy endpoints:

\[x_e = \min \left(\frac{1}{d(l)} \geq \frac{1}{\alpha + 1}, \frac{1}{d(h)} < \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right) = \frac{1}{d(h)} \]
Heavy edge:

\[x_e = \min \left(\frac{1}{d(h_1)}, \frac{1}{d(h_2)}, \frac{1}{\alpha + 1} \right) \]
Heavy edge:

\[x_e = \min \left(\frac{1}{d(h_1)} < \frac{1}{\alpha + 1}, \frac{1}{d(h_2)} < \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right) \]
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

Heavy edge:

$$x_e = \min \left(\frac{1}{d(h_1)} < \frac{1}{\alpha + 1}, \frac{1}{d(h_2)} < \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right)$$

$$= \min \left(\frac{1}{d(h_1)}, \frac{1}{d(h_2)} \right)$$
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

Heavy edge:

\[x_e = \min \left(\frac{1}{d(h_1)} < \frac{1}{\alpha + 1}, \frac{1}{d(h_2)} < \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right) \]

\[= \min \left(\frac{1}{d(h_1)}, \frac{1}{d(h_2)} \right) \]

\[= \frac{1}{d(h_1)} + \frac{1}{d(h_2)} - \max \left(\frac{1}{d(h_1)}, \frac{1}{d(h_2)} \right) \]
Heavy edge:

\[x_e = \min \left(\frac{1}{d(h_1)} < \frac{1}{\alpha + 1}, \frac{1}{d(h_2)} < \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1} \right) \]

\[= \min \left(\frac{1}{d(h_1)}, \frac{1}{d(h_2)} \right) \]

\[= \frac{1}{d(h_1)} + \frac{1}{d(h_2)} - \max \left(\frac{1}{d(h_1)}, \frac{1}{d(h_2)} \right) \]

\[> \frac{1}{d(h_1)} + \frac{1}{d(h_2)} - \frac{1}{\alpha + 1} \]
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

$$\sum_{e} x_e = \sum_{e \in E^L} x_e + \sum_{e \notin E^L, E^H} x_e + \sum_{e \in E^H} x_e$$
Structural Results: \(\Sigma_{dy\!n} \) and \(\Sigma_{adj} \): Lemma 1

\[
\sum_{e} x_e = \sum_{e \in E^L} x_e + \sum_{e \not\in E^L, E^H} x_e + \sum_{e \in E^H} x_e \\
\geq \sum_{e \in E^L} \frac{1}{\alpha + 1} + \sum_{e \not\in E^L, E^H} \frac{1}{d(h)} + \sum_{e \in E^H} \left(\frac{1}{d(h_1)} + \frac{1}{d(h_2)} - \frac{1}{\alpha + 1} \right)
\]
 Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

\[\sum_{e} x_e = \sum_{e \in E^L} x_e + \sum_{e \not\in E^L, E^H} x_e + \sum_{e \in E^H} x_e \]

\[\geq \sum_{e \in E^L} \frac{1}{\alpha + 1} + \sum_{e \not\in E^L, E^H} \frac{1}{d(h)} + \sum_{e \in E^H} \left(\frac{1}{d(h_1)} + \frac{1}{d(h_2)} - \frac{1}{\alpha + 1} \right) \]

\[= \sum_{e \in E^L} \frac{1}{\alpha + 1} + \sum_{h \in V^H} \sum_{e: h \in e} \frac{1}{d(h)} - \sum_{e \in E^H} \frac{1}{\alpha + 1} \]
Structural Results: \(\Sigma_{dyn} \) and \(\Sigma_{adj} \): Lemma 1

\[
\sum_{e} x_{e} = \sum_{e \in E^{L}} x_{e} + \sum_{e \notin E^{L}, E^{H}} x_{e} + \sum_{e \in E^{H}} x_{e} \geq \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{e \notin E^{L}, E^{H}} \frac{1}{d(h)} + \sum_{e \in E^{H}} \left(\frac{1}{d(h_{1})} + \frac{1}{d(h_{2})} - \frac{1}{\alpha + 1} \right) \]

\[
= \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{h \in V^{H}} \sum_{e: h \in e} \frac{1}{d(h)} - \sum_{e \in E^{H}} \frac{1}{\alpha + 1} \]

\[
= \frac{|E^{L}|}{\alpha + 1} + |V^{H}| - \frac{|E^{H}|}{\alpha + 1}
\]
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 1

\[
\sum_{e} x_e = \sum_{e \in E^L} x_e + \sum_{e \notin E^L, E^H} x_e + \sum_{e \in E^H} x_e \\
\geq \sum_{e \in E^L} \frac{1}{\alpha + 1} + \sum_{e \notin E^L, E^H} \frac{1}{d(h)} + \sum_{e \in E^H} \left(\frac{1}{d(h_1)} + \frac{1}{d(h_2)} - \frac{1}{\alpha + 1} \right) \\
= \sum_{e \in E^L} \frac{1}{\alpha + 1} + \sum_{h \in V^H} \sum_{e:h \in e} \frac{1}{d(h)} - \sum_{e \in E^H} \frac{1}{\alpha + 1} \\
= \frac{|E^L|}{\alpha + 1} + |V^H| - \frac{|E^H|}{\alpha + 1}
\]

Therefore:

$\Sigma_{adj} = |E^L| + |V^H| (\alpha + 1) - |E^H| \leq (\alpha + 1) \sum_{e} x_e = \Sigma_{dyn}$
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 2

Lemma

$$\Sigma_{dyn} = (\alpha + 1) \sum_{e} x_e \leq (\alpha + 2) \text{match}(G)$$

Fun fact (from Edmond’s thm)

For any fractional matching with $z_e \leq \lambda$ for all e,

$$\sum_{e} z_e \leq (1 + \lambda) \text{match}(G)$$
Structural Results: Σ_{dyn} and Σ_{adj}: Lemma 2

1. $\{x_e\}_{e\in E}$ is a fractional matching
2. $x_e \leq 1/(\alpha + 1)$ for all e

From the fact:

$$\sum_e x_e \leq \left(1 + \frac{1}{\alpha + 1}\right) \text{match}(G) = \frac{\alpha + 2}{\alpha + 1} \text{match}(G)$$

Therefore:

$$\Sigma_{dyn} = (\alpha + 1) \sum_e x_e \leq (\alpha + 2) \text{match}(G)$$
Let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

$\alpha = 3$
Let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

$\alpha = 3$

$e \in E_\alpha$
Structural Results: Definitions: Σ_{ins}

Let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

$\alpha = 3$
Structural Results: Definitions: Σ_{ins}

Let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

\[
\alpha = 3 \\
e \notin E_\alpha \\
E_\alpha \text{ depends on stream ordering}
\]
Lemma 3

\[\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G) \]

Let \(G_t \) be the graph defined by the first \(t \) edges in the stream. Let \(E_{\alpha}^t \) be \(E_\alpha(G_t) \). Then

\[\text{match}(G_t) \leq |E_{\alpha}^t| \leq (\alpha + 2) \text{match}(G_t) \]

Let \(\Sigma_{\text{ins}} = \max_t |E_{\alpha}^t| = |E_{\alpha}^T| \).

Since \(\text{match}(G_t) \) is non-decreasing function of \(t \),

\[\text{match}(G) \leq |E_\alpha| \leq \Sigma_{\text{ins}} = |E_{\alpha}^T| \leq (\alpha+2) \text{match}(G_T) \leq (\alpha+2) \text{match}(G) \]
Structural Results: Σ_{ins}: Lemma 3

Lemma

$$\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)$$

Upper bound

Fun fact (from Edmond’s thm)

For any fractional matching with $z_e \leq \lambda$ for all e,

$$\sum_e z_e \leq (1 + \lambda) \text{match}(G)$$

Let

$$y_e = \begin{cases}
1/(\alpha + 1) & \text{if } e \in E_\alpha \\
0 & \text{otherwise}
\end{cases}$$

$\{y_e\}_{e \in E}$ is a fractional matching with max weight $1/(\alpha + 1)$. Thus,

$$\frac{|E_\alpha|}{\alpha + 1} = \sum_e y_e \leq \frac{\alpha + 2}{\alpha + 1} \cdot \text{match}(G)$$
Structural Results: Σ_{ins}: Lemma 3

Lemma

$$\text{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \text{match}(G)$$

Lower bound
Structural Results: Σ_{ins}: Lemma 3

Lemma

$$\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)$$

Lower bound

$$V^H = \text{heavy vertices of degree } \geq \alpha + 2$$
$$E^H = \text{heavy edges with 2 heavy endpoints}$$
$$V^L = \text{light vertices}$$
$$E^L = \text{light edges}$$
Structural Results: Σ_{ins}: Lemma 3

Lemma

$$\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)$$

Lower bound

$$B_u = \text{last } \alpha + 1 \text{ edges on } u \text{ in the stream}$$
Structural Results: Σ_{ins}: Lemma 3

Lemma

$$\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)$$

Lower bound

$$B_u = \text{last } \alpha + 1 \text{ edges on } u \text{ in the stream}$$
Structural Results: Σ_{ins}: Lemma 3

Lemma

$$\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)$$

Lower bound

Edge uv is good if $uv \in B_u$ and $uv \in B_v$
Structural Results: Σ_{ins}: Lemma 3

Lemma

\[\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G) \]

Lower bound

Edge uv is good if $uv \in B_u$ and $uv \in B_v$

g_i is the number of good edges with i heavy endpoints
Structural Results: Σ_{ins}: Lemma 3

Lemma

$$\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)$$

Lower bound

Edge uv is good if $uv \in B_u$ and $uv \in B_v$.

g_i is the number of *good* edges with i heavy endpoints.

Edge uv is wasted if $uv \in B_u$ or $uv \in B_v$, but not both.

w_2 is the number of *wasted* edges with 2 heavy endpoints.
Structural Results: Σ_{ins}: Lemma 3

Lemma

\[\text{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \text{match}(G) \]

Lower bound

(1)

\[|E_{\alpha}| = g_0 + g_1 + g_2 \]
Structural Results: Σ_{ins}: Lemma 3

Lemma

$$\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)$$

Lower bound

$$\sum_{h \in V^H} |B_h| = g_1 + 2g_2 + w_2$$
Structural Results: Σ_{ins}: Lemma 3

Lemma

match(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)

Lower bound

(3)

\alpha|V^H| \geq |E^H| \geq g_2 + w_2
Structural Results: \(\Sigma_{ins} \): Lemma 3

Lemma

\[
\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)
\]

Lower bound

![Diagram showing a lower bound expression](image)

(4)

\[
|E^L| = g_0
\]
Structural Results: Σ_{ins}: Lemma 3

Lower bound

1. $|E_\alpha| = g_0 + g_1 + g_2$
2. $(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$
3. $\alpha|V^H| \geq g_2 + w_2$
4. $|E^L| = g_0$
Structural Results: Σ_{ins}: Lemma 3

Lower bound

(1) $|E_\alpha| = g_0 + g_1 + g_2$

(2) $(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$

(3) $\alpha|V^H| \geq g_2 + w_2$

(4) $|E^L| = g_0$

\[|E_\alpha| = g_0 + g_1 + g_2 \] (1)
Structural Results: Σ_{ins}: Lemma 3

Lower bound

1. $|E_\alpha| = g_0 + g_1 + g_2$
2. $(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$
3. $\alpha|V^H| \geq g_2 + w_2$
4. $|E^L| = g_0$

$$|E_\alpha| = g_0 + g_1 + g_2$$ \hspace{1cm} (1)

$$= |E^L| + g_1 + g_2$$ \hspace{1cm} (4)
Structural Results: Σ_{ins}: Lemma 3

Lower bound

1. $|E_\alpha| = g_0 + g_1 + g_2$
2. $(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$
3. $\alpha|V^H| \geq g_2 + w_2$
4. $|E^L| = g_0$

\[
|E_\alpha| = g_0 + g_1 + g_2 \\
= |E^L| + g_1 + g_2 \\
= |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2)
\]
Structural Results: Σ_{ins}: Lemma 3

Lower bound

1. $|E_\alpha| = g_0 + g_1 + g_2$
2. $(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$
3. $\alpha|V^H| \geq g_2 + w_2$
4. $|E^L| = g_0$

\[
|E_\alpha| = g_0 + g_1 + g_2 = |E^L| + g_1 + g_2 = |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2) = |E^L| + (\alpha + 1)|V^H| - (g_2 + w_2)
\]
Lower bound

(1) \(|E_\alpha| = g_0 + g_1 + g_2\)
(2) \((\alpha + 1)|V^H| = g_1 + 2g_2 + w_2\)
(3) \(\alpha|V^H| \geq g_2 + w_2\)
(4) \(|E^L| = g_0\)

\[
|E_\alpha| = g_0 + g_1 + g_2 \\
= |E^L| + g_1 + g_2 \quad (1) \\
= |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2) \quad (4) \\
= |E^L| + (\alpha + 1)|V^H| - (g_2 + w_2) \quad (2) \\
\geq |E^L| + (\alpha + 1)|V^H| - \alpha|V^H| \quad (3)
\]
Structural Results: Σ_{ins}: Lemma 3

Lower bound

1. $|E_\alpha| = g_0 + g_1 + g_2$
2. $(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$
3. $\alpha|V^H| \geq g_2 + w_2$
4. $|E^L| = g_0$

\[|E_\alpha| = g_0 + g_1 + g_2 \]
\[= |E^L| + g_1 + g_2 \] (4)
\[= |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2) \]
\[= |E^L| + (\alpha + 1)|V^H| - (g_2 + w_2) \] (2)
\[\geq |E^L| + (\alpha + 1)|V^H| - \alpha|V^H| \] (3)
\[= |E^L| + |V^H| \]
Structural Results: Σ_{ins}: Lemma 3

Lower bound

\[(1) \ |E_\alpha| = g_0 + g_1 + g_2\]
\[(2) \ (\alpha + 1)|V^H| = g_1 + 2g_2 + w_2\]
\[(3) \ \alpha|V^H| \geq g_2 + w_2\]
\[(4) \ |E^L| = g_0\]

\[|E_\alpha| = g_0 + g_1 + g_2\]
\[= |E^L| + g_1 + g_2\]
\[= |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2)\]
\[= |E^L| + (\alpha + 1)|V^H| - (g_2 + w_2)\]
\[\geq |E^L| + (\alpha + 1)|V^H| - \alpha|V^H|\]
\[= |E^L| + |V^H|\]
\[\geq \text{match}(G)\]
Structural Results: Σ_{ins}: Lemma 3

Lower bound

(1) \[|E_\alpha| = g_0 + g_1 + g_2 \]
(2) \[(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2 \]
(3) \[\alpha|V^H| \geq g_2 + w_2 \]
(4) \[|E^L| = g_0 \]

\[
|E_\alpha| = g_0 + g_1 + g_2 \\
= |E^L| + g_1 + g_2 \\
= |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2) \\
= |E^L| + (\alpha + 1)|V^H| - (g_2 + w_2) \\
\geq |E^L| + (\alpha + 1)|V^H| - \alpha|V^H| \\
= |E^L| + |V^H| \\
\geq \text{match}(G)
\]
Algorithms
Algorithms: Dynamic Stream

\[\Sigma_{dyn} = (1 + \alpha) \sum_e x_e = (1 + \alpha) \sum_e \min \left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1} \right) \]

In parallel:

If matching has size \(\leq n^{2/5} \),

- Use algorithm for bounded size matchings [CCEHMMV16]: \(\tilde{O}(n^{4/5}) \) space

If matching has size \(> n^{2/5} \),

- Sample a set of vertices \(T \) with probability \(p = \tilde{O}(1/n^{1/5}) \)
- Compute degrees of vertices in \(T \)
- Let \(E_T \) be edges with both endpoints in \(T \)
- Sample \(\min(|E_T|, \tilde{O}(\alpha n^{4/5})) \) edges in \(E_T \)
- Use \((\alpha + 1)/p \cdot \sum_{e \in E_T} x_e \) as estimate

Note: In insert-only streams, can use greedy algorithm for approximating small matching. Reduces total space to \(\tilde{O}(\alpha n^{2/3}) \).
Algorithms: Insert-only Stream

\[\Sigma_{ins} = \max_t |E^t_\alpha| \]

where \(E^t_\alpha \) is the set of edges \(uv \), s.t. the number of edges incident to \(u \) or \(v \) between arrival of \(uv \) and time \(t \) is at most \(\alpha \).

1. Set \(p \leftarrow 1 \)
2. Start sampling each edge with probability \(p \)
3. If \(e \) is sampled:
 - store \(e \)
 - store counters for degrees of endpoints in the rest of the stream
 - if later we detect \(e \notin E^t_\alpha \), it is deleted
4. If the number of stored edges \(> 40\epsilon^{-2} \log n \)
 - \(p \leftarrow p/2 \)
 - delete every edge currently stored with probability \(1/2 \)
5. Return \(\max_t \frac{\# \text{ samples at time } t}{p \text{ at time } t} \)
Algorithms: Insert-only Stream

\[\Sigma_{ins} = \max_t |E_t^\alpha| \]

where \(E_t^\alpha \) is the set of edges \(uv \), s.t. the number of edges incident to \(u \) or \(v \) between arrival of \(uv \) and time \(t \) is at most \(\alpha \).

Let \(k \) be s.t. \((20\epsilon^{-2} \log n)2^{k-1} \leq \Sigma_{ins} < (20\epsilon^{-2} \log n)2^k\).

We show that whp:

1. If sampling probability is high enough (\(\geq 1/2^k \)),
 can compute \(|E_t^\alpha| \pm \epsilon \Sigma_{ins} \) for all \(t \).
 From Chernoff and union bounds.

2. We do not switch to probability that is too low (\(< 1/2^k \)),
 since the # edges sampled wp \(1/2^k \) does not exceed
 \((1 + \epsilon)\Sigma_{ins}/2^k < (1 + \epsilon)(20\epsilon^{-2} \log n) \leq 40\epsilon^{-2} \log n \).
Algorithms: Adjacency List Stream

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H|$$

Treat adjacency stream as a degree sequence of the graph.
$|V^H|$ can be computed easily.

$$|E^L| - |E^H| = |E| - \sum_{h \in V^H} d(h)$$

which is also easy to compute.
Conclusion

Summary:

- There are quantities that provide good approximation of the size of maximum matching in graphs of arboricity α.
- Computing those quantities can be done efficiently.

Open questions:

- Better than $\alpha + 2$ approximation.
- Closing the gap between upper and lower bounds for dynamic streams.
Thank you for your attention!