troduction Structural Results Algorithms Conclusion

Streaming Algorithms for Matchings in Low Arboricity Graphs

Sofya Vorotnikova University of Massachusetts Amherst

Joint work with Andrew McGregor

Streaming Model(s)

- Vertex set is fixed
- Edge updates arrive in a sequence
- One pass

	insertions	deletions	arbitrary order
dynamic			
insert-only		X	
adjacency-list		X	×
			edges incident to the same vertex arrive together; see every edge twice

Introduction Structural Results Algorithms Conclusion

Approximating Size of Maximum Matching

Matching is a set of edges that don't share endpoints.

In insert-only stream can easily obtain *maximal* matching, which is a 2-approximation of *maximum* matching.

Maximum matching can be as large as n/2.

By approximating the **size** of the matching without finding the matching itself, we can use smaller space.

Introduction Structural Results Algorithms Conclusion

Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α .

Arboricity is the minimum number of forests into which the edges of the graph can be partitioned.

Property: Every subgraph on r vertices has at most αr edges.

Planar graphs have arboricity at most 3.

In dynamic stream, intermediate graphs can have high arboricity.

Results

	space	approx factor	work
dynamic	$ ilde{O}(lpha \mathit{n}^{4/5})$	$(5\alpha+9)(1+\epsilon)$	CCEHMMV16
	$ ilde{\mathcal{O}}(lpha \mathit{n}^{4/5})$	$(\alpha+2)(1+\epsilon)$	MV16
	$ ilde{\mathcal{O}}(lpha^{10/3} \mathit{n}^{2/3})$	$(22.5\alpha + 6)(1+\epsilon)$	CJMM17*
	$\Omega(\sqrt{n}/\alpha^{2.5})$	$O(\alpha)$	AKL17
insert-only	$ ilde{\mathcal{O}}(lpha \mathit{n}^{2/3})$	$(5\alpha+9)(1+\epsilon)$	EHLMO15
	$ ilde{\mathcal{O}}(lpha \mathit{n}^{2/3})$	$(\alpha+2)(1+\epsilon)$	MV16
	$O(\alpha \epsilon^{-3} \log^2 n)$	$(22.5\alpha + 6)(1+\epsilon)$	CJMM17
	$O(\epsilon^{-2}\log n)$	$(\alpha+2)(1+\epsilon)$	MV18
adj	O(1)	$\alpha + 2$	MV16

^{*}Restriction: $O(\alpha n)$ deletions.

Space is specified in words. An edge or a counter = one word.

Approach

All our results have the following two parts:

- Structural result: define Σ that is an $(\alpha + 2)$ approximation of match(G)
- Algorithm: $(1+\epsilon)$ approximation of Σ in streaming (exact computation in adjacency list stream)

Dynamic: Σ_{dyn}

- $(1+\epsilon)$ -approximation in $\tilde{\mathcal{O}}(\alpha n^{4/5})$ space
- Also gives $\tilde{O}(\alpha n^{2/3})$ space algorithm in insert-only streams

Insert-only: Σ_{ins}

• $(1+\epsilon)$ -approximation in $O(\epsilon^{-2}\log n)$ space

Adjacency list: Σ_{adj}

• Exact computation in O(1) space

Structural Results

roduction Structural Results Algorithms Conclusion

Structural Results: Definitions


```
V^H = heavy vertices of degree \geq \alpha + 2
```

 E^H = heavy edges with 2 heavy endpoints

 V^L = light vertices

 E^L = light edges

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H|$$

$$x_e = x_{uv} = \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1}\right)$$

$$x_e = x_{uv} = \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1}\right)$$

$$x_e = x_{uv} = \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1}\right)$$

$$x_e = x_{uv} = \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1}\right)$$

$$\Sigma_{dyn} = (\alpha + 1) \sum_{e} x_{e}$$

$$\mathsf{match}(G) \leq |V^H| + |E^L|$$

since a matched edge is either light or incident to a heavy vertex

$$\leq |E^{L}| + |V^{H}|(\alpha + 1) - |E^{H}| = \Sigma_{adj} \quad \text{since } |E^{H}| \leq \alpha |V^{H}|$$

$$\leq (\alpha + 1) \sum_{e} x_{e} = \Sigma_{dyn} \qquad \qquad \text{Lemma 1}$$

$$\leq (\alpha + 2) \operatorname{match}(G) \qquad \qquad \text{Lemma 2}$$

Lemma

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \le (\alpha + 1) \sum_{\alpha} x_{e} = \Sigma_{dyn}$$

Light edge:

$$x_e = \min\left(\frac{1}{d(\ell_1)}, \frac{1}{d(\ell_2)}, \frac{1}{\alpha + 1}\right)$$

Light edge:

$$x_{\mathsf{e}} = \min\left(\frac{1}{d(\ell_1)} \ge \frac{1}{\alpha+1}, \frac{1}{d(\ell_2)} \ge \frac{1}{\alpha+1}, \frac{1}{\alpha+1}\right)$$

Light edge:

$$x_{\mathsf{e}} = \min\left(\frac{1}{d(\ell_1)} \ge \frac{1}{\alpha + 1}, \frac{1}{d(\ell_2)} \ge \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1}\right) = \frac{1}{\alpha + 1}$$

Light edge:

$$x_{\mathrm{e}} = \min\left(\frac{1}{d(\ell_1)} \geq \frac{1}{\alpha+1}, \frac{1}{d(\ell_2)} \geq \frac{1}{\alpha+1}, \frac{1}{\alpha+1}\right) = \frac{1}{\alpha+1}$$

Edge with 1 light and 1 heavy endpoints:

$$x_e = \min\left(\frac{1}{d(\ell)}, \frac{1}{d(h)}, \frac{1}{\alpha + 1}\right)$$

Light edge:

$$x_{\mathrm{e}} = \min\left(\frac{1}{d(\ell_1)} \geq \frac{1}{\alpha+1}, \frac{1}{d(\ell_2)} \geq \frac{1}{\alpha+1}, \frac{1}{\alpha+1}\right) = \frac{1}{\alpha+1}$$

Edge with 1 light and 1 heavy endpoints:

$$x_{\mathsf{e}} = \min\left(\frac{1}{d(\ell)} \ge \frac{1}{\alpha+1}, \frac{1}{d(h)} < \frac{1}{\alpha+1}, \frac{1}{\alpha+1}\right)$$

Light edge:

$$x_{\mathrm{e}} = \min\left(\frac{1}{d(\ell_1)} \geq \frac{1}{\alpha+1}, \frac{1}{d(\ell_2)} \geq \frac{1}{\alpha+1}, \frac{1}{\alpha+1}\right) = \frac{1}{\alpha+1}$$

Edge with 1 light and 1 heavy endpoints:

$$x_{e} = \min\left(\frac{1}{d(\ell)} \ge \frac{1}{\alpha + 1}, \frac{1}{d(h)} < \frac{1}{\alpha + 1}, \frac{1}{\alpha + 1}\right) = \frac{1}{d(h)}$$

$$x_e = \min\left(\frac{1}{d(h_1)}, \frac{1}{d(h_2)}, \frac{1}{\alpha + 1}\right)$$

$$x_e = \min\left(\frac{1}{d(h_1)} < \frac{1}{\alpha+1}, \frac{1}{d(h_2)} < \frac{1}{\alpha+1}, \frac{1}{\alpha+1}\right)$$

$$egin{aligned} x_{\mathsf{e}} &= \min\left(rac{1}{d(\pmb{h_1})} < rac{1}{lpha+1}, rac{1}{d(\pmb{h_2})} < rac{1}{lpha+1}, rac{1}{lpha+1}
ight) \ &= \min\left(rac{1}{d(\pmb{h_1})}, rac{1}{d(\pmb{h_2})}
ight) \end{aligned}$$

$$\begin{aligned} x_{e} &= \min \left(\frac{1}{d(\mathbf{h}_{1})} < \frac{1}{\alpha+1}, \frac{1}{d(\mathbf{h}_{2})} < \frac{1}{\alpha+1}, \frac{1}{\alpha+1} \right) \\ &= \min \left(\frac{1}{d(\mathbf{h}_{1})}, \frac{1}{d(\mathbf{h}_{2})} \right) \\ &= \frac{1}{d(\mathbf{h}_{1})} + \frac{1}{d(\mathbf{h}_{2})} - \max \left(\frac{1}{d(\mathbf{h}_{1})}, \frac{1}{d(\mathbf{h}_{2})} \right) \end{aligned}$$

$$\begin{aligned} x_{e} &= \min\left(\frac{1}{d(h_{1})} < \frac{1}{\alpha+1}, \frac{1}{d(h_{2})} < \frac{1}{\alpha+1}, \frac{1}{\alpha+1}\right) \\ &= \min\left(\frac{1}{d(h_{1})}, \frac{1}{d(h_{2})}\right) \\ &= \frac{1}{d(h_{1})} + \frac{1}{d(h_{2})} - \max\left(\frac{1}{d(h_{1})}, \frac{1}{d(h_{2})}\right) \\ &> \frac{1}{d(h_{1})} + \frac{1}{d(h_{2})} - \frac{1}{\alpha+1} \end{aligned}$$

$$\sum_{e} x_e = \sum_{e \in E^L} x_e + \sum_{e \notin E^L, E^H} x_e + \sum_{e \in E^H} x_e$$

$$\begin{split} \sum_{e} x_{e} &= \sum_{e \in E^{L}} x_{e} + \sum_{e \notin E^{L}, E^{H}} x_{e} + \sum_{e \in E^{H}} x_{e} \\ &\geq \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{e \notin E^{L}, E^{H}} \frac{1}{d(h)} + \sum_{e \in E^{H}} \left(\frac{1}{d(h_{1})} + \frac{1}{d(h_{2})} - \frac{1}{\alpha + 1} \right) \end{split}$$

$$\sum_{e} x_{e} = \sum_{e \in E^{L}} x_{e} + \sum_{e \notin E^{L}, E^{H}} x_{e} + \sum_{e \in E^{H}} x_{e}$$

$$\geq \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{e \notin E^{L}, E^{H}} \frac{1}{d(h)} + \sum_{e \in E^{H}} \left(\frac{1}{d(h_{1})} + \frac{1}{d(h_{2})} - \frac{1}{\alpha + 1} \right)$$

$$= \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{h \in V^{H}} \sum_{e: h \in e} \frac{1}{d(h)} - \sum_{e \in E^{H}} \frac{1}{\alpha + 1}$$

$$\sum_{e} x_{e} = \sum_{e \in E^{L}} x_{e} + \sum_{e \notin E^{L}, E^{H}} x_{e} + \sum_{e \in E^{H}} x_{e}$$

$$\geq \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{e \notin E^{L}, E^{H}} \frac{1}{d(h)} + \sum_{e \in E^{H}} \left(\frac{1}{d(h_{1})} + \frac{1}{d(h_{2})} - \frac{1}{\alpha + 1} \right)$$

$$= \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{h \in V^{H}} \sum_{e: h \in e} \frac{1}{d(h)} - \sum_{e \in E^{H}} \frac{1}{\alpha + 1}$$

$$= \frac{|E^{L}|}{\alpha + 1} + |V^{H}| - \frac{|E^{H}|}{\alpha + 1}$$

$$\sum_{e} x_{e} = \sum_{e \in E^{L}} x_{e} + \sum_{e \notin E^{L}, E^{H}} x_{e} + \sum_{e \in E^{H}} x_{e}$$

$$\geq \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{e \notin E^{L}, E^{H}} \frac{1}{d(h)} + \sum_{e \in E^{H}} \left(\frac{1}{d(h_{1})} + \frac{1}{d(h_{2})} - \frac{1}{\alpha + 1} \right)$$

$$= \sum_{e \in E^{L}} \frac{1}{\alpha + 1} + \sum_{h \in V^{H}} \sum_{e: h \in e} \frac{1}{d(h)} - \sum_{e \in E^{H}} \frac{1}{\alpha + 1}$$

$$= \frac{|E^{L}|}{\alpha + 1} + |V^{H}| - \frac{|E^{H}|}{\alpha + 1}$$

Therefore:

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \le (\alpha + 1) \sum_{e} x_e = \Sigma_{dyn}$$

Structural Results: \sum_{dyn} and \sum_{adj} : Lemma 2

Lemma

$$\Sigma_{dyn} = (\alpha + 1) \sum_{e} x_{e} \le (\alpha + 2) \operatorname{match}(G)$$

Fun fact (from Edmond's thm)

For any fractional matching with $z_e \leq \lambda$ for all e,

$$\sum_{a} z_{e} \leq (1+\lambda) \operatorname{match}(G)$$

- 1. $\{x_e\}_{e \in E}$ is a fractional matching
- 2. $x_e \le 1/(\alpha+1)$ for all e

From the fact:

$$\sum_{e} x_{e} \leq \left(1 + \frac{1}{\alpha + 1}\right) \mathsf{match}(\mathit{G}) = \frac{\alpha + 2}{\alpha + 1} \, \mathsf{match}(\mathit{G})$$

Therefore:

$$\Sigma_{dyn} = (\alpha + 1) \sum_{e} x_e \le (\alpha + 2) \operatorname{match}(G)$$

Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .

$$\alpha = 3$$

Structural Results: Definitions: \sum_{ins}

Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .

$$\alpha = 3$$

 $e \in E_{\alpha}$

Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .

$$\alpha = 3$$

Structural Results: Definitions: Σ_{ins}

Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .

$$lpha=3$$
 $e
ot\in E_lpha$
 E_lpha depends on stream ordering

roduction Structural Results Algorithms Conclusion

Structural Results: Definitions: \sum_{ins}

Lemma 3

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Let G_t be the graph defined by the first t edges in the stream.

Let E_{α}^{t} be $E_{\alpha}(G_{t})$. Then

$$\mathsf{match}(G_t) \leq |E_{\alpha}^t| \leq (\alpha + 2) \, \mathsf{match}(G_t)$$

Let
$$\Sigma_{ins} = \max_t |E_{\alpha}^t| = |E_{\alpha}^T|$$
.

Since $match(G_t)$ is non-decreasing function of t,

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq \sum_{\mathsf{ins}} = |E_{\alpha}^{\mathsf{T}}| \leq (\alpha + 2) \, \mathsf{match}(G_{\mathsf{T}}) \leq (\alpha + 2) \, \mathsf{match}(G)$$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Upper bound

Fun fact (from Edmond's thm)

For any fractional matching with $z_e \leq \lambda$ for all e,

$$\sum_e z_e \leq (1+\lambda) \, \mathsf{match}(\mathit{G})$$

Let

$$y_e = egin{cases} 1/(lpha+1) & ext{if } e \in E_lpha \ 0 & ext{otherwise} \end{cases}$$

 $\{y_e\}_{e\in E}$ is a fractional matching with max weight $1/(\alpha+1)$. Thus,

$$\frac{|E_{\alpha}|}{\alpha+1} = \sum_{\alpha} y_{e} \leq \frac{\alpha+2}{\alpha+1} \cdot \mathsf{match}(G)$$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Lower bound

 V^H = heavy vertices of degree $\geq \alpha + 2$

 E^H = heavy edges with 2 heavy endpoints

 V^L = light vertices

 E^{L} = light edges

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Lower bound

 $B_u = \text{last } \alpha + 1 \text{ edges on } u \text{ in the stream}$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Lower bound

 $B_u = \text{last } \alpha + 1 \text{ edges on } u \text{ in the stream}$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Lower bound

Edge uv is good if $uv \in B_u$ and $uv \in B_v$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Lower bound

Edge uv is good if $uv \in B_u$ and $uv \in B_v$ g_i is the number of good edges with i heavy endpoints

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

Lower bound

Edge uv is good if $uv \in B_u$ and $uv \in B_v$ g_i is the number of good edges with i heavy endpoints

Edge uv is wasted if $uv \in B_u$ or $uv \in B_v$, but not both w_2 is the number of wasted edges with 2 heavy endpoints

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

(2)
$$(\alpha+1)|V^H| = \sum_{h \in V^H} |B_h| = g_1 + 2g_2 + \frac{w_2}{2}$$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

(3)
$$\alpha |V^H| \ge |E^H| \ge g_2 + w_2$$

Lemma

$$\mathsf{match}(G) \leq |E_{\alpha}| \leq (\alpha + 2) \, \mathsf{match}(G)$$

$$|E^L| = g_0$$

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

$$(3) \alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

(3)
$$\alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

$$|E_{\alpha}| = g_0 + g_1 + g_2 \tag{1}$$

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

(3)
$$\alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

$$|E_{\alpha}| = g_0 + g_1 + g_2 \tag{1}$$

$$= |E^{L}| + g_1 + g_2 \tag{4}$$

troduction Structural Results Algorithms Conclusion

Structural Results: Σ_{ins} : Lemma 3

$$(1) |E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

(3)
$$\alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

$$|E_{\alpha}| = g_0 + g_1 + g_2$$

$$= |E^L| + g_1 + g_2$$

$$= |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2)$$
(4)

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

(3)
$$\alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

$$|E_{\alpha}| = g_0 + g_1 + g_2 \tag{1}$$

$$= |E^L| + g_1 + g_2 \tag{4}$$

$$= |E^{L}| + (g_1 + 2g_2 + w_2) - (g_2 + w_2)$$

$$= |E^{L}| + (\alpha + 1)|V^{H}| - (g_2 + w_2)$$
 (2)

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

(3)
$$\alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

$$|E_{\alpha}| = g_0 + g_1 + g_2 \tag{1}$$

$$= |E^L| + g_1 + g_2 \tag{4}$$

$$= |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2)$$

$$= |E^{L}| + (\alpha + 1)|V^{H}| - (g_2 + w_2)$$
 (2)

$$\geq |E^L| + (\alpha + 1)|V^H| - \alpha|V^H| \tag{3}$$

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

(3)
$$\alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

$$|E_{\alpha}| = g_0 + g_1 + g_2 \tag{1}$$

$$= |E^L| + g_1 + g_2 \tag{4}$$

$$= |E^L| + (g_1 + 2g_2 + w_2) - (g_2 + w_2)$$

$$= |E^{L}| + (\alpha + 1)|V^{H}| - (g_2 + w_2)$$
 (2)

$$\geq |E^L| + (\alpha + 1)|V^H| - \alpha|V^H| \tag{3}$$

$$= |E^L| + |V^H|$$

roduction Structural Results Algorithms Conclusion

Structural Results: Σ_{ins} : Lemma 3

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

(3)
$$\alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

$$|E_{\alpha}| = g_0 + g_1 + g_2 \tag{1}$$

$$= |E^L| + g_1 + g_2 \tag{4}$$

$$= |E^{L}| + (g_1 + 2g_2 + w_2) - (g_2 + w_2)$$

$$= |E^{L}| + (\alpha + 1)|V^{H}| - (g_2 + w_2)$$
 (2)

$$\geq |E^L| + (\alpha + 1)|V^H| - \alpha|V^H| \tag{3}$$

$$= |E^L| + |V^H|$$

$$\geq \mathsf{match}(G)$$

roduction Structural Results Algorithms Conclusion

Structural Results: Σ_{ins} : Lemma 3

(1)
$$|E_{\alpha}| = g_0 + g_1 + g_2$$

(2)
$$(\alpha + 1)|V^H| = g_1 + 2g_2 + w_2$$

(3)
$$\alpha |V^H| \geq g_2 + w_2$$

(4)
$$|E^L| = g_0$$

$$\begin{aligned} |E_{\alpha}| &= g_0 + g_1 + g_2 \\ &= |E^L| + g_1 + g_2 \end{aligned} \tag{4}$$

$$= |E^{L}| + (g_1 + 2g_2 + w_2) - (g_2 + w_2)$$

$$= |E^{L}| + (\alpha + 1)|V^{H}| - (g_2 + w_2)$$
 (2)

$$\geq |E^L| + (\alpha + 1)|V^H| - \alpha|V^H| \tag{3}$$

$$= |E^L| + |V^H|$$

$$\geq \mathsf{match}(G)$$

Algorithms

Algorithms: Dynamic Stream

$$\Sigma_{dyn} = (1+\alpha)\sum_{e} x_e = (1+\alpha)\sum_{e} \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha+1}\right)$$

In parallel:

If matching has size $\leq n^{2/5}$,

• Use algorithm for bounded size matchings [CCEHMMV16]: $\tilde{O}(n^{4/5})$ space

If matching has size $> n^{2/5}$,

- Sample a set of vertices T with probability $p = \tilde{\Theta}(1/n^{1/5})$
- Compute degrees of vertices in T
- Let E_T be edges with both endpoints in T
- Sample min($|E_T|$, $\tilde{\Theta}(\alpha n^{4/5})$) edges in E_T
- Use $(\alpha + 1)/p \cdot \sum_{e \in F_{\tau}} x_e$ as estimate

Note: In insert-only streams, can use greedy algorithm for approximating small matching. Reduces total space to $\tilde{O}(\alpha n^{2/3})$.

Algorithms: Insert-only Stream

$$\Sigma_{ins} = \max_{t} |E_{\alpha}^{t}|$$

where E_{α}^{t} is the set of edges uv, s.t. the number of edges incident to u or v between arrival of uv and time t is at most α .

- 1. Set $p \leftarrow 1$
- 2. Start sampling each edge with probability p
- 3. If *e* is sampled:
 - store e
 - store counters for degrees of endpoints in the rest of the stream
 - if later we detect $e \notin E_{\alpha}^t$, it is deleted
- 4. If the number of stored edges $> 40\epsilon^{-2} \log n$
 - *p* ← *p*/2
 - delete every edge currently stored with probability 1/2
- 5. Return $\max_{t} \frac{\text{\# samples at time } t}{p \text{ at time } t}$

Algorithms: Insert-only Stream

$$\Sigma_{ins} = \max_{t} |E_{\alpha}^{t}|$$

where E_{α}^{t} is the set of edges uv, s.t. the number of edges incident to u or v between arrival of uv and time t is at most α .

Let
$$k$$
 be s.t. $(20\epsilon^{-2} \log n)2^{k-1} \le \sum_{ins} < (20\epsilon^{-2} \log n)2^k$.

We show that whp:

- 1. If sampling probability is high enough $(\geq 1/2^k)$, can compute $|E_{\alpha}^t| \pm \epsilon \Sigma_{ins}$ for all t. From Chernoff and union bounds.
- 2. We do not switch to probability that is too low $(<1/2^k)$, since the # edges sampled wp $1/2^k$ does not exceed $(1+\epsilon)\sum_{ins}/2^k < (1+\epsilon)(20\epsilon^{-2}\log n) \le 40\epsilon^{-2}\log n$.

Algorithms: Adjacency List Stream

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H|$$

Treat adjacency stream as a degree sequence of the graph. $|V^H|$ can be computed easily.

$$|E^{L}| - |E^{H}| = |E| - \sum_{h \in V^{H}} d(h)$$

which is also easy to compute.

troduction Structural Results Algorithms Conclusion

Conclusion

Summary:

- There are quantities that provide good approximation of the size of maximum matching in graphs of arboricity α .
- Computing those quantities can be done efficiently.

Open questions:

- Better than $\alpha + 2$ approximation.
- Closing the gap between upper and lower bounds for dynamic streams.

Thank you for your attention!