A Simple, Space-Efficient, Streaming Algorithm for Matchings in Low Arboricity Graphs

Andrew McGregor¹ and Sofya Vorotnikova¹

1 College of Computer and Information Sciences
University of Massachusetts Amherst
{mcgregor,svorotni}@cs.umass.edu

Abstract
We present a simple single-pass data stream algorithm using $O(\epsilon^{-2} \log n)$ space that returns a $(\alpha + 2)(1 + \epsilon)$ approximation to the size of the maximum matching in a graph of arboricity α.

1998 ACM Subject Classification F.2 Analysis of Algorithms & Problem Complexity

Keywords and phrases data streams, matching, planar graphs, arboricity

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.14

1 Introduction
We present a data stream algorithm for estimating the size of the maximum matching of a low arboricity graph. Recall that a graph has arboricity α if its edges can be partitioned into at most α forests and that a planar graph has arboricity $\alpha = 3$. Estimating the size of the maximum matching in such graphs has been a focus of recent data stream research [1–4,6,8]. See also [7] for a survey of the general area of graph algorithms in the stream model.

A surprising result on this problem was recently proved by Cormode et al. [4]. They designed an ingenious algorithm that returned a $(22.5\alpha + 6)(1 + \epsilon)$ approximation using a single pass over the edges of the graph (ordered arbitrarily) and $O(\epsilon^{-3} \cdot \alpha \cdot \log^2 n)$ space¹.

We improve the approximation factor to $(\alpha + 2)(1 + \epsilon)$ via a simpler and tighter analysis and show that, with a modification and simplification of their algorithm, the space required can be reduced to $O(\epsilon^{-2} \log n)$.

2 Results
Let $\text{match}(G)$ be the maximum size of a matching in a graph G and let E_α be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α.

2.1 A Better Approximation Factor
We first show a bound for $\text{match}(G)$ in terms of $|E_\alpha|$. Cormode et al. proved a similar but looser bound via results on the size of matchings in bounded degree graphs.

Theorem 1. $\text{match}(G) \leq |E_\alpha| \leq (\alpha + 2) \text{match}(G)$.

¹ Here, and throughout, space is specified in words and we assume that an edge or a counter (between 0 and α) can be stored in one word of space.
Proof. We first prove the right inequality. To do this define $y_e = 1/(\alpha + 1)$ if e is in E_α and 0 otherwise. Note that $\{y_e\}_{e \in E}$ is a fractional matching with maximum weight $1/(\alpha + 1)$.

A corollary of Edmonds’ Matching Polytope Theorem [5] implies that its total weight is at most $(\alpha + 2)/(\alpha + 1)$ larger than the maximum integral matching. This corollary is likely well known but, for completeness, we include a proof of the corollary in the appendix. Hence,

$$\frac{|E_\alpha|}{\alpha + 1} = \sum_e y_e \leq \frac{\alpha + 2}{\alpha + 1} \cdot \text{match}(G).$$

It remains to prove the left inequality. Define H to be the set of vertices with degree $\alpha + 1$ or greater. We refer to these as the heavy vertices. For $u \in V$, let B_u be the set of the last $\alpha + 1$ edges incident to u that arrive in the stream.

Say an edge uv is good if $uv \in B_u \cap B_v$ and wasted if $uv \in B_u \oplus B_v$, i.e., the symmetric difference. Then $|E_\alpha|$ is exactly the number of good edges. Define

- $w = \text{number of good edges with no end points in } H$,
- $x = \text{number of good edges with exactly one end point in } H$,
- $y = \text{number of good edges with two end points in } H$,
- $z = \text{number of wasted edges with two end points in } H$,

and note that $|E_\alpha| = w + x + y$.

We know $x + 2y + z = (\alpha + 1)|H|$ because B_u contains exactly $\alpha + 1$ edges if $u \in H$. Furthermore, $z + y \leq \alpha |H|$ because the graph has arboricity α. Therefore

$$x + y \geq (\alpha + 1)|H| - \alpha |H| = |H|.$$

Let E_L be the set of edges with no endpoints in H. Since every edge in E_L is good, $w = |E_L|$. Hence, $|E_\alpha| \geq |H| + |E_L| \geq \text{match}(G)$ where the last inequality follows because at most one edge incident to each heavy vertex can appear in a matching. △

Let G_t be the graph defined by the stream prefix of length t and let E'_α be the set of good edges with respect to this prefix, i.e., all edges uv from G_t where the number of edges incident to u or v that appear after uv in the prefix are both at most α. By applying the theorem to G_t, and noting that $\max_t |E'_\alpha| \geq |E_\alpha|$ and $\text{match}(G_t) \leq \text{match}(G)$, we deduce the following corollary:

Corollary 2. Let $E^* = \max_t |E'_\alpha|$. Then $\text{match}(G) \leq E^* \leq (\alpha + 2) \text{match}(G)$.

2.2 A Simpler Algorithm using Smaller Space

See Figure 1 for an algorithm that approximates E^* to a $(1 + \epsilon)$-factor in the insert-only graph stream model. The algorithm is a modification of the algorithm for estimating $|E_\alpha|$ designed by Cormode et al. [4]. The basic idea is to independently sample edges from E'_α with probability that is high enough to obtain an accurate approximation of $|E'_\alpha|$ and yet low enough to use a small amount of space. For every sampled edge $e = uv$, the algorithm stores the edge itself and two counters c^u_e and c^v_e for degrees of its endpoints in the rest of the stream. If we detect that a sampled edge is not in E'_α, i.e., either of the associated counters exceed α, it is deleted.

Cormode et al. ran multiple instances of this basic algorithm corresponding to sampling probabilities $1, (1 + \epsilon)^{-1}, (1 + \epsilon)^{-2}, \ldots$ in parallel; terminated any instance that used too much space; and returned an estimate based on one of the remaining instantiations. Instead,
In an earlier version of the proof of Theorem 3, we erroneously claimed
we start sampling with probability 1 and put a cap on the number of edges stored by the
algorithm. Whenever the capacity is reached, the algorithm halves the sampling probability and deletes every edge currently stored with probability 1/2. This modification saves a factor of \(O(\epsilon^{-1} \log n)\) in the space use and update time of the algorithm. We save a further \(O(\alpha)\) factor in the analysis by using the algorithm to estimate \(E^*\) rather than \(|E_\alpha|\).

▶ **Theorem 3.** With high probability, Algorithm 1 outputs a \((1 + \epsilon)\) approximation of \(E^*\).

Proof. Let \(k\) be such that \(2^k - 1 \leq E^* < 2^k \tau\) where \(\tau = 20 \epsilon^{-2} \log n\). First suppose we toss \(O(\log n)\) coins for each edge in \(E^*_\alpha\), and say that an edge \(e\) is sampled at level \(i\) if at least the first \(i - 1\) coin tosses at heads. Hence, the probability that an edge is sampled at level \(i\) is \(p_i = 1/2^i\) and that the probability an edge is sampled at level \(i\) conditioned on being sampled at level \(i - 1\) is 1/2. Let \(s_i^t\) be the number of edges sampled. It follows from the Chernoff bound that for \(i \leq k\),

\[
\Pr[|s_i^t - p_i|E^*_\alpha| \geq \epsilon p_i E^*] \leq \exp\left(-\frac{\epsilon^2 p_i E^*}{4}\right) \leq \exp\left(-\frac{\epsilon^2 E^* p_k}{4}\right) \leq \exp\left(-\frac{\epsilon^2 \tau}{8}\right) = \frac{1}{\text{poly}(n)}.
\]

By the union bound, with high probability, \(s_i^t/p_i = |E^*_\alpha| \pm \epsilon E^*\) for all 0 \(\leq i \leq k\), 1 \(\leq t \leq \alpha n\).

The algorithm initially maintains the edges in \(E^*_\alpha\) sampled at level \(i = 0\). If the number of these edges exceeds the threshold, we subsample these to construct the set of edges sampled at level \(i = 1\). If this set of edges also exceeds the threshold, we again subsample these to construct the set of edges at level \(i = 2\) and so on. If \(i\) never exceeds \(k\), then the above calculation implies that the output is \((1 \pm \epsilon)E^*\). But if \(s_k^t\) is bounded above by \((1 + \epsilon)E^*/2^k < (1 + \epsilon)\tau\) for all \(t\) with high probability, then \(i\) never exceeds \(k\). ▶

It is immediate that the algorithm uses \(O(\epsilon^{-2} \log n)\) space since this is the maximum number of edges stored at any one time. By Corollary 2, \(E^*\) is an \((\alpha + 2)\) approximation of \(\text{match}(G)\) and hence we have proved the following theorem.

▶ **Theorem 4.** The size of the maximum matching of a graph with arboricity \(\alpha\) can be \((\alpha + 2)(1 + \epsilon)\)-approximated with high probability using a single pass over the edges of \(G\) given \(O(\epsilon^{-2} \log n)\) space.

Acknowledgement. In an earlier version of the proof of Theorem 3, we erroneously claimed that, conditioned on the current sampling rate being 1/2\(^j\), edges in \(E^*_\alpha\) had been sampled at
that rate. Thanks to Sepehr Assadi, Vladimir Braverman, Michael Dinitz, Lin Yang, and Zeyu Zhang for catching this mistake.

References

A Corollary of Edmonds’ Theorem

For completeness, we include a simple corollary of Edmonds’ Theorem used to prove Theorem 1. Recall that Edmonds’ Theorem implies that if the weight of a fractional matching on any induced subgraph \(G(U) \) is at most \((|U| - 1)/2 \), then the weight on the entire graph is at most \(\text{match}(G) \).

 LeBron 5. Let \(\{y_e\}_{e \in E} \) be a fractional matching where the maximum weight is \(\epsilon \). Then,

\[
\sum_{e} y_e \leq (1 + \epsilon) \text{match}(G) .
\]

Proof. Let \(U \) be an arbitrary subset of vertices and let \(E(U) \) be the edges in the induced subgraph on \(U \). Let \(t = |U| \). Then since \(|E(U)| \leq t(t - 1)/2 \),

\[
\sum_{e \in E(U)} y_e \leq \min \left(\frac{t}{2}, \epsilon |E(U)| \right) \leq \frac{t - 1}{2} \cdot \min \left(\frac{t}{t - 1}, \epsilon t \right) \leq \frac{t - 1}{2} \cdot (1 + \epsilon) .
\]

Hence, the fractional matching defined by \(z_e = y_e/(1 + \epsilon) \) satisfies \(\sum_e z_e \leq \text{match}(G) \). Therefore, \(\sum_e y_e \leq (1 + \epsilon) \sum_e z_e \leq (1 + \epsilon) \text{match}(G) \).