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Abstract
Modern research in deep multimodal fusion has
explored a variety of architectural designs that
integrate multiple modalities into optimal fused
representations. These research directions have
mostly focused on embedding-based fusion lay-
ers. Our work explores an alternative approach in
which a hypernetwork uses auxiliary modalities to
update weights for the primary modality in a base
model. Our method, HyperFuse, is empirically
shown to generate more informative representa-
tions than other common fusion techniques while
being model-agnostic. We evaluate the method
on four different domains and a variety of base
architectures, and found HyperFuse provides a
consistent performance boost ranging from 0.4%-
1.5% accuracy point improvement compared to
state-of-the-art classification models.

1. Introduction
Humans perceive the world through multiple sensory modal-
ities and integrate unimodal information to form a smooth,
coherent representation of their surroundings. Research
in deep multimodal fusion aims to achieve similar uni-
fied, cohesive representations from multiple unimodal
sources(Baltrušaitis et al., 2018). Such research has led
to significant improvements in tasks like opinion analysis
(Garcia et al., 2019; Soleymani et al., 2017), language (Gar-
bacea and Mei, 2020; Storks et al., 2019), image processing
(Xu et al., 2015) and visual reasoning (Liu et al., 2020).

Traditional fusion approaches have generally focused on
learning non-adaptive models for producing fused repre-
sentations. However, a fixed representation function may
not suffice for tasks with a large number of outputs, like
those based on fine-grained classification (Li et al., 2019;
Mac Aodha et al., 2019) and language modeling (Chang
and McCallum, 2022). Consider a problem of fine-grained
species classification with two modalities, habitat and im-
ages. While using habitat information in addition to visual
features in general can improve the classification accuracy
(Mac Aodha et al., 2019), simple fusion methods that com-
bine habitat modality and visual features into a fixed fused
representation do not suffice to distinguish between environ-

mentally related and visually similar species (e.g. ducks and
geese). To address this challenge, we need to incorporate
an interactive relationships between the two modalities. For
example, to distinguish ducks from penguins, a representa-
tion based on shape would suffice. However, to distinguish
similar species likes ducks from geese, the generic shape
based representation would not be enough (Figure 1a). Fur-
thermore habitat information also would not provide enough
additional information as ducks and geese often share habi-
tat. Ideally, knowing an aquatic habitat, we want the model
to learn a different representation that highlights specific
image features pertinent for distinguishing aquatic birds
(Figure 1b) like bill length and feather patterns . This il-
lustrates the need for the network to map similar inputs to
different representations based on auxiliary modality.

Standard fusion techniques struggle to learn such condi-
tionally fused representations efficiently (Rath and Con-
durache, 2022) without using high-dimensional tensor prod-
ucts (Zadeh et al., 2017). To address this, we propose a filter
generation mechanism in the parameter space by learning
filter parameters dependent on the auxiliary information. In
this way, the model can easily adapt its representation space
based on the auxiliary information. Hypernetworks (Ha
et al., 2016; Stanley et al., 2009), which are networks that
generate parameters for another network, provide a natural
way to induce such conditioning between modalities.

To this end, we propose HyperFuse, a new fusion method
based on hypernetworks (Ha et al., 2016) to expand the
representational capacity of the model using a generator for
adaptive filter parameters. HyperFuse allows us to involve
the higher-dimensional interaction between the multimodal
representations without creating high dimensional tensor
product features. The weights of HyperFuse are generated
from the multimodal features extracted from the additional
information. The hypernet structure takes a selection of aux-
iliary modalities and produces parameters for the primary
modality network.

We test our proposal on a variety of multimodal datasets
like AV-MNIST, iNat, MOSI, and MOSEI, among others.
Our results show that HyperFuse-based models consistently
match or outperform state-of-the-art models such as MAG-
BERT(Rahman et al., 2020), EnsembleNet (Terry et al.,
2020), and MFAS (Pérez-Rúa et al., 2019).
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Figure 1: a) Generic shape based representation can distinguish between dissimilar species like geese and penguins. However,
on similar species like geese and ducks, the same representations are less accurate. b) Conditioning on the information that
the habitat is aquatic, the model can produce representations more pertinent for distinguishing waterfowl and aquatic birds.

2. Preliminaries
2.1. HyperNetworks

Hypernetworks are network designs where the weights of
the primary neural network are generated by another auxil-
iary network (Stanley et al., 2009). Commonly, the primary
network is larger than the auxiliary one. Instead of learning
the parameters θtarget of a particular function Ftarget directly,
one learns the parameters of a primary model.

While weight-generating networks have been known for a
while (Schmidhuber, 1992; Stanley et al., 2009; Bertinetto
et al., 2016), they were re-introduced under this name by
Ha et al. (2016) who explored their applications for CNN
and RNNs. Further research studies have shown the use-
fulness of hypernetworks in applications around multi-task
learning (Von Oswald et al., 2019; Huang et al., 2021; Ehret
et al., 2020), meta-learning (Zhao et al., 2020) and model
compression (Li et al., 2020). Hypernetworks are also quite
effective for a variety of tasks ranging from 3D reconstruc-
tion (Littwin and Wolf, 2019), architecture search (Brock
et al., 2018), exploration (Dwaracherla et al., 2020) and
bioinformatics (Nachmani and Wolf, 2020).

2.2. Multimodal Fusion

Consider a dataset of N observations D = (xi, yi)
N
i=1, in

which xi ∈ X and yi ∈ Y. In multimodal fusion, the
space of inputs X decomposes into K different modalities
X = X1 × X2 × ... × XK . Provided with a loss function
L : Y × Y → R, we aim to learn a model Mθ : X → Y
that minimizes the total loss L =

∑
i L(Mθ(xi), yi).

A common way to learn such a multimodal model is to
decompose it into two components: 1) an embedding func-
tion E : X → Rd which transforms raw information into a

d-dimension vector space, and 2) a task-specific outcome
component O : Rd → Y. Since different modalities are
often not directly compatible with each other (e.g. text and
image), the function E can be decomposed into a) modality-
specific embedding functions Ei : Xi → Rdi , and b) a
fusion function F : Rd1 × Rd2 × ... × RdK → Rd which
combines information from each unimodal embedding to
create a fused d-dimension embedding of all K modalities.

3. Related Work
Tensor Fusion These methods seek to utilize higher-order
multiplicative interactions for capturing complementary re-
lationships between modalities. However, due to the high
computational cost of such tensor products, several approx-
imations have been proposed that trade-off between effi-
ciency and flexibility (Hou et al., 2019; Liu et al., 2018). For
example, LFN (Zadeh et al., 2017) combined information
via pooling projections of high dimensional tensor represen-
tation of multimodal features. Multiplicative models that
generalize tensor products to include learnable parameters
have also been proposed (Jayakumar et al., 2020) to cap-
ture multimodal interactions. A variety of other models
(Perez et al., 2018; Zhong et al., 2020) can be interpreted as
restrictions of these general multiplicative models.

Multimodal gated units Gating mechanism learns repre-
sentations that dynamically change for every input (Chap-
lot et al., 2018; Wang et al., 2019). A general gated unit
can be written as a scaled version of the input vectors like
zp ⊙ h(za), where h represents a scaling function such as
sigmoid activation which amplifies and suppresses different
components of zp. The MAGBERT/MAGXLNET models
(Rahman et al., 2020) used gating to adjust the input em-
beddings to a language model and achieve SOTA results
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on sentiment classification. Recently, Xue and Marculescu
(2022) explored gating-based methods to save computation
and induce data-dependent computation. Our HyperFuse ap-
proach learns to predict dynamic parameters for the fusion
layer and can support instance-specific computation.

Dynamic Models Our method is directly related to Short-
Fuse (Fiterau et al., 2017), which improved biomedical time
series models by leveraging the structured covariates in a
similar fashion. Convolution layers which learn dynamic pa-
rameters for multiple kernels have been successfully used in
a number of vision problems such as object detection (Sun
et al., 2020; Wang et al., 2020b) and segmentation (Tian
et al., 2020).Jia et al. (2016a) dynamically generates the
filters conditioned on the input images. Other similar mod-
els including CondConv (Yang et al., 2019), DyNet (Zhang
et al., 2020), and Dynamic Conv (Chen et al., 2020) learn
dynamic parameters for multiple kernels. However, these
are mostly unimodal models and derive adaptive filters from
a single spatial feature map (Prakash et al., 2021; Yang
et al., 2022a). Instead, ours uses a primary network whose
parameters are generated by an auxiliary network condi-
tioned on other modalities. Models like Hu et al. (2018)
and Gondal et al. (2021) have also been used for dynamic
inference, but these are not designed for multimodal setting
and focus on multi-task learning.

Fusion Architectures Due to the wide variety of applica-
tions and tasks which require multimodal fusion, over the
years a plethora of different architectures have been used.
CentralNet (Vielzeuf et al., 2018) and Refnet (Sankaran
et al., 2021) are multimodal fusion designs based on ag-
gregative multi-task learning. Khattar et al. (2019) used
ideas from unsupervised learning to use multimodal au-
toencoders to learn better representations. Architectures
based on knowledge graphs have also been proposed for
fusion methods in the ecological context (Nitta et al., 2020).
Pérez-Rúa et al. (2019) suggest an architecture search ap-
proach to build a multimodal model by combining layers
from multiple unimodal pipelines. MBT (Nagrani et al.,
2021) incorporates bottlenecked fusion tokens into the mul-
timodal transformer by (Tsai et al., 2019a). MBT is a strictly
transformer-based method, while HyperFuse is an universal
enhancement with hypernetworks to integrate multimodal
information, that is applicable to a broader range of models.

Model Agnostic Methods A number of alignment and
information based losses have also been explored to im-
prove fusion by inducing semantic relationships across the
different unimodal representations (Abavisani et al., 2019;
Bramon et al., 2011; Liang et al., 2021b; Liu et al., 2021;
Han et al., 2021). These are purely train-time objectives and
can be generally applied to most multimodal fusion models.
Wang et al. (2020a) tackle the problem of weighing modali-

ties during learning when different unimodal networks have
varying capacity. Wu et al. (2022) adresses a similar prob-
lem of balancing utilization rates. Unlike these works, we
focus on learning conditional representations instead of bal-
ancing between modalities.

Using Auxiliary Geographical Data Minetto et al.
(2019) introduces metadata to a geospatial land classifica-
tion task, and Salem et al. (2020) integrates dense overhead
imagery with location and date into a general framework by
concatenating the individual representations. Mac Aodha
et al. (2019) extracts location features by MLP to produce
a prior distribution for fine-tuning the original predictions.
In GeoNet (Chu et al., 2019), the geolocation priors, post-
processing models, and feature modulation models are uti-
lized to leverage the additional information.

4. HyperFuse
In Section 4.1, we explain the difference between the com-
monly used embedding-based fusion and our hypernetwork-
based approach in HyperFuse, and then highlight the advan-
tages of such hypernetwork design. Next, Section 4.2 details
the implementation of the HyperFuse architecture. Finally
in Section 4.3 we present details about the HyperFuse Block
as part of the architecture.

4.1. Hypernetwork-based vs. Embedding-based Fusion
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(b) Hypernetwork based fusion

Figure 2: Two approaches to build multimodal neural nets.
xp and xa refer to the primary and auxiliary modalities,
respectively.

Consider a multimodal model M : Xp × Xa → Y that
combines a primary input xp ∈ Xp with an auxiliary in-
put xa ∈ Xa and outputs y ∈ Y. The embedding-based
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approach builds a model of the following form:

M(xp, xa; θp, θa, θo) = O(Ep(xp; θp), Ea(xa; θa); θo)

It is composed of a predictive neural network O and embed-
ding modules for each modality Ep and Ea. The embed-
dings are combined together before applying output network
O. An example is depicted in Figure 2(a). Most existing
multimodal fusion approaches follow this pattern, varying
modality-specific embedders and fusion functions to com-
bine the embeddings.

Our alternate approach for fusion via hypernetworks is
shown in Figure2(b). We have a primary network O, whose
weights are produced by the separate hypernetwork H . This
corresponds to a model of the form:

M(xp, xa; θp, θa) = O(Ep(xp; θp); θ̃p) s.t. θ̃p = H(xa; θa)

Different from the embedding approach, the hypernetwork
approach formulates the mapping as a conditionally param-
eterized function.

Motivation Theoretically, a very wide network can ex-
tract all types of features from an image, which can then
be masked with auxiliary information from other modal-
ities(Scarselli and Tsoi, 1998). However such models
have significantly high parametric and sample complexity
(Galanti and Wolf, 2020; Rath and Condurache, 2022). In
cases of limited embedding networks, an ideal model would
switch its representations to highlight more desirable fea-
tures while suppressing the less informative ones based on
the auxiliary information. Galanti and Wolf (2020) proved
that while an embedding method requires an increasing
complexity to guarantee convergence, under certain con-
ditions, a hypernetwork can keep the network complexity
under control. This ability to effectively learn conditional
functions (i.e., model a function that transforms into differ-
ent functions depending on the condition Xa) is labeled as
modularity. However, Galanti and Wolf (2020) consider a
multi-task setting with a partitioned output space, whereas
we are considering a single task setting with continuous
auxiliary modalities.

Consider our earlier example of bird classification, when
distinguishing between two similar waterfowls (say a duck
and goose), representations that focus on specific features
like feather and down shape, bill length etc. would be prefer-
able. However, while dealing with environmentally different
species like a duck and an owl, general features are suffi-
cient. Similarly, a different set of features are important to
distinguish between desert birds compared to aquatic birds.
In an embedding based model, the image encoder will need
to extract all such features together, leading to extremely
high dimensional representations. Instead of learning such
representations one can instead use conditional representa-

tions. The modularity property associated with Hypernet-
works (Galanti and Wolf, 2020) suggests that this can be
achieved efficiently with Hypernetworks. As such we use
hypernetworks to generate filters parameterized on auxiliary
modalities. Using auxiliary information such as geograph-
ical coordinates or habitat information one can generate
filters for extracting more pertinent input representations 1.

4.2. HyperFuse Architecture

We propose a hypernetwork-based fusion architecture,
called HyperFuse and presented visually in Fig. 3. Our
proposed architecture keeps a primary path and an auxiliary
path for processing the information from the primary and
additional modalities respectively. Unlike previous works,
our proposed method does fusion via one or multiple Hyper-
Fuse Blocks to modulate the primary feature pipeline with
information from auxiliary modalities. The architecture
fits the form of most existing multimodal networks where
the input modalities are embedded into a vector, and then
transformed further.

Usually hypernetworks are used to produce the entire set of
parameters for a primary network. However, that approach
is impractical and also incompatible with using pre-trained
networks like ResNet or BERT. Instead we are going to
parameterize only individual HyperFuse blocks which act
as standalone components. The overall network structure is
composed of multiple such HyperFuse blocks in an iterative
style. This allows us to stack together fusion layers similar
to how single MLP layers are stacked in a deep neural
network. The blocks can also be interleaved with other
standard neural networks providing flexibility.

The HyperFuse design takes z0p (primary) and za (auxiliary)
as the initial inputs, where the primary feature is dynami-
cally modulated with the corresponding auxiliary feature.
We obtain the enhanced primary representation zNp after
N iterative HyperFuse blocks. The multimodal output zNp
matches the shape of the original input representation zp. A
skip connection (Srivastava et al., 2015) is added between
the multimodal embedding and the original representation,
before applying the head prediction network O. This en-
ables use of deeper pipelines, and allows the model to sup-
press the cross-modal projections (Srivastava et al., 2015).

Unlike traditional neural network layers with fixed param-
eters for all instances, the weights in our proposed model
are dynamically generated and conditioned based on the
instance-wise auxiliary information. Dynamically adjusting
parameters can ease the recognition difficulty for similar
inputs by extracting more pertinent representations. Exper-
iments show that our method learns more generalized and

1While this might seem similar to a multi-task setting, we are
still in a single-task setting with a high number of output species
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Figure 3: HyperFuse Architecture. There are two separate network pathways for the primary and auxiliary modalities.
HyperFuse Block is a fusion layer between the two paths that produces fused representations. The HyperFuse block is
deployed iteratively, where N denotes the number of such blocks. The final output from primary pathway is input to output
net O.

distinguishing representations and surpasses existing works
that utilize the traditional embedding-fusion design.
Proposition 4.1. Consider a bounded Lipschitz and contin-
uously differentiable function Ytarget which is being learnt
using a network with a single fusion block with two inputs
of dimensionalities d1 and d2. If the fusion block is replaced
by a linear HyperFuse block, then the network complexity of
the HyperFuse approach is O(ε−d1/r + ε−d2/r) compared
to embedding based fusion methods O(ε−(d1+d2)/r).

For derivation and more discussion we refer the readers to
Appendix C.

4.3. HyperFuse Block Design

HyperFuse Block is designed to replace or add a layer in
any existing model pipeline while simultaneously provid-
ing an MLP layer that transforms its inputs conditionally
based on another modality. To allow a HyperFuse block to
be placed at any position in a network pipeline (including
pre-trained ones), we aim to ensure that there is no dimen-
sion change or information loss. To accomplish this, a
HyperFuse block uses residual connection with the primary
modality’s latent features. The auxiliary modality encod-
ing is kept unchanged, so that the training of the individual
hypernetworks in the blocks and the downstream auxiliary
pipeline are decoupled. Multiple blocks can be stacked and
an MLP can be used between the blocks on the auxiliary
pathway if needed.

Figure 3(b), illustrates the architecture of a single block.
As mentioned earlier, we can chain these blocks where the
primary input for the current layer is the output of the previ-
ous one. For the auxiliary input for each block, we pass it
through to the next layer. We use a bottleneck architecture
where both the primary and auxiliary inputs are projected to
a smaller hidden dimension h for the intermediate Hyper-

Fuse blocks compared to the input dimension. This forces
the parameter generator, within a block, to condense and ex-
tract most relevant information from each. This also allows
scalability as h governs the size of the hypernetwork.

Each HyperFuse block takes as input the primary and auxil-
iary feature and outputs the fused feature for one iteration.
The final output of the block is based upon applying a linear
projector (shown as the matrix W ) which is applied on the
primary modality pipeline. The parameters of this projector
is generated based on the auxiliary feature as W = H(za)
H(·) denotes the weight generating function whose outputs
is reshaped into a 2-d matrix. A residual connection (He
et al., 2016a) is also added between the input to a HyperFuse
block and its output. This helps training when stacking mul-
tiple HyperFuse blocks in a deep network (He et al., 2016b).
Furthermore it retains the original primary representations
allowing the model to skip an individual block if needed.

If znp is taken to be the primary representation updated n
times iteratively as shown in Figure 3 by the HyperFuse
layer, where n ∈ {1, 2, ..., N}; then the HyperFuse block
can be written mathematically as:

W = H(za)

ẑn+1
p = ELU(WT × LN(g(znp )))

zn+1
p = ELU(LN(g(ẑn+1

p ))) + znp

where ELU is the exponential linear unit and LN refers to
normalization layer like Layer-norm (Ba et al., 2016) or
batch norm (Ioffe, 2017).

We performed ablation experiments with related block de-
signs, by removing residual connections, combining primary
and auxiliary modalities for parameter generation as well as
other changes. In the Appendix E we provide details about
other block variants and the corresponding results.
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5. Experiments
We evaluate HyperFuse over a variety of base architectures
and domains ranging from multimedia classification, species
labelling, sentiment analysis and finance. For each dataset
we use a standard model and replace all fusion layers in
the model by HyperFuse blocks. In general we took the
dominant or best single modality as the primary modality.
We experiment with the number of HyperFuse blocks and
hidden units of each HyperFuse block, and report the results
from the best model. Details on hyperparameters can be
found in the Appendix B.

5.1. Multimedia

Dataset We evaluate HyperFuse on AV-MNIST (Vielzeuf
et al., 2018), a popular benchmark dataset used for mul-
timodal fusion (Pérez-Rúa et al., 2019; Joze et al., 2020).
It is an audio-visual dataset for a digit classification task.
The data is prepared by pairing human utterances of digits
obtained from FSDD dataset 2 with images of written digits
from MNIST. This dataset has 55K training, 5K validation,
and 10K testing examples. We use the processing stack of
Cassell (2019) to prepare the dataset. The preprocessing
involves adding corruption to both modalities so that more
than one modality is required (Vielzeuf et al., 2018) for
prediction. However, the image modality is still the domi-
nant modality. For example, an image-only model achieves
around 60% accuracy, compared to the 40% accuracy of
audio-only model.

Models LF is the baseline late fusion architecture used in
Vielzeuf et al. (2018), while MFM refers to the factorization
method of Tsai et al. (2019b). GB and MBT are the gradient
blending and vision-transformer based approaches of Wang
et al. (2020a) and Nagrani et al. (2021). Similar to existing
work (Liang et al., 2021a) our experiments used the afore-
mentioned fusion designs with unimodal LeNet style feature
generators (details present in the Appendix B.1 ). We take
image as the primary modality Zp and audio spectrogram
as the auxiliary modality Za.

Result Table 1 demonstrates the superiority of HyperFuse
over aforementioned fusion mechanisms on AV-MNIST.
With the images as the primary modality and the audio
records as the auxiliary modality, HyperFuse achieves the
best average performance over 5 trials. HyperFuse even
improves over the SOTA model MFAS 3. On the other hand
the MBT model struggles, likely due to the small data size.
A larger comparison with errors and a bigger set of models
in presented in the Appendix.

2https://www.tensorflow.org/datasets/
catalog/spoken_digit

3We do not run a search from scratch and instead use the final
architecture described in Pérez-Rúa et al. (2019)

Model Accuracy
LF 71.4
MFM 71.4
GB 68.9
MBT 70.3
MFAS 72.1
LF + HyperFuse 72.4

Table 1: Accuracy results on digit classification task with
AV-MNIST for various fusion architectures. The perfor-
mance was averaged over five trials. HyperFuse outperforms
the others by better utilizing the image and audio modality.

5.2. Fine-Grained Image Classification

Datasets We experiment with three different fine-grained
classification tasks. Two of these are subsets of the classic
YFCC100M(Thomee et al., 2016) dataset, the YFCC-MINI
and the YFCC-GEO100 (Tang et al., 2015). The third is the
iNaturalist species classification task (Van Horn et al., 2018;
2021). The images were considered the primary modality
Zp for these experiments, and any other information, such
as geographic location, time, etc., was deemed the auxiliary
modality Za. For inputs that were missing the auxiliary
information, following Mac Aodha et al. (2019); Yan et al.
(2021) we replaced the missing value with 0.

Models We use a pre-trained ResNet (He et al., 2016a)
and apply the HyperFuse block at its penultimate layer. The
design we follow is based on the model for fine-grained clas-
sification used in (Tang et al., 2015). As baseline models, we
use DynamicMLP, GeoNet, and EnsembNet. GeoNet (Chu
et al., 2019) and EnsembNet (Terry et al., 2020) are two
common deep-learning models for this task. GeoNet incor-
porates geolocation priors from Mac Aodha et al. (2019) and
uses feature modulation to utilize additional information.
EnsembNet (Terry et al., 2020) uses an ensemble approach
for species classification and is applicable only to iNat and
GEO. DynamicMLP (Yang et al., 2022a) is recent model for
fine-grained species classification, that uses dynamic filters
(Jia et al., 2016b). We also include the concatenation-based
fusion design of Tang et al. (2015) as baseline.

Result In Table 2 we present the top-1 and top-5 classi-
fication accuracy of our proposed method and other ap-
proaches. The hyperparameter information for HyperFuse
are in Appendix B.3, while the rest of the results are pre-
sented from existing works. Our method achieves SOTA or
near-SOTA results on multiple datasets with ResNet back-
bone. Our ResNet+HyperFuse) model achieve almost a 1
point improvement over the SOTA DynamicMLP on iNat
and YFCCGEO. Similar improvements are obtained with
a SK-Res2Net (Li et al., 2019) backbone for the image
modality as well (see Appendix D).

https://www.tensorflow.org/datasets/catalog/spoken_digit
https://www.tensorflow.org/datasets/catalog/spoken_digit
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YFCC-MINI YFCC100M-GEO100 iNat
Acc1 Acc5 Acc1 Acc5 Acc1 Acc5

UniModal 32.6 52.2 47.6 77.9 64.5 85.4
GeoNet N/A N/A 49.1 80.2 75.1 91.2

DynamicMLP 40.2 60.2 53.2 83.2 78.1 93.1
Concat 38.4 58.9 48.7 79.8 77.3 92.7

EnsembNet N/A N/A 50.8 81.9 73.7 89.9
ResNet + HyperFuse 40.6 60.9 53.2 84.8 79.3 93.5

Table 2: Results on fine-grained classification on the YFCC-MINI, YFCC100M-GEO100 and the iNaturalist datasets. Acc1
and Acc5 represent the top-k accuracy with k=1 and k=5 respectively. HyperFuse outperforms previous multimodal works.

5.3. Affective Computing

Datasets We evaluate our methods on two commonly used
datasets for multimodal sentiment evaluation. CMU-MOSI
(Wöllmer et al., 2013) is sentiment prediction tasks on a set
of short youtube video clips.CMU-MOSEI (Zadeh et al.,
2018b) is a similar dataset consisting of around 23K review
videos taken from YouTube. The output in both cases is a
sentiment score in [−3, 3]. For each dataset, three modalities
are available; audio, video, and text. Preliminary features
on audio, visual and textual modalities are obtained via
COVAREP (Degottex et al., 2014), FACEt (iMotion) and
word embeddings using Glove (Pennington et al., 2014) or
BERT (Devlin et al., 2018).

Acc7 ↑ Acc2 ↑ MAE ↓ CORR ↑
FLSTM 31.2 75.9 1.01 0.64
MFN 31.3 76.6 1.01 0.62
MAGBERT 40.2 83.7 0.79 0.80
MAGXLNET 43.1 85.2 0.76 0.82
BERT + HyperFuse 40.5 84.2 1.02 0.80
XLNET + HyperFuse 43.8 85.3 0.76 0.82

(a) CMU-MOSI
Acc7 ↑ Acc2 ↑ MAE ↓ CORR ↑

FLSTM 44.1 75.1 0.72 0.52
MFN 44.3 74.7 0.72 0.52
MAGBERT 46.9 83.1 0.59 0.76
MAGXLNET 46.7 83.9 0.59 0.77
DynMM N/A 79.8 0.6 N/A
BERT + HyperFuse 52.7 84.8 0.58 0.76
XLNET + HyperFuse 52.4 85.3 0.59 0.76

(b) CMU-MOSEI

Table 3: Results on sentiment analysis on CMU-
MOSI/CMU-MOSEI. Acc7 denotes accuracy on 7 classes
and Acc2 the binary accuracy. MAE denotes the Mean
Absolute Error and Corr is the Pearson correlation. Aug-
menting BERT/XLNET with HyperFuse performs best.

Models MAGBERT/MAGXLNET (Rahman et al., 2020)
are state of the art BERT (Devlin et al., 2018) based ar-
chitecture that uses the MAG gate (Wang et al., 2019) to

compute modified embeddings which are passed to a trans-
former based model. FLSTM (Narayanan et al., 2019) is a
baseline fusion LSTM design, MFN (Zadeh et al., 2018a)
is a memory based fusion, while the recent DynMM model
from (Xue and Marculescu, 2022) uses dynamic gating.
In this experiment we take the text embeddings as the pri-
mary modality Zp and the audio and video features as the
auxiliary modality Za.

Result Table 3 present the 2 and 7 class accuracies along
with the MAE and correlation. We observe consistent im-
provements in accuracy of by using HyperFuse based em-
beddings (BERT/XLNET + HyperFuse) on the state of the
art transformer models MAGBERT/MAGXLENT. These
improvements range from 0.1% to 0.7%.

5.4. Financial Data

Datasets We evaluate the impact of adding the HyperFuse
layer on a recently released Merger and Acquisition dataset
M3A (Sawhney et al., 2021). The dataset comprises 816
conference calls with three modalities: transcript text (pri-
mary), speaker audio, and speaker information. There are
two tasks: stock volatility prediction and price movement
classification, both measured over 3, 7, and 15 days.

Models We experiment by adding a HyperFuse layer to the
baseline architecture M3ANet. In the HyperFuse block, we
have text as the primary modality Zn

p and concatenation of
audio, position embeddings, and speaker information as the
auxiliary modality Zn

a . The HyperFuse block is added to the
architecture before the Attention-Fusion and Sentence-level
Transformer steps. The speaker information serves as the
context to determine the importance of a text or audio seg-
ment (whether the utterance comes from a decision-maker
in the company), and has been used in the HyperFuse layer.
We also report the results of the original M3ANet, some vari-
ations of Transformer and the Multimodal Deep Regression
Model (MDRM) (Qin and Yang, 2019).

Result As shown in Table 4, M3ANet + HyperFuse out-
performs the original M3ANet as well as Transformers in
both stock volatility prediction task and price movement
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Model Volatility Prediction Price Movement Classification
MSE3 ↓ MSE7 ↓ MSE15 ↓ F13 ↑ F17 ↑ F115 ↑ MCC3 ↑ MCC7 ↑ MCC15 ↑

MDRM (T+A) 0.78 0.58 0.46 0.59 0.58 0.46 0.19 0.19 0.11
Transformer (T+A: Concat) 0.80 0.61 0.48 0.09 0.16 0.06 0.00 0.01 0.01
Transformer (T+A: Att fusion) 0.76 0.58 0.47 0.57 0.61 0.55 0.16 0.18 0.12
M3ANet 0.77 0.57 0.46 0.59 0.58 0.50 0.18 0.17 0.13
M3ANet + HyperFuse 0.75 0.53 0.44 0.51 0.63 0.58 0.16 0.20 0.16

Table 4: Mean τ -day volatility MSE and price movement prediction results (mean of 5 runs for each approach)

classification over multiple prediction periods. Besides im-
proving the performance of the original architecture, adding
the HyperFuse layer achieves better results than the MDRM
model as well.

5.5 Exploratory Analysis
In this section, we present some exploratory analyses of
HyperFuse using the M3A and AV-MNIST datasets. First,
we test whether using an auxiliary modality always shows
better performance compared to unimodal models of the
primary modality. Next, we test whether the position of
the HyperFuse block(s) added to the base pipeline affects
the outcome performance. These results are reported in
Table 5 (columns 2 and 4). The results indicate that in any
configuration of the HyperFuse architecture the model that
uses HyperFuse block(s) to fuse the auxiliary modality into
the primary one is always more accurate. These results show
that while there exists an optimal position for the fusion
layer in both datasets, the boost over unimodal models is
greater than inter-model differences.

Since HyperFuse architecture requires the choice of a pri-
mary modality among multiple ones, we also perform ab-
lations to test whether switching the role of primary and
auxiliary modalities impacts the model performance. These
are also reported in Table 5 (the second row indicates choice
of primary modality). The results (in Table 5) show sig-
nificant difference in performance between the best model
using image/text as primary modality and the best model
using audio as primary modality.

AV-MNIST (Accuracy ↑) M3A (MSE7 ↓)
Position ↓ Image Audio Text Audio
Unimodal 66.7 42.5 0.62 0.61
1 71.9 71.5 0.53 0.58
2 72.6 71.4 0.57 0.58
3 72.4 70.7 N/A N/A

Table 5: Ablation studies of performance on AV-MNIST
and M3A varying primary modalities and positions of Hy-
perFuse blocks in the primary network. M3A pipeline is
shorter so only has 2 positions for a fusion layer. The choice
of primary modality is depicted on the second row

Finally, we hypothesize that a hypernetwork based fusion
produces more distinguishable embeddings than embed-

Figure 4: Heatmap of average distances between embed-
dings of different digits for MFM and HyperFuse. Darker
colours represent greater distances. HyperFuse produces
greater interclass separation which explains higher accuracy.

ding based fusion. To verify this we evaluate the distance
between embeddings of different AV-MNIST classes for
MFM and HyperFuse, and present a heatmap in Figure
10. We can see that using conditional transformations with
HyperFuse produces a greater average distance between
the classes, which explains why hyperfuse performs better.
Similar visualization on iNat are available in Appendix E.3.

6. Conclusion
In this paper, we present a different approach for multimodal
based on hypernetworks to integrate cross-modal informa-
tion from different sources. Our method, called HyperFuse,
predicts dynamic weights for a deep neural network back-
bone that processes the primary modality conditioned on
auxiliary information. This approach naturally addresses the
challenge of learning high-dimensional representations for
modality conditioning. HyperFuse is a model-agnostic fu-
sion layer that generates more discriminative representations
than other common fusion techniques. Our method shows
promising improvement over SOTA or near-SOTA models
on a wide range of tasks, including image classification,
sentiment prediction, and volatility prediction.
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Supplementary Material

A. Related Works
Tensor Fusion These methods seek to utilize higher-order multiplicative interactions for capturing complementary rela-
tionships between modalities. However, due to the high computational cost of such tensor products, several approximations
have been proposed that trade-off between efficiency and flexibility (Hou et al., 2019; Liu et al., 2018). For example, LFN
(Zadeh et al., 2017) combined information via pooling projections of high dimensional tensor representation of multimodal
features. Multiplicative models that generalize tensor products to include learnable parameters have also been proposed
(Jayakumar et al., 2020) to capture multimodal interactions. A variety of other models (Perez et al., 2018; Zhong et al.,
2020) can be interpreted as restrictions of these general multiplicative models.

Multimodal gated units Gating mechanism learns representations that dynamically change for every input (Chaplot et al.,
2018; Wang et al., 2019). A general gated unit can be written as a scaled version of the input vectors like zp ⊙ h(za), where
h represents a scaling function such as sigmoid activation which amplifies and suppresses different components of zp. The
MAGBERT/MAGXLNET models (Rahman et al., 2020) used gating to adjust the input embeddings to a language model
and achieve SOTA results on sentiment classification. Recently, Xue and Marculescu (2022) explored gating-based methods
to save computation and induce data-dependent computation. Our HyperFuse approach learns to predict dynamic parameters
for the fusion layer and can support instance-specific computation.

Dynamic Models Our method is directly related to ShortFuse (Fiterau et al., 2017), which improved biomedical time
series models by leveraging the structured covariates to produce dynamic filters. Convolution layers which learn dynamic
parameters for multiple kernels have been successfully used in a number of vision problems such as object detection (Sun
et al., 2020; Wang et al., 2020b) and segmentation (Tian et al., 2020).Jia et al. (2016a) dynamically generates the filters
conditioned on the input images. Other similar models including CondConv (Yang et al., 2019), DyNet (Zhang et al., 2020),
and Dynamic Conv (Chen et al., 2020) learn dynamic parameters for multiple kernels. However, these are mostly unimodal
models and derive adaptive filters from a single spatial feature map (Prakash et al., 2021; Yang et al., 2022a). Instead, ours
uses a primary network whose parameters are generated by an auxiliary network conditioned on other modalities. Models
like Hu et al. (2018) and Gondal et al. (2021) have also been used for dynamic inference, but these are not designed for
multimodal setting and focus on multi-task learning.

Fusion Architectures Due to the wide variety of applications and tasks which require multimodal fusion, over the years a
plethora of different architectures have been used. CentralNet (Vielzeuf et al., 2018) and Refnet (Sankaran et al., 2021) are
multimodal fusion designs based on aggregative multi-task learning. Khattar et al. (2019) used ideas from unsupervised
learning to use multimodal autoencoders to learn better representations. Architectures based on knowledge graphs have
also been proposed for fusion methods in the ecological context (Nitta et al., 2020). Pérez-Rúa et al. (2019) suggest an
architecture search approach to build a multimodal model by combining layers from multiple unimodal pipelines. MBT
(Nagrani et al., 2021) incorporates bottlenecked fusion tokens into the multimodal transformer by (Tsai et al., 2019a). MBT
is a strictly transformer-based method, while HyperFuse is an universal enhancement with hypernetworks to integrate
multimodal information, that is applicable to a broader range of models.

Optimization-Based Approaches A number of alignment and information based losses have also been explored to
improve fusion by inducing semantic relationships across the different unimodal representations (Abavisani et al., 2019;
Bramon et al., 2011; Liang et al., 2021b; Liu et al., 2021; Han et al., 2021). These are purely train-time objectives and can
be generally applied to most multimodal fusion models. Wang et al. (2020a) tackle the problem of weighing modalities
during learning when different unimodal networks have varying capacity. Wu et al. (2022) adresses a similar problem
of balancing utilization rates. Unlike these works, we focus on learning conditional representations instead of balancing
between modalities.
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B. Hyperparam details
B.1. AV-MNIST

For the AVMNIST dataset, we used LeNet style unimodal feature generators. For the image encoder we used a 4 layer
network with filter sizes [5, 3, 3, 3] and max-pooling with width of 2. For the audio encoder the networks was a 6 layer
networks with filter sizes [5, 3, 3, 3, 3, 3] and max-pooling of width 2. The channel width was doubled after each layer. For
the optimization process we tried random search on a logarithmic scale on the interval [1e− 5, 5e− 2]. We experimented
with Adam, Adagrad, RMSProp, SGD optimizer with default configurations. For the HyperFuse network parameters we
used models of upto 3 blocks with hidden units in {2, 4, .., 128, 256}.

For the MFAS model, we did not do architecture search but instead used the final model presented by Pérez-Rúa et al. (2019).
That model is shows in Figure 5. While we have tried to stay close to the method described in Pérez-Rúa et al. (2019); Liang
et al. (2021a) for creation of this dataset, our version of AVMNIST is potentially different from the earlier reported results as
no standard dataset is available.

Figure 5: MFAS (Pérez-Rúa et al., 2019) based Multimodal Fusion Architecture for AVMNIST. Every arrow into the
activation corresponds to a linear layer. The A4 and A5 represent the fourth and fifth layer of the audio encoder. Similarly I2
and I3 represent the second and third layer of the image encoder.

B.2. M3A

For training the model we use the M3ANet architecture, and combine the embeddings with the HyperFuse architecture.
For the parameters relevant to the M3ANet model , we keep the same hyperparameters of M3ANet as in Sawhney et al.
(2021) and experiment with 2 HyperFuse hyperparamters: HyperFuse MLP block type and number of hidden units in
HyperFuse block. For each task and τ -day period, we run models with different combinations of 4 HyperFuse block types
{Base, I, III, IV } and range of number of hidden units {2, 4, 8, 16}.

B.3. Fine Grained Image Classification

We use the same training setting and procedure for all three datasets. For training the models, we use augmented training
data as inputs. The augmented images are obtained via random corruptions like random crop of 224 by 224 pixels and
flips (Szegedy et al., 2015). We further use the Mixup (Zhang et al., 2017) training process and interpolate the augmented
images. Finally label smoothing is also applied with smoothing param of 0.1. All networks are trained using SGD
optimizer with momentum and weight decay. The weight decay was chosen by a log scale random search from the interval
[1e − 5, 1e − 3]. The auxiliary information such as coordinates, time etc. were encoded following the procedure of
Mac Aodha et al. (2019). For training,we use the learning rate scheduling of Yang et al. (2022b), which combines warmup
with cosine decay. Specifically tthe learning rate is set to 4× 10−2 with a linear warmup (He et al., 2016a) for five epochs
and a cosine decay schedule (Loshchilov and Hutter, 2016).
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C. Proof of Proposition4.1
In this section, we briefly introduce the requisite Theorems from Galanti and Wolf (2020), before showing that these results
imply Proposition 4.1. These results are extensions of known results in approximation theory (Mhaskar, 1996; Lu et al.,
2017; Hanin and Sellke, 2018; Safran and Shamir, 2017) that quantify tradeoffs between the number of trainable parameters,
width and depth of the neural networks as universal approximators. The notation and description here follows that of Galanti
and Wolf (2020).

Notations We have a target function Ytrgt : X1 × X2 → R available only through samples of input output pairs. Here,
x1 ∈ X1 and x2 ∈ X2 are two inputs from different modalities. Let Wr,n be the Sobolev space of n dimensional multivariate
functions with smoothness r. Wr,n is a vector space of functions h : [−1, 1]n → R with continuous partial derivatives of
orders up to r, such that, the norm is bounded, ∥h∥sr := ∥h∥∞ +

∑
1≤|k|1≤r ∥Dkh∥∞ ≤ 1, where Dk denotes the partial

derivative indicated by the multi–integer k ≥ 1, and |k|1 is the sum of the components of k. We will assume that our target
function Ytrgt belongs to this space.

An embedding method is a network of the form h(x1, x2; θe, θq) = q(x1, e(x2; θe); θq), consisting of a composition of
neural networks q and e parameterized with real-valued vectors θq ∈ Θq and θe ∈ Θe (resp.). e(x2; θe) serves as an
embedding of x2. For two given families of embedding functions e := {e(I; θe)} and prediction function q := {q(x, z; θq)},
let Ee,q := {q(x, e(I; θe); θq) | θq ∈ Θq, θe ∈ Θe} denote the embedding method formed by them.

A hypernetwork h(x1, x2) = g(x1; f(x2; θf )) is a pair of collaborating neural networks, f : X2 → Θg and g : X1 → R,
such f produces the weights of g. The function f(x2; θf ) takes a conditioning input x2 and returns the parameters θI ∈ Θg

for g. The network g takes an input x1 (and the parameters θI ) and returns output g(x2; θI) that depends on x1 and via θI
on x2. In practice, f is typically a large neural network and g is a small neural network.

We shall denote by σ the activation function used in the nerual network. We assume that σ is a universal, piece-wise C1(R)
activation function with σ′ ∈ BV (R) and σ(0) = 0. BV (R) is defined to be the set of functions of bounded variation.
Following Galanti and Wolf (2020) we also assume that any non-constant Y ∈ Y cannot be represented as a neural network
with σ activations.

Theorem C.1. Let Ee,q be a neural embedding method. Assume that e is a class of continuously differentiable neural network
e with zero biases, output dimension k = O(1) and C(e) ≤ ℓ1 and q is a class of neural networks q with σ activations
and C(q) ≤ ℓ2. Let Y := W1,m. Assume that any non-constant y ∈ Y cannot be represented as a neural network with σ
activations. If the embedding method achieves error d(Ee,q,Y) ≤ ε, then, the complexity of q is: Nq = Θ

(
ε−(m1+m2)

)
.

Theorem C.1 is a restatement of Theorem 2 and 3 from Galanti and Wolf (2020). The results in this theorem is restrict to
the Sobolev space r = 1, which is the space of mean bounded, Lipschitz and continuously differentiable functions. The
lower bound on the complexity in this theorem follows from well known results in of approximation theory (Mhaskar, 1996;
Maiorov et al., 1999; Lu et al., 2017).

Theorem C.2. Let σ be an activation as earlier. Let y ∈ Y = Wr,m be a function, such that, yx2 cannot be represented as
a neural network with σ activations for all x2 ∈ X2. Then, there is a class, g, of neural networks with σ activations and a
network f(x2; θf ) with ReLU activations, such that, h(x1, x2) = g(x; f(x2; θf )) achieves error ≤ ε in approximating y
and Ng = O

(
ε−m1/r

)
.

Theorem C.2 is a restatement of Theorem 4 from Galanti and Wolf (2020). It shows that the minimal complexity required
for approximating each individual smooth target function yx2 is achievable by a hypernetwork based model.

Next, note that in the linear HyperFuse scenarios, the selection function S(x2) takes the form of W · h, for some continuous
function h : X2 → Rw parameterized by the neural network g and W is a linear mapping (Ukai et al., 2018; Chang et al.,
2020; Littwin and Wolf, 2019). If the true selector function for Ytrgt belongs to the family of g neural networks (or if it
belongs Pd2,k

r,w,c ) then it can be approximated by O
(
ε−d2/r

)
size network. Further since the selector is continuous, ε error

in approximating the selector, further only leads to Oε error in the actual target. Correspondingly if the target function is
according to Proposition 4.1, then we can apply Theorem C.2 to HyperFuse, giving an addition complexity of O

(
ε−d1/r

)
.

Combining Similarly, Theorem C.1 gives a tight bound on the complexity of the embedding based networks. Note that
as per the description in Section 3, X2 ⊂ Rd2 and X1 ⊂ Rd1 . Putting the corresponding dimensionalities into Theorems
C.1C.2, the proposition follows
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C.1. Validating Proposition 3.1

In this section, we want to empirically assess the validity of Propostion 3.1. For this purpose, we vary the number of samples
available for training and measure how the model performance changes. According to Proposition 3.1, HyperFuse will
have lower complexity, and hence should rise faster and saturate earlier than other models. We evaluate this hypothesis
with AVMNIST and MOSI, and present the results in Figure 6. From the figure we can see that our hypothesis is correct.
HyperFuse shows strong performance (even with ¡ 20% data), and has consistently greater performance improvement at low
number of sampler.
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Figure 6: Accuracy of HyperFuse against best baseline model a) MOSI, b) AV-MNIST as the availability of training samples
changes. HyperFuse has lower complexity, and has greater improvements at lower data availability.

D. Extended Results
M3A After running hyperparamter search for HyperFuse, we ran the M3ANet+HyperFuse model 5 times with the
optimal hyperparameters and records the mean and standard deviation of MSEtest below. The results for baseline models
come from (Sawhney et al., 2021).

Model Volatility Prediction Price Prediction
MSE3 MSE7 MSE15 F13 F17 F115 MCC3 MCC7 MCC15

MDRM (T+A) 0.78 (0.005) 0.58 (0.003) 0.46 (0.002) 0.59 0.58 0.46 0.19 0.19 0.11
Transformer (T+A: Concat) 0.80 (0.0006) 0.61 (0.0006) 0.48 (0.0003) 0.09 0.16 0.06 0.00 0.01 0.01
Transformer (T+A: Att. fusion) 0.76 (0.0180) 0.58 (0.0140) 0.47 (0.0090) 0.57 0.61 0.55 0.16 0.18 0.12
M3ANet 0.77 (0.0180) 0.57 (0.0160) 0.46 (0.0110) 0.59 0.58 0.50 0.18 0.17 0.13
M3ANet + Hyperfuse (Ours) 0.75 (0.0230) 0.53 (0.0397) 0.44 (0.0190) 0.51 0.63 0.58 0.16 0.20 0.16

Table 6: Mean τ -day volatility MSE and price movement prediction results (mean and stdev. of 5 runs for each approach)

AV-MNIST We used the same parameters for the baseline as those used by Liang et al. (2021a), and repeated the
experiment 5 times. The results and deviations are reported in Table 7

Model Accuracy ↑
LFN 71.1 (0.3)
MFM 71.4 (0.6)
GB 68.9 (0.6)
Refnet 70.6 (0.5)
MFAS 72.1 (0.3)
HyperFuse 72.4 (0.3)

Table 7: Results on digit classification task with AVMNIST for various fusion architectures.
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YFCC100M-GEO100 iNat
Acc1 Acc5 Acc1 Acc5

UniModal 54.5 83.4 74.2 91.7
DynamicMLP 56.8 85.9 83.6 95.6

GeoNet 56.1 84.9 79.0 93.8
EnsembNet 53.8 82.9 80.5 93.5
HyperFuse 57.5 87.1 83.5 96.2

Table 8: Top-1 and Top-5 accuracies of HyperFuse against previous multimodal works on the YFCC100MGEO100 and the
iNaturalist datasets with SK-Res2Net-101 (Li et al., 2019; Gao et al., 2019) backbone

Fine Grained Image Classification Due to the significantly higher cost of training on these datasets, we ran the process
only twice and presented the average. The difference between the two runs in the same order as Table 2 are 0.2, 0.4, 0.3,
0.6, 0.4, and 0.6. Furthermore, since our baseline results are presented from existing literature which does not report the
variance/deviation figures on these datasets, we report it only for HyperFuse.

We also present results on fine grained classification with a different image encoding network. Table 2 used a ResNet 50
based backbone network. In Table 8 we report results with Sk-Res2Net (Li et al., 2019; Gao et al., 2019).

E. Additional Experiments
E.1. Alternative Blocks

(a) Block II (b) Block III (c) Block IV

Figure 7: Alternate HyperFuse block design that we experiment with.with one auxiliary modality. The basic structure
follows the design of the block in Figure 3(b), where W are parameters of a linear layer MLP applied to the primary modality.

In Figure 7, we present the design of some other HyperFuse blocks that were experimented with. Figure 7(a) present the
simplest version of a hyperblock, where the auxiliary modality is directly transformed to a a matrix W which is applied to
the primary modality. Figure 7(b) is a design motivated by the Dynamic MLP C design presented in Yang et al. (2022b).
Note that in this block the modalities embeddings are concatenated before being transformed by MLPs and transfered back
into the primary and auxiliary channels. As such this is an intermediate step between embedding based and hypernetwork
based design. While this design does do well in one of the experiments, we found this to be slightly worse than the design in
Figure 3(b). Moreover the concatenation between embeddings means the input modalities need to be compatible and hence
this is not directly applicable on all tasks. Finally, since residual connections were found to be helpful we added them to
Block III, and used purely primary modality information in the primary pipelines to make Bloc IV shown in Figure 7(c).

We present results on AV-MNIST, M3A and MOSI of the choices of different block designs. These are presented in Tables
10,12, 11 respectively. We generally see Block II to be lower performing than others. While all the other blocks perform
equally well on AVMNIST, on M3A we see Block III and IV being worse. The more complex block models also perform
worse on MOSI, while Block II performs similarly to MAGBERT. This can be due to the extra complexity of these blocks
which allows it to overfit. From these two experiments, we choose to explore the block presented in Figure 3(b) (which we
refer to also as Base Block) for the rest of the experiments.
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E.2. Multimodality and Conditioning

To assess the conditioning strength of HyperFuse against other models, we measure how the model performance changes
when provided with wrong auxiliary information. For this purpose, we provide the model wrong inputs in the auxiliary
modality by sampling from negative examples and compare the reduction in performance.

(a) (b) (c)

Figure 8: Bar graph of change in accuracy across different models for AVMNIST/MOSI/M3A when a wrong observa-
tion/features in auxiliary modality is provided as input. HyperFuse has greater sensitivity to the auxiliary modality, indicating
a stronger conditioning behaviour.

We also perform the same experiment with gaussian noise corruption added to the auxiliary modalities instead of providing
a negative sample. These results are presented in Figure . As expected the performance drop is lower than in the negative
sample case. We also see that in this case HyperFuse has roughly the same drop as other models, indicating greater sensitivity
to negative auxiliaries than noisy auxiliaries. This provides support to the hypothesis of greater conditional dependency on
the auxiliary information.

(a) (b) (c)

Figure 9: Bar graph of change in accuracy across different models for AVMNIST/MOSI/M3A when a noisy features are
provided as auxiliary modality. HyperFuse has greater sensitivity to the auxiliary modality, indicating a stronger conditioning
behaviour.

Next we assess the multimodality behaviour of HyperFuse against other models. Hessel and Lee (2020) have demonstrated
that most multimodal models often have limited cross-modal interactions. For this they develop a projection method, that
isolates from the model predictions additive behaviour i.e. they extract predictions which can be expressed as a linear
combination of unimodal outputs. We utilize their diagnostic criteria on HyperFuse and the best competing baseline to
evaluate whether HyperFuse produces stronger cross-modal interactions. Since their criteria is more relevant to classification
than regression, we focus on MOSI and AVMNIST here. As baseline we used the best-performing non-HyperFuse baseline
on the corresponding dataset.

E.3. Ablation Experiments
Next, we present results for the ablation studies on AVMNIST and M3A. In these we explore the effect of choosing the
position of the HyperFuse block (i.e. the fusion layer), as well as the impact to changing primary and auxiliary modalities.
The results from these experiments are present in Table 13. These tables report accuracy on AVMNIST and MSE7 for M3A.
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Dataset MOSI AVMNIST
Baseline 1.7 1.3
HyperFuse 2.8 1.9

Table 9: Difference between model accuracy and accuracy of best additive multimodal function projection for the same
model. Greater differences indicate stronger cross-modal interactions. We can see that HyperFuse has greater cross-modal
interaction strength than other models

HyperFuse Block Accuracy ↑
Base 72.4 (0.3)
Block II 71.1 (0.4)
Block III 72.5 (0.5)
Block IV 72.5 (0.4)

Table 10: Results on digit classification task with AVMNIST for different HyperFuse blocks. The performance metric is
Accuracy. Other than the simple Block I, others have similar performance . Base refers to the block in Figure 7

HyperFuse Block Accuracy ↑
Base 84.2 (0.4)
Block II 83.4 (0.5)
Block III 81.3 (0.6)
Block IV 80.1 (0.4)

Table 11: Results on sentiment detection task on MOSI for different HyperFuse blocks. The performance metric is Accuracy
. Base refers to the block in Figure 7

Since the M3A data has no raw text, and instead uses text embeddings directly obtained from a pre-trained transformer, there
are only two positions where one can fuse modalities. Unlike M3A, AVMNIST trains from scratch on a multilayer CNN and
so has more fusion positions available. The results suggest that while there is an optimal position, the overall performance is
not very sensitive to it. We also present results for the unimodal models, which were treated as the primary modality pipeline
for HyperFuse, in the same table. One can see clear and substantial improvements over unimodal accuracies by using
HyperFuse. Figure 10 presents a heatmap visualization of the inter-label distance on AVMNIST with our HyperFuse model.
Once again, we see that HyperFuse produces greater embedding distances suggesting greater performance in discriminating
between related species.

Figure 10: Heatmap of average distances between embeddings of different digits for MFM and HyperFuse. Darker colours
represent greater distances. HyperFuse produces greater interclass separation which explains higher accuracy.



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

HyperFuse: Multimodal Fusion via Hypernetworks

HyperFuse Block MSE3 MSE7 MSE15

Base 0.707 0.546 0.437
Block II 0.742 0.565 0.438
Block III 0.769 0.609 0.467
Block IV 0.779 0.548 0.443

Table 12: MSE of τ -day volatility prediction results for different HyperFuse block designs.

(a) (b) (c)

Figure 11: Relative error of HyperFuse on a) M3A, b) AV-MNIST, c) MOSI with varying size of hidden dimension h inside
the HyperFuse block. Each point corresponds to the normalized error of the corresponding model with respect to the best
model when the hidden dimension is set to the x-axis value.

Fusion Posn. Acc (Image) Acc (Audio)
1 71.9 (0.4) 71.5 ( 0.6)
2 72.6 (0.3) 71.4 (0.5)
3 72.4 (0.3) 70.7 (0.3)
Unimodal 66.7 (0.6) 42.5 (0.9)

(a) AVMNIST
Fusion Posn. MSE7 (Text) MSE7 (Audio)
0 0.53 (0.04) 0.58 (0.01)
1 0.57 (0.01) 0.58 (0.02)
Unimodal 0.62 (0.03) 0.61 (0.01)

(b) M3A

Table 13: Ablation study of performance on a) AVMNIST and b) M3A across the choice of primary modality and the
position of fusion layer in the primary network. Pos -1 refers to the performance of unimodal models


	Introduction
	Preliminaries
	HyperNetworks
	Multimodal Fusion

	Related Work
	HyperFuse
	Hypernetwork-based vs. Embedding-based Fusion
	HyperFuse Architecture
	HyperFuse Block Design

	Experiments
	Multimedia
	Fine-Grained Image Classification
	Affective Computing
	Financial Data

	Conclusion
	Related Works
	Hyperparam details
	AV-MNIST
	M3A
	Fine Grained Image Classification

	Proof of Proposition4.1
	Validating Proposition 3.1

	Extended Results
	Additional Experiments
	Alternative Blocks
	Multimodality and Conditioning
	Ablation Experiments


