
Learning Straight Flows by Learning Curved Interpolants

Shiv Shankar 1 Tomas Geffner 2

Abstract

Flow matching models typically use linear in-
terpolants to define the forward/noise addition
process. This, together with the independent
coupling between noise and target distributions,
yields a vector field which is often non-straight.
Such curved fields lead to a slow inference/gener-
ation process. In this work, we propose to learn
flexible (potentially curved) interpolants in order
to learn straight vector fields to enable faster gen-
eration. We formulate this via a multi-level op-
timization problem and propose an efficient ap-
proximate procedure to solve it. Our framework
provides an end-to-end and simulation-free opti-
mization procedure, which can be leveraged to
learn straight line generative trajectories.

1. Introduction
In recent years, neural generative models have become re-
markably successful in a variety of domains, including com-
puter vision [52], data generation [23], robotics [13], and
scientific applications [16]. This success can be broadly
attributed to the development of generative models based on
learning vector fields [20, 56, 30, 1]. Among these methods,
flow matching [30, 1] is a recent simulation-free method
that has gained traction due to its robust performance. Flow
matching is a version of Continuous Flows (CNFs) [5] that
uses deep neural networks to learn a velocity vector field
that transports samples from a source distribution to the
target distribution. Peluchetti [38], Lipman et al. [30] show
that a regression objective on conditional probability paths
between source and target samples can be used to learn a
model of the velocity field without an explicit target field.

Despite their success, flow-matching models (as well as
other vector-field-based models) often suffer from slow sam-
pling. Specifically, one has to simulate an ODE (or SDE)
with a numerical solver to generate samples. Since these
models learn a vector field that needs to be numerically

1University of Massachusetts 2NVIDIA. Correspondence to:
Shiv Shankar <>.

Submitted to the 40 th International Conference on Machine Learn-
ing, 2025. Copyright 2025 by the author(s).

integrated, the overall process can be slow and rife with
discretization errors [46]. This is because the learnt vector
fields often have curved trajectories, and therefore small
discretization step-sizes are needed for accurate simulation.

To alleviate this issue, many methods have been proposed
to learn more easily integrable vector fields. One com-
mon approach tries to incorporate ‘straightness’ to the field
[31, 32, 28, 48], as straight paths allow for 1-step and
discretization-free inference. While few proposals learn
straight approximations to the true field [57, 59, 29], most
of these share a common flaw. Most of these these meth-
ods use linear conditional paths and independent coupling
during training. While easy to implement, the underlying
vector field in these scenarios is fundamentally curved, and
any ‘straight’ version will be necessarily approximate.

In this work, we propose a new method to learn straight
flows using flow matching by tuning interpolants. We pro-
pose explicitly training the conditional probability paths (or
interpolants) used in flow matching to enforce straightness
in the velocity field. While mathematically simple, the cor-
responding bi-level optimization problem is intractable. We
address this by proposing an approximate approach to solve
this optimization problem, which relies on an an analytic
form for the target vector field of a Conditional Flow Match-
ing objective [30], and enforcing straightness on the target
field tuning the interpolant. Empirically, we observe that
our method outperforms recent models on standard datasets.

Contributions (a) We propose a new bi-level formulation
to learn straight flows that explicitly forces straightness by
learning interpolants, (b) We derive an analytic form of
target vector field that allows training interpolants without
differentiable optimization methods, (c) We present scalable
parametric models for conditional paths that enable efficient
training, (d) We show significant improvements for low-shot
(i.e., low number of function evaluations) generation quality.

2. Preliminaries
Let p0 and p1 be two distributions on Rd. Usually, p1 is our
target distribution, only known through samples, and p0 is
the source distribution, usually chosen to be tractable (e.g.,
a Gaussian). Our goal is to generate samples from p1. One
way to generate these samples is by transporting the initial



Learning Straight Flows by Learning Curved Interpolants

FM with Linear Interpolants FM with Learned Interpolants (ours)

Figure 1: Illustration of training difference flow matching (FM) [30] and our method on an illustrative 2 gaussian (source,
black) to 2-gaussian (target, blue) problem. On the left we have standard FM with linear interpolants (red lines) and the
resulting flow vector. On the right we show our approach. By allowing non-linear interpolants we are able to learn a flow
velocity field with significantly less curvature.

distribution p0 via a vector field to the target p1. Specifically,
consider a vector field u(t, x) : [0, 1]× Rd −→ Rd such that
the differential equation

dγx(t)

dt
= u(t, γx(t)), γx(0) ∼ p0 (1)

produces sample from p1. Under some topological con-
straints on the distributions, the existence of such fields is
well known [3]. For a given starting sample x, we denote
the solution of Equation (1) as γx(t). This solution, also
called a flow, is the trajectory of point x as it evolves under
u. We denote by pt the probability distribution obtained at
time t by moving the samples of p0 via the field u. Note that
for a given source and target distributions, multiple vector
fields which satisfy the above equation exist.

FLOW MATCHING

Flow matching (FM) [30] is a simulation-free method
for learning one such vector field using a neural network
vθ(t, x). It does that by optimizing the FM objective

LFM = Et,pt
||vθ(t, xt)− u(t, xt)||22. (2)

Unfortunately, this objective is not tractable given only the
source and target distributions, as the target vector field
u(t, xt) is unknown. Lipman et al. [30] show that one can
optimize the conditional flow matching objective instead

LCFM = Et,q(z)Ept(xt|z)||vθ(t, xt)− u(t, xt|z)||22, (3)

where u(t, xt|x1) is a conditional vector field and corre-
sponding probability path pt(xt|z). Lipman et al. [30] con-
sidered z to be a sample from the target x1. While Lipman
et al. [30] considered a family linear Gaussian paths, more
generalized variants of this problem have been proposed

[48]. Any suitable conditioning variable z can be chosen if
the objective remains tractable [40, 48]. A related problem
is that of the Schrodinger Bridge [11, 50], which seeks the
vector field whose probability law is close to that of the
standard Brownian diffusion process.

3. Learning Straight Flows by Tuning
Interpolants

In this section we describe our method to learn straight
flows. We start with the standard CFM objective, but intro-
duce parametric interpolants (parameterized by ϕ), instead
of the linear ones often used in flow matching. Once we do
so, the learned flow model vθ becomes dependent on the
interpolant parameters ϕ. We thus formulate the problem of
learning straight flows as a bi-level optimization problem,
where the interpolants are tuned to optimize the straight-
ness of vθ (Section 3.1). Next, we show how one can solve
this bilevel optimization without using differentiable opti-
mization methods. For this purpose, we derive an analytic
expression for the flow field in terms of the parameters ϕ
(Section 3.2) together with a measure of the flow’s straight-
ness (Section 3.3). Finally, we describe a specific family
of interpolants which enables scalable computation with
high-dimensional datasets (Section 3.5).

3.1. Bi-Level Formulation for Straight Flows

We consider the commonly used CFM objective with z =
(x0, x1) [48]. While CFM models often use simple linear
interpolants, the consistency of the CFM approach only
requires smooth enough conditional fields. Crucially the lin-
ear interpolant xt can be replaced by any other interpolant
(stochastic or otherwise), as long as the conditional u (Equa-



Learning Straight Flows by Learning Curved Interpolants

Figure 2: From left to right, the figure depicts flows learned by (1) OT Coupling, (2) Independent Coupling, (3) Sinkhorn
Coupling and (4) Our method. For this example the models were trained to transform 8-gaussian (source) to spiral moons
(target). We can see that using OT related coupling learns straighter fields. We also see that by using learnt interpolants, our
approach learns straight fields despite using independent coupling .

tion (3)) is modified to be the corresponding tangent vector.
Specifically, choosing the interpolant to be xt = ϕt,x1

(x0)
we can rewrite the CFM objective from Equation (3) as

Et,p0(x0),p1(x1)||vθ(t, xt)− ∂tϕt,x1
(x0)||22, (4)

which recovers standard CFM for ϕ := tx1 + (1− t)x0.

We propose learning straight flows by choosing ϕ such that
the resulting vector field v is as straight as possible. We
formulate this as a bi-level optimization problem

min
ϕ

|vθ∗(.;ϕ)|Straight s.t. (5)

vθ∗ = argmin
θ

Et,p0(x0),p1(x1)||vθ(t, xt;ϕ)− ∂tϕt,x1
(x0)||22,

where | · |Straight is a measure of straightness of the vector
field. As an example, previous work by Pooladian et al.
[40], Liu et al. [31] suggest measuring curvature using

|v|Straight = Et∼U(0,1)
x0∼p0

[
||vt(γx0(t))||2 − ||γx0(1)− x0||2

]
,

where γ is the flow, that is, the solution to Equation 1.

Remark. Note that vθ is a function of θ, but also has an
implicit dependence on ϕ. Due to the inner optimization,
the optimal parameter θ∗ depends on ϕ. We made this
dependence explicit in Equation (5).

While mathematically straightforward, solving the optimiza-
tion problem from Equation (5) is computationally intensive.
This is a bi-level problem, where each inner objective re-
quires solving a FM objective. Our insight is that one is
not required to solve the FM objective to get vθ∗ , and can
instead leverage the optimal vector field vθ∗ in a different
manner directly in terms of the interpolant functions ϕ.

3.2. Reformulating Flow Matching

This section shows how to connect vθ to the interpolant func-
tion ϕ without solving the inner optimization iteratively, by
presenting an analytic form for the optimal v∗θ (Equation (6))
in terms of ϕ. We will then use this result in Section 3.3 and
Section 3.5 to derive our final optimization algorithm.

Proposition 1. Let J be the determinant of the Jacobian

of the interpolant’s inverse, i.e.,
∣∣∣∣dϕ−1

t,x1
(x)

dx

∣∣∣∣
∆

. The optimal

velocity field for an interpolant ϕ is given by

v∗ϕ(t, xt) =

∫
∂tϕt,x1

(ϕ−1
t,x1

(xt))p0(ϕ
−1
t,x1

(xt))|J |p1(x1)dx1∫
p0(ϕ

−1
t,x1

(xt))|J |p1(x1)dx1

.

(6)

We include a derivation of Equation (6) in Section 3.2.1.

Remark. A more compact version of Equation (6) for the
standard linear interpolant x0 = xt−tx1

1−t has been presented
earlier by Tong et al. [48]. However, since the linear inter-
polant has no free parameters, it is not suitable for learning.

Specific simple parameterisations, like paths of the form
x0 = xt−g(t)x1

1−h(t) with the coefficients g, h being non-linear
in t, yield efficient versions of Equation (6). For such paths,
Equation (6) simplifies as the Jacobians do not depend on
x1. However, such parameterisations, while simple to use,
may not be powerful enough for complex datasets.

While exact, Equation (6) is intractable, as it involves com-
plex integrals. In practice, our final algorithm will leverage
empirical estimates for this quantity using samples from
p(x1), and flexible interpolants ϕ parameterized by neural
networks, as explained in Section 3.5.



Learning Straight Flows by Learning Curved Interpolants

3.2.1. DERIVATION OF EQUATION (6)

A key challenge in analyzing the FM objective is that both
terms involved in the L2 loss (Equation (4)) depend on x0

and x1. This can be addressed by writing out the distribution
over xt explicitly

Et,p0(x0),p1(x1)||vθ(t, xt)− ∂tϕt,x1
(x0)||22 (7)

= Et,p(x0,x1)||vθ(t, xt)− ∂tϕt,x1
(x0)||22 (8)

= Et,pt(xt),p(x0,x1|xt,t)||vθ(t, xt)− ∂tϕt,x1(x0)||22, (9)

where it can be observed that the global minimizer is

v∗(t, xt) = Ep(x0,x1|xt,t)[∂tϕt(x0, x1)]. (10)

This expression can also be directly obtained from the gen-
eralized CFM objective [40], using z = xt.

While simple, Equation (10) cannot be used in practice since
we do not have access to the required distributions. For
instance, x1 is only available via samples, and the posterior
p(x0, x1|xt) is intractable. This can be addressed by some
analysis and a few judicious choices conditional paths. First
we write the conditional distribution as:

p(x0, x1|xt, t) =
p(x0, x1, xt|t)

p(xt|t)

=
p(x0, x1, xt|t)∫

p(x0, x1, xt|t)dx0dx1
. (11)

Specifically, using xt = ϕt,x1
(x0), Equation (11) becomes

p(x0, x1|xt, t) =
p(x0, x1, ϕt,x1

(x0)|t)∫
p(x0, x1, ϕt,x1

(x0)|t)dx0dx1
. (12)

Since the maps are deterministic, we get

p(x0, x1 | xt, t) =
δ(x̃t − xt) p0(x0) p1(x1)

p(xt|t)
, (13)

where x̃t = ϕt,x1
(x0) is an auxiliary variable introduced to

distinguish the conditioning variable from the conditioned
value, δ is the Dirac function [12], and p(xt) is the marginal
likelihood (normalization constant), given by

p(xt|t) =
∫

p(x0, x1, xt|t)dx0dx1 (14)

=

∫
δ(x̃t − xt) p0(x0) p1(x1) dx0 dx1. (15)

While the above integral can be estimated with infinite data,
the expression is not directly practically useful, since the
estimator will often just be zero when relying on empirical
samples (due to the Dirac function). However, a useful ex-
pression can be obtained noting that the Dirac delta function
allows us to integrate over x0 using the change in variables
formula [18], yielding

p(xt|x1, t) = p0(ϕ
−1
t,x1

(xt))J , (16)

where J is the determinant of the Jacobian of the inter-

polant’s inverse, i.e.,
∣∣∣∣dϕ−1

t,x1
(x)

dx

∣∣∣∣
∆

. Substituting this in Equa-

tion (15) and using the definition of v∗ (the expectation of
∂tϕt,x1

under p(x0, x1|xt)) yields Equation (6).

3.3. Straightening the Flow

Equation (6) yields powerful way to manipulate the target
velocity field v∗ to enforce desired properties on the flow.
When we want the flows to be straight, the vector field v∗

should be constant everywhere on a trajectory. This implies
that a straight velocity field ustr must satisfy

ustr(t, γx0(t)) = ustr(s, γx0(s)) = ustr(0, γx0(0)) ∀s, t,

where γx0 is the flow generated by ustr from point x0. Since
the vector field is constant, we can differentiate the above
expression with respect to t to get

∂tustr = −∇xustr · ustr (17)

for all points on the trajectory, where · refers to the matrix-
vector product. Therefore, since we know the optimal field
is given by v∗, we can learn straight flows by optimizing

ϕ∗ = argmin
ϕ

||∂tv∗ϕ +∇xv
∗
ϕ · v∗ϕ||2. (18)

We note here that this criteria for straight flows has been
observed before Liu et al. [31], Yang et al. [57].

While the above expression is correct, optimizing it is com-
putationally intensive, as we need to differentiate through
v∗ϕ, which in turns requires the Jacobian of ϕ−1

t,x1
. However,

using a flexible neural network for vθ, under ideal training
we expect vθ ≈ v∗ϕ. Therefore, we propose to replace the
derivatives of v∗ with derivatives of vθ, which yields

min
θ,ϕ

EtEx0,x1
||vθ(xt, t)− sg(v∗(xt))||2 (19)

+ λ||∂tvθ(x′
t, t) +∇xvθ(x

′
t, t) · v∗(x′

t, t)||2.

Here “sg” refers to stop gradient and λ > 0 is a hyper-
parameter. We suppress the dependence of v∗ on ϕ for
notational convenience.

Remark. Technically, Equation 17 holds only for points
xt on the trajectory obtained using v∗ϕ. Hence, ideally,
one should compute this loss only via sampling from v∗ϕ.
However, if the source and target are diffused enough, then
such trajectories will likely be spread around and one-step
approximations for x′

t = x0 + t v(x0, t) can be used.

3.4. Segmented Objective

One issue with the aforementioned approach is that a cho-
sen parameterization of ϕ may not be powerful enough to



Learning Straight Flows by Learning Curved Interpolants

ensure straight flows. An alternative is to ensure piecewise
straightness. Since even the standard curved flow under lin-
ear interpolants can be well approximated if the number of
pieces is high enough, this can address the situation when ϕ
is difficult to learn. Forcing piecewise straightness also pro-
vides a natural way to balance the computational resource vs
straightness, and has been explored by Yang et al. [57]. We
follow their approach for enforcing piecewise straightness.
The time interval [0, 1] is divided into K uniform pieces, and
straightness is only enforced between points in the same
segment. This objective has the additional advantage that
unlike Equation (17) this can be enforced at a more general
xt.

||fϕ(t, xt)− fϕ(t+∆t, xt+∆t||2 (20)

where fϕ(t, xt) = xt+( i+1
K −t)v∗ϕ(t, xt) and both t, t+∆t

belong to the same segment [i/K, (i + 1)/K]. We also
perform experiments by replacing the regularizer in Equa-
tion (19) with Equation (20).

3.5. Scalable Computation

While Equation (19) is ‘analytical’, in general, it has poor
scaling in the dimensionality of the output, specifically due
to the presence of the inverse-derivative as well as the Jaco-
bian, both of which do not generally scale with the dimen-
sion of the data. Additionally, we need to ensure that the
function ϕt,x1

remains invertible. Fortunately, researchers
have developed models that are amenable to these consid-
erations. Specifically, the literature on normalising flows
and invertible models [37] has proposed several families
of expressive neural networks that support such operations.
In this work we use GLOW/1x1 convolution model [27]
to parameterise the function ϕ. This family of neural net-
works learns any linear transform’s parameters in the “PLU”
format. It initializes any matrix parameter W of a linear
layer, finds its PLU decomposition, fixes P and optimizes
the lower and upper diagonal matrices L and U . Normaliza-
tions and activations are also chosen in a way that ensures
easy inversion and memory efficiency.

We follow a similar approach but modify the parameteri-
zation further. Specifically, we require the diagonal of the
matrix U to be non-zero. This is because the Jacobian deter-
minant of the corresponding transform is directly dependent
on the diagonal product of U . As these terms appear in
the denominator of v∗ in Equation 6, we require that the
determinants should remain far from zero for stability.

The expression for v∗ from Equation (6) computes the in-
verse function ϕ−1 for the same xt and varying x1. Thus, it
is more natural to use neural networks to directly parameter-
ize the inverse function ϕ−1, compared to ϕ. However we
still need an efficient inverse function. GLOW models form
a natural family of such functions. In our experiments, we

do the same using the GLOW model to map from xt to x0.

Boundary Conditions Besides invertibility and efficient
Jacobian computation, the interpolant ϕ must satisfy certain
boundary conditions: (i) ϕ−1

t′,x1
(xt) → xt for t′ → t, and

(ii) ϕ−1
1,x1

(xt) = x1. To ensure both of these, we parameter-
ize the model as F ((t′ − t)xt + (1− t′)x1) where F is the
aforementioned GLOW model, and we choose the model
weights such that the function becomes the identity at t′ = t
and t′ = 1. We achieve this using the Bernstein polynomials
bn,k for k = 1 · · ·n− 1. Specifically, we parameterize the
L matrix as L = I +

∑n−1
k=1 bn,k(

t′−t
1−t )Lk, where Lk are a

set of trainable lower diagonal matrices, and k is a hyperpa-
rameter specifying how many transformations are allowed.
The weight matrices U also follow this parameterization.

Computing Expectations The expression for v∗ from
Equation (6) requires computing expectations (or integrals)
over the data distribution p(x1). Since ϕ is given by the
neural network and p0 is Gaussian (or a similar tractable
distribution), the value of p0(ϕt,x1(xt)) can be computed
exactly. Therefore, one can estimate both the numerator and
the denominator as empirical expectations over the target
distribution. While the numerator of v∗ admits unbiased es-
timation through this approach, using an empirical estimate
in the denominator introduces bias. However, the resulting
estimator is consistent, with the bias going to zero as we
aggregate more data samples. Additionally, this estimation
process, which combines vector fields from multiple paths
at the same time, often produces a lower variance estimate
of the optimal v∗. To see this, note that the all the terms in
Equation (6) except ∂t(ϕ) are related to probabilities (p0, p1
or the Jacobian). As such when replaced by empirical ex-
pectation, this can be seen as a form of weighted importance
sampling, which often has lower variance [47, 17], thus
leading to more efficient optimization. Such estimators
often work well and are common in both probabilistic infer-
ence [47] and reinforcement learning [41]. In fact, Xu et al.
[54] used this idea to reduce the variance of the gradient
estimates used to train diffusion models, observing that it
often led to more robust optimization, thanks to the variance
reduction, despite the bias introduced.

In our framework, a balance between low bias and low vari-
ance can be achieved by interpolating v∗ϕ with the original
conditional target field ∂tϕ in the FM objective. Addition-
ally, the bias introduced by using an empirical estimate of
v∗ϕ to learn vθ can be countered by using the conditional
vector ∂tϕ instead of using v∗ϕ in the first term of the FM
loss (Equation (19)). In such a case the bias only has an
indirect influence on vθ, as it drives the optimization of ϕ .
Consequently, this bias predominantly affects the straight-
ness metric rather than the core FM objective. However
this may slow down optimization due to the higher variance



Learning Straight Flows by Learning Curved Interpolants

[54]. In our experiments we use v∗ϕ, and leave managing the
bias-variance tradeoff for future work.

4. Related Work
FM has been proven to work with arbitrary couplings be-
tween the source and target distributions [40, 48]. Mul-
tisample FM [40] proposes to generalize the independent
coupling of the data distribution p1(x1) and prior distribu-
tion p0(x0) to the optimal transport coupling plan π(x0, x1).
Under the optimal transport plan, the learned trajectory of
ODE are straight [40]. However, this requires constructing
the optimal transport plan for the data which is computa-
tionally prohibitive. Minibatch OT and Minibatch Sinkhorn
coupling have been suggested to lower the cost of comput-
ing such couplings [48]. Minibatch OT can ensure straight
fields asymptotically in the limit of full data optimization.

Liu et al. [31] suggested a rectified flow matching method
which uses a pretrained FM to learn a straighter approxima-
tion. Based on this insight, other methods to learn straight
flows have also been proposed [31, 32, 29]. These methods
however are not simulation-free (requiring sampling during
training) and often require iteratively distilling from flows,
both of which are computationally intensive.

Non-Linear Interpolants Rectified and distilled flow
methods [29, 31] rely on the coupling given by a “teacher”
(pre-trained) flow. These methods often rely on linear in-
terpolants, and require multiple training stages, where each
stage requires generating training pairs of noise and data
samples by simulating the ODE with the vector field learnt
in the previous stage. Our method, on the other hand, is
simulation-free and uses the independent coupling, though
with learned interpolants. Kapuśniak et al. [21] also pro-
posed using non-linear interpolants. They learn an inter-
polant such that the conditional paths stay close to a man-
ifold, but do not directly optimize any property of v∗. An-
other recent work using non-linear interpolant is Davis et al.
[10] to improve generation of discrete data.

Recently, Bartosh et al. [4] proposed learning the forward
process in diffusion models, akin to learning the interpolant
in flow matching, and also rely on interpolants parameter-
ized via neural networks and adaptations of normalizing
flows. While closely related to our method, the approach
proposed in prior work differs in its formulation for learning
the interpolants. Specifically, they employ a specific param-
eterization for both the interpolant ϕ and the flow model vθ,
which share parameters. This design choice, can limit the
flexibility of the model. For instance, as illustrated in Ap-
pendix C, there exist certain interpolants ϕ for which, under
their paramaterization, no θ can yield the optimal field v∗.
Additionally, since they do not use a bi-level objective, the
optimization procedure does not account for the relationship

between the optimal θ and optimal ϕ. In other words, the
dependence of θ on ϕ is ignored. Our method does not have
these restrictions. Empirically, we observe that our approach
achieves improved performance (Section 5), highlighting
the benefits of explicitly modeling this relationship.

Other Related Works Xu et al. [54] proposed a self-
normalized estimator like the one we use derived from
Equation (6) in the context of diffusion models to reduce
the variance of the gradient estimates used during training;
a problem which had also been identified by Karras et al.
[24]. Yang et al. [57] proposed regularizing with a loss
similar to Equation (18), except they consider the paths
taken with respect to the conditional vector fields. However,
this family of methods can only learn approximate velocity
fields, which can be seen from the analytic form of v∗ (Equa-
tion (6)). If one takes a linear interpolant (so the Jacobian
determinant J = 1 and ϕt,x1

is linear), the optimal field v∗

is exactly determined and does not have any free variables to
adjust. As such, if one fixes both the coupling function and
the interpolant, the underlying ground truth velocity field is
fully determined. If this field is not straight, any objective
which tries to straighten the field sacrifices accuracy.

Consistency Models This family of models [57, 55, 46]
aims to learn a function that directly solves Equation (1).
One can choose to solve the ODE numerically and learn the
function using a distilled dataset consisting of pairs of noise
and the corresponding data-samples, though more common
and scalable approaches use a simulation free approach.
We solve the problem of learning straight fields, which
is orthogonal to the problem that consistency models aim
to solve, which involves learning a function that correctly
integrates the vector field. In principle, these ideas could be
combined to produce more efficient sampling methods.

5. Experiments
5.1. Toy Datasets

We first consider three small toy datasets to evaluate our
method in visually illustrative scenarios. We compare our
method against FM trained on the optimal transport map
[40], the Sinkhorn coupling [48], which attempts to approx-
imate the OT solution, and standard FM [30]. For these
we only considered the objective in Equation (19) and not
the segmented one. In Figure 2 we present an example of
generating spirals (target) from 8 Gaussians (source). We
can see that training with the optimal transport map, as ex-
pected, produces straight vector fields. We can also see
that the Sinkhorn coupling yields reasonably straight fields,
while the standard FM approach produces significantly more
curved paths. We also see that our approach produces very
straight paths, similar to the ones obtained using the opti-



Learning Straight Flows by Learning Curved Interpolants

Algorithm 1 Vector field model training algorithm

Require: Sampler for p0 (usually Gaussian), Empirical samples from p1, batch size N , averaging size M(≥ N) (to
estimate Equation (6)); models vθ(x, t) and ϕ

1: while not converged do
2: Sample N points {ti}Ni=1 from U [0, 1]
3: Sample N pairs {xi

0, x
i
1}ni=1 from p(x0, x1) = p0(x0)p1(x1)

4: Sample M −N points {x̂j
1}

M−N
i=N from p1

5: Compute N interpolants xi
t from (ti, xi

0, x
i
1)

6: Estimate v∗(xi
t) (Eq. 6) replacing integrals

∫
f(xt, x1, t)p1(x1)dx1 by empirical estimates 1

M

∑M
j=1 f(x

i
t, x

j
1, t

i)
7: Calculate the empirical loss using Equation (19)
8: Update parameters θ, ϕ (e.g., using SGD or Adam [26])
9: end while

CIFAR-10 ImageNet 32x32 CelebA 256

Figure 3: Generated samples from CIFAR, ImageNet and CelebA.

mal coupling. We show an additional example on another
synthetic dataset, transforming a Gaussian (source) to the
4-square target, in Appendix B, with similar conclusions.

In Figure 1 we show the learnt conditional paths (i.e., in-
terpolants) for a simple 2-dimensional dataset with both
the source and target being a mixture of 2 gaussians. Reg-
ular FM uses linear interpolants (shown in red, left plot
Figure 1), which leads to a curved velocity field (second
plot in Figure 1). In the same figure we can observe that
our method, by learning curved interpolants (third plot in
Figure 1), yields a velocity field with very little curvature.
Intuitively, this is achieved thanks to the curved interpolants,
with the curvature canceling out once the curved interpolants
are mixed to get the final velocity field.

5.2. Real Data

In this section we present experimental results on image
generation 1. We conduct two sets of experiments: one on
low-resolution datasets, including CIFAR-10 [2] and Ima-
geNet 32x32 [8], and another on higher-resolution datasets,

1Our code is based upon the code provided by Yang et al. [57]

namely CelebA-HQ [22] and AFHQ-Cat [7]. Following
the methodology of Song et al. [46], we evaluate the model
across varying numbers of function evaluations (NFE). The
flow field is learned using a U-Net architecture based on
DDPM++ [45]. To assess the quality of generated images,
we employ the Fréchet Inception Distance (FID) score [19].

Remark. We use an annealing schedule for the regular-
ization term in Equation (19) for non-toy datasets. The
straightness penalty, as we use in this work, is reasonable
once vθ is roughly aligned with v∗. For non-toy datasets,
it may take many training iterations before a good vector
field v is learnt. We thus use a multi-stage approach where
we set λ = 0 in the first stage, and anneal λ slowly over
time. Furthermore, we observed that learning ϕ too fast
sometimes led to unstable optimization, as the conditional
paths are more complex than v∗. We therefore use a smaller
learning rate for ϕ (5e-6) than for θ (1e-4).

Baselines We follow Song et al. [46], Yang et al. [57]
and compare our method against several baselines compris-
ing of representative diffusion models and flow models, as
well as the recent approaches that focus on learning straight
vector fields. The baseline models include Consistency



Learning Straight Flows by Learning Curved Interpolants

Models [46], Rectified Flow [31], Rectified Flow with Bell-
man Sampling [35], Neural Flow Diffusion Models [4], and
Consistency-FM [57]. We did not run these baselines our-
selves and have reported results from literature. Since not
all earlier works have reported results on all the datasets, for
each dataset the set of baselines is not always identical.

5.2.1. RESULTS

The results for the CIFAR dataset are presented in Table
1. We also report the Inception-Score (IS) [43] comparison
with models that have reported IS scores in Appendix B.
Our method demonstrates superior performance compared
to models such as Consistency FM [57], Rectified Flow [31],
and Consistency Model [46]. We also see that our model
matches or outperforms mainstream diffusion models while
using a low number of function evaluations (NFE).

Table 3 shows results on the ImageNet 32x32 dataset, where
we compare against plain flow matching [30] (with a large
number of NFEs), multisample flow matching [40], and
Neural Flow Diffusion models [4]. As for the other datasets,
we observe that our approach yields better performance
than competing approaches using a low number of NFEs,
and that using 12 steps during generation it outperforms
plain flow matching with 120 steps, while remaining highly
competitive when using only 4 steps.

Table 1: Comparison with baseline models on CIFAR-10.
Results for other models are obtained from previous work.

Method NFE (↓) FID (↓)

Score SDE [45] 2000 2.20
DDPM [20] 1000 3.17
LSGM [49] 147 2.10
PFGM [53] 110 2.35
EDM [24] 35 2.04

1-Rectified Flow /ReFlow[31] 1 378
Glow [27] 1 48.9
Residual Flow [6] 1 46.4
GLFlow [51] 1 44.6
DenseFlow [14] 1 34.9
Consistency Model [46] 2 5.83
Consistency Flow Matching [57] 2 5.34

Ours 2 4.61
Ours (segmented) 2 4.19

We further evaluate our method on high-resolution image
generation tasks, specifically 256×256 images from AFHQ-
Cat and CelebA-HQ. Following Yang et al. [57], we com-
pare against baseline methods, including Consistency FM
[57], ReFlow [31], and ReFlow with Bellman sampling
[35]. Results from CelebA are summarized in Table 2 while

AFHQ can be found in Appendix B. All baseline results are
taken from Yang et al. [57].

Our method outperforms baseline approaches such as Recti-
fied Flow [31] and Rectified Flow with Bellman sampling
[35] by a significant margin, even with the same number of
function evaluations (NFEs). Additionally, compared to its
performance on CIFAR-10, our method demonstrates even
greater improvements in generating high-resolution images.

Table 2: Comparison with flow matching models on CelebA.

Method NFE (↓) FID (↓)

ReFlow [31] 8 109.4
6 127.0

ReFlow + Bellman Sampling [35] 8 49.8
6 72.5

Consistency Flow Matching [57] 6 36.4

Ours 6 28.6
Ours (segmented) 6 24.2

Table 3: Results on ImageNet-32x32.

Method NFE (↓) FID (↓)

Flow Matching [30] 120 5.0

MultiSample FM [40] 4 17.3
12 7.2

NFDM [4] 4 6.1
12 4.1

Ours
2 8.32
4 5.58
12 3.84

Ours (segmented)
2 7.32
4 5.41
12 3.56

6. Conclusion
We propose a novel approach to learn flow matching vec-
tor fields that; unlike existing methods, which try to learn
straight approximations to a curved vector field; learns a
straight vector field directly. We use non-linear interpolants
in the CFM objective and show how one can optimize the
corresponding vector field solutions. In the process, we pro-
vide analytical expressions for the general solution to a CFM
model and show how it can be tuned to adjust the “straight-
ness” of the vector field. We present a way to parametrize
the interpolants using a GLOW model, allowing fast inver-
sion and determinant computations. Our approach outper-
forms recent methods when using a low number of NFEs.



Learning Straight Flows by Learning Curved Interpolants

7. Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
[1] Albergo, M. S. and Vanden-Eijnden, E. Building nor-

malizing flows with stochastic interpolants. In The
Eleventh International Conference on Learning Repre-
sentations, 2022.

[2] Alex, K. Learning multiple layers of features from tiny
images. https://www. cs. toronto. edu/kriz/learning-
features-2009-TR. pdf, 2009.

[3] Ambrosio, L. and Crippa, G. Continuity equations and
ode flows with non-smooth velocity. Proceedings of
the Royal Society of Edinburgh Section A: Mathemat-
ics, 144(6):1191–1244, 2014.

[4] Bartosh, G., Vetrov, D., and Naesseth, C. A. Neu-
ral flow diffusion models: Learnable forward pro-
cess for improved diffusion modelling. arXiv preprint
arXiv:2404.12940, 2024.

[5] Chen, R. T., Rubanova, Y., Bettencourt, J., and Du-
venaud, D. K. Neural ordinary differential equations.
Advances in neural information processing systems,
31, 2018.

[6] Chen, R. T., Behrmann, J., Duvenaud, D. K., and
Jacobsen, J.-H. Residual flows for invertible generative
modeling. Advances in Neural Information Processing
Systems, 32, 2019.

[7] Choi, Y., Uh, Y., Yoo, J., and Ha, J.-W. Stargan v2:
Diverse image synthesis for multiple domains. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8188–8197, 2020.

[8] Chrabaszcz, P., Loshchilov, I., and Hutter, F. A down-
sampled variant of imagenet as an alternative to the
cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

[9] Daras, G., Delbracio, M., Talebi, H., Dimakis, A. G.,
and Milanfar, P. Soft diffusion: Score matching for
general corruptions. arXiv preprint arXiv:2209.05442,
2022.

[10] Davis, O., Kessler, S., Petrache, M., Ceylan, I. I., Bron-
stein, M., and Bose, A. J. Fisher flow matching for
generative modeling over discrete data. arXiv preprint
arXiv:2405.14664, 2024.

[11] De Bortoli, V., Thornton, J., Heng, J., and Doucet,
A. Diffusion schrödinger bridge with applications to
score-based generative modeling. Advances in Neu-
ral Information Processing Systems, 34:17695–17709,
2021.

[12] Dirac, P. A. M. The principles of quantum mechanics.
Number 27. Oxford university press, 1981.

[13] Firoozi, R., Tucker, J., Tian, S., Majumdar, A., Sun,
J., Liu, W., Zhu, Y., Song, S., Kapoor, A., Hausman,
K., et al. Foundation models in robotics: Applications,
challenges, and the future. The International Journal
of Robotics Research, pp. 02783649241281508, 2023.

[14] Grcić, M., Grubišić, I., and Šegvić, S. Densely con-
nected normalizing flows. Advances in Neural Infor-
mation Processing Systems, 34:23968–23982, 2021.

[15] Gu, J., Zhai, S., Zhang, Y., Bautista, M. A., and
Susskind, J. f-dm: A multi-stage diffusion model
via progressive signal transformation. arXiv preprint
arXiv:2210.04955, 2022.

[16] Guo, Z., Liu, J., Wang, Y., Chen, M., Wang, D., Xu, D.,
and Cheng, J. Diffusion models in bioinformatics and
computational biology. Nature reviews bioengineering,
2(2):136–154, 2024.

[17] Hájek, J. Comment on “an essay on the logical founda-
tions of survey sampling, part one”. The foundations
of survey sampling, 236, 1971.

[18] Halperin, I. and Schwartz, L. Introduction to the
Theory of Distributions. University of Toronto Press,
1952.

[19] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler,
B., and Hochreiter, S. Gans trained by a two time-
scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems,
30, 2017.

[20] Ho, J., Jain, A., and Abbeel, P. Denoising diffusion
probabilistic models. In NeurIPS, volume 33, pp. 6840–
6851, 2020.

[21] Kapuśniak, K., Potaptchik, P., Reu, T., Zhang, L.,
Tong, A., Bronstein, M., Bose, A. J., and Di Giovanni,
F. Metric flow matching for smooth interpolations on
the data manifold. arXiv preprint arXiv:2405.14780,
2024.

[22] Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017.

[23] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen,
J., and Aila, T. Analyzing and improving the image
quality of stylegan. In CVPR, pp. 8110–8119, 2020.

[24] Karras, T., Aittala, M., Aila, T., and Laine, S. Eluci-
dating the design space of diffusion-based generative
models. Advances in Neural Information Processing
Systems, 35:26565–26577, 2022.

[25] Kim, D., Na, B., Kwon, S. J., Lee, D., Kang, W., and
Moon, I.-C. Maximum likelihood training of implicit



Learning Straight Flows by Learning Curved Interpolants

nonlinear diffusion model. Advances in neural infor-
mation processing systems, 35:32270–32284, 2022.

[26] Kingma, D. P. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[27] Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018.

[28] Kornilov, N., Gasnikov, A., and Korotin, A. Optimal
flow matching: Learning straight trajectories in just
one step. arXiv preprint arXiv:2403.13117, 2024.

[29] Lee, S., Kim, B., and Ye, J. C. Minimizing trajec-
tory curvature of ode-based generative models. In
International Conference on Machine Learning, pp.
18957–18973. PMLR, 2023.

[30] Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M.,
and Le, M. Flow matching for generative modeling.
In The Eleventh International Conference on Learning
Representations, 2022.

[31] Liu, X., Gong, C., et al. Flow straight and fast: Learn-
ing to generate and transfer data with rectified flow. In
The Eleventh International Conference on Learning
Representations, 2022.

[32] Liu, X., Zhang, X., Ma, J., Peng, J., and Liu, Q. In-
staflow: One step is enough for high-quality diffusion-
based text-to-image generation. arXiv preprint
arXiv:2309.06380, 2023.

[33] Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu,
J. Dpm-solver: A fast ode solver for diffusion proba-
bilistic model sampling in around 10 steps. Advances
in Neural Information Processing Systems, 35:5775–
5787, 2022.

[34] Nachmani, E., Roman, R. S., and Wolf, L. Non
gaussian denoising diffusion models. arXiv preprint
arXiv:2106.07582, 2021.

[35] Nguyen, B., Nguyen, B., and Nguyen, V. A. Bell-
man optimal stepsize straightening of flow-matching
models. In The Twelfth International Conference on
Learning Representations, 2024.

[36] Nielsen, B. M., Christensen, A., Dittadi, A., and
Winther, O. Diffenc: Variational diffusion with a
learned encoder. arXiv preprint arXiv:2310.19789,
2023.

[37] Papamakarios, G., Nalisnick, E., Rezende, D. J., Mo-
hamed, S., and Lakshminarayanan, B. Normaliz-
ing flows for probabilistic modeling and inference.
Journal of Machine Learning Research, 22(57):1–64,
2021.

[38] Peluchetti, S. Non-denoising forward-time diffu-
sions, 2022. URL https://openreview.net/
forum?id=oVfIKuhqfC.

[39] Phung, H., Dao, Q., and Tran, A. Wavelet diffusion
models are fast and scalable image generators. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pp. 10199–10208, 2023.

[40] Pooladian, A.-A., Ben-Hamu, H., Domingo-Enrich, C.,
Amos, B., Lipman, Y., and Chen, R. T. Multisample
flow matching: Straightening flows with minibatch
couplings. 2023.

[41] Precup, D. Eligibility traces for off-policy policy eval-
uation. Computer Science Department Faculty Publi-
cation Series, pp. 80, 2000.

[42] Rombach, R., Blattmann, A., Lorenz, D., Esser, P.,
and Ommer, B. High-resolution image synthesis with
latent diffusion models. In CVPR, pp. 10684–10695,
2022.

[43] Salimans, T., Goodfellow, I., Zaremba, W., Cheung,
V., Radford, A., and Chen, X. Improved techniques
for training gans. Advances in neural information
processing systems, 29, 2016.

[44] Shaul, N., Perez, J., Chen, R. T., Thabet, A., Pumarola,
A., and Lipman, Y. Bespoke solvers for generative
flow models. arXiv preprint arXiv:2310.19075, 2023.

[45] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar,
A., Ermon, S., and Poole, B. Score-based genera-
tive modeling through stochastic differential equations.
In International Conference on Learning Representa-
tions, 2020.

[46] Song, Y., Dhariwal, P., Chen, M., and Sutskever, I.
Consistency models. In International Conference on
Machine Learning, pp. 32211–32252. PMLR, 2023.

[47] Tokdar, S. T. and Kass, R. E. Importance sampling:
a review. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 2(1):54–60, 2010.

[48] Tong, A., Malkin, N., Huguet, G., Zhang, Y., Rector-
Brooks, J., FATRAS, K., Wolf, G., and Bengio, Y. Im-
proving and generalizing flow-based generative mod-
els with minibatch optimal transport. In ICML Work-
shop on New Frontiers in Learning, Control, and Dy-
namical Systems, 2023.

[49] Vahdat, A., Kreis, K., and Kautz, J. Score-based gen-
erative modeling in latent space. Advances in neu-
ral information processing systems, 34:11287–11302,
2021.

[50] Wang, G., Jiao, Y., Xu, Q., Wang, Y., and Yang,
C. Deep generative learning via schrödinger bridge.
In International conference on machine learning, pp.
10794–10804. PMLR, 2021.

[51] Xiao, Z., Yan, Q., and Amit, Y. Generative latent flow.
arXiv preprint arXiv:1905.10485, 2019.

https://openreview.net/forum?id=oVfIKuhqfC
https://openreview.net/forum?id=oVfIKuhqfC


Learning Straight Flows by Learning Curved Interpolants

[52] Xing, Z., Feng, Q., Chen, H., Dai, Q., Hu, H., Xu, H.,
Wu, Z., and Jiang, Y.-G. A survey on video diffusion
models. ACM Computing Surveys, 2023.

[53] Xu, Y., Liu, Z., Tegmark, M., and Jaakkola, T. Poisson
flow generative models. Advances in Neural Informa-
tion Processing Systems, 35:16782–16795, 2022.

[54] Xu, Y., Tong, S., and Jaakkola, T. Stable target field for
reduced variance score estimation in diffusion models.
arXiv preprint arXiv:2302.00670, 2023.

[55] Yang, L., Liu, J., Hong, S., Zhang, Z., Huang, Z., Cai,
Z., Zhang, W., and Bin, C. Improving diffusion-based
image synthesis with context prediction. In NeurIPS,
2023.

[56] Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao,
Y., Zhang, W., Cui, B., and Yang, M.-H. Diffusion
models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39,
2023.

[57] Yang, L., Zhang, Z., Zhang, Z., Liu, X., Xu, M., Zhang,
W., Meng, C., Ermon, S., and Cui, B. Consistency
flow matching: Defining straight flows with velocity
consistency. arXiv preprint arXiv:2407.02398, 2024.

[58] Yin, T., Gharbi, M., Zhang, R., Shechtman, E., Durand,
F., Freeman, W. T., and Park, T. One-step diffusion
with distribution matching distillation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6613–6623, 2024.

[59] Zhang, D., Han, Q., Xiong, Y., and Du, H. Mutli-
modal straight flow matching for accelerated mr imag-
ing. Computers in Biology and Medicine, pp. 108668,
2024.

[60] Zheng, H., Nie, W., Vahdat, A., Azizzadenesheli, K.,
and Anandkumar, A. Fast sampling of diffusion mod-
els via operator learning. In International Confer-
ence on Machine Learning, pp. 42390–42402. PMLR,
2023.



Learning Straight Flows by Learning Curved Interpolants

A. Additional Related Work
Standard vector field models use linear interpolants for the
forward process [30, 20]. While mathematically sound, such
paths might be suboptimal for modeling the reverse process
[4]. Non-linear interpolants are a natural solutions, and
other methods with different forms of forward process have
been explored [1, 25]. These methods include merging blur-
ring with Gaussian noise [9], diffusions applied in wavelet
spectral domains [39], and non-Gaussian forward diffusions
[34]. Daras et al. [9] can be considered as a specific form of
this family of works which modify the forward processes,
where components like noise schedules or data transfor-
mations (static [25, 42] or dynamic [36, 15]) are learned
rather than fixed. Our works lies in the broader umbrella of
learning these time-dependent dynamic transformations.

A different thread on these models purely focuses on in-
creasing sampling efficiency. These include methods on
changing the sampling process [44, 33, 60], and those based
on distillation [46, 58], though the latter demands auxiliary
models. These innovations are orthogonal to our work and
can be potentially combined for enhanced performance. The
specific problem of learning straighter generative trajecto-
ries has received some interest. However, these approaches
requires distillation [32, 31] or solving adversarial optimiza-
tion problems [1].

B. Additional results
B.1. Synthetic Data

We show results on an additional synthetic example consist-
ing on a Gaussian source and the 4-square target in Figure 4.

B.2. Real Data

We show additional results for CIFAR-10, including the
Inception score, in Table 4, and results for the AFHQ-Cat
dataset in Table 5.

Table 4: IS score comparison with baseline models on
CIFAR-10. Results for baselines are from literature.

Method NFE (↓) FID (↓) IS (↑)

Score SDE [45] 2000 2.20 9.89
DDPM [20] 1000 3.17 9.46
PFGM [53] 110 2.35 9.68
EDM [24] 35 2.04 9.84
1-Rectified Flow [31] 1 378 1.13
Glow [27] 1 48.9 3.92
Consistency Model [46] 2 5.83 8.85
Consistency FM [57] 2 5.34 8.70
Ours 2 4.61 9.18
Ours (segmented) 2 4.19 9.31

Table 5: Comparison with baseline models on AFHQ-Cat.

Method AFHQ-Cat 256× 256

NFE (↓) FID (↓)

Rectified Flow [31] 8 57.0
6 61.5

Rectified Flow + Bellman [35] 8 33.9
6 36.2

Consistency FM [57] 6 22.5
Ours 6 20.8
Ours (Segmented) 6 20.2

C. Counterexample for [4]
Consider a situation visually similar to to the setup from Fig-
ure 1, but with both the source and target being a mixture of
two delta distributions in two dimensions. We’ll denote the
source distribution as p(x0) = 0.5 δ(x−x1

0)+0.5 δ(x−x2
0),

and similarly the target distribution as p(x1) = 0.5 δ(x −
x1
1) + 0.5 δ(x− x2

1), where xj
i ∈ R2. Additionally, we will

index each component of a point through parantheses, that
is, xj

i = [xj
i (0), x

j
i (1)] (for instance, x1

0 = [x1
0(0), x

1
0(1)]).

In our notation, Bartosh et al. [4] consider a forward process
(or interpolant) given xt := ϕ(x0, x1, t) and fit a neural
model to the reverse process (generative direction) as

vϕ,θ(xt) = ∂tϕ(t, x̂
θ
0(xt), x̂

θ
1(xt)), (21)

where x̂θ
0 and x̂θ

1 are neural networks parameterized by θ
(we sometimes suppress the dependence on θ for notational
convenience). They then train vϕ,θ(xt) by minimizing

EtEx0,x1 ||vϕ,θ(xt)− ∂tϕ(x0, x1, t)||2. (22)

Contrasting this with the case of linear interpolants xt :=
tx1 + (1 − t)x0, we can see that the corresponding
vϕ,θ(xt) = x̂1(xt)−x̂0(xt) corresponds to a neural network
to predict x1 − x0.

We know the ground truth reverse process corresponds to
v∗ = E[∂tϕ(x0, x1, t)]. On the other, given the chosen
parameterization for vϕ,θ from Equation (21), we must have

∀xt, t vϕ,θ(xt) := ∂tϕ(t, x̂0(xt), x̂1(xt)) =

E[∂tϕ(x0, x1, t)], (23)

with x̂0(xt), x̂1(xt) being θ-parameterized neural networks.

We now show that, even with infinitely powerful predic-
tors for ˆxi(xt), there exists some interpolant ϕ for which
the above conditional cannot hold. More specifically, we
construct a ϕ, xt, t such that no functions x̂0, x̂1 can make
Equation (23) true.



Learning Straight Flows by Learning Curved Interpolants

We consider paths parameterized by t given by

xt = ϕ(x0, x1, t) =

tx1 + (1− t)x0 + kt(1− t)(t− 0.5)g(x1, x0), (24)

where k is a scalar and g is a function to be specified. We
choose the points from the source and target distributions
x1
0 and x2

0 such that

x1
1 − x2

1 = x1
0 − x2

0

We then consider the interpolants from x1
0 to x2

1 and from
x2
0 to x1

1. These interpolants intersect at t = 0.5, giving the
point:

x0.5 =
x1
0 + x2

1

2
=

x1
1 + x2

0

2
.

At this point, the optimal field is given by

∂tϕ(x
1
0, x

2
1, t = 0.5) + ∂tϕ(x

2
0, x

1
1, t = 0.5)

2
.

For the chosen ϕ, this field can be written as

x2
1 − x1

0 + k · 0.25 · g(x2
1, x

1
0) + x1

1 − x2
0 + k · 0.25 · g(x1

1, x
2
0)

2
.

By choosing the points symmetrically, the linear terms x2
1−

x1
0 + x1

1 − x2
0 cancel out, leading to:

v∗(x0.5) =
k · 0.25 · g(x2

1, x
1
0) + k · 0.25 · g(x1

1, x
2
0)

2
.

On the other hand, vϕ,θ is given by

vϕ,θ = ϕ′(x̂0, x̂1, t = 0.5) = x̂1− x̂0+k ·0.25 ·g(x̂1, x̂0).

We now define h(a, b) = g(a, b)+a−b , and thus g(a, b) =
b−a+h(a, b). Substituting this in v∗(x0.5) and vϕ,θ yields

v∗(x0.5) =
k · 0.25 · h(x2

1, x
1
0) + k · 0.25 · h(x1

1, x
2
0)

2

and
vϕ,θ = k · 0.25 · h(x̂1, x̂0).

respectively.

Therefore, we need the following equation to be true

h(x̂1, x̂0) =
h(x1

1, x
2
0) + h(x2

1, x
1
0)

2
.

However, it is simple to find a function h for which this
cannot hold. For instance, this is the case for

h(x1, x0) = [cos(x1(0)), sin(x1(0))].

If x1
1(0) = 0 and x2

1(0) = π, then:

h(x1
1, x

2
0) = [cos(0), sin(0)] = [1, 0]

and
h(x2

1, x
1
0) = [cos(π), sin(π)] = [−1, 0].

Therefore

h(x1
1, x

2
0) + h(x2

1, x
1
0)

2
=

[1, 0] + [−1, 0]

2
= [0, 0].

However h(x̂1, x̂0) = [cos(x̂1(0)), sin(x̂1(0))], which can
never be [0, 0].

Checklist
1. For all models and algorithms presented, check if you

include:

(a) A clear description of the mathematical setting,
assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm. [Not
Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes]

(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Not Ap-

plicable]

3. For all figures and tables that present empirical results,
check if you include:

(a) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen). [Yes]

(b) A clear definition of the specific measure or statis-
tics and error bars (e.g., with respect to the ran-
dom seed after running experiments multiple
times). [Not Applicable]

(c) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets. [Yes]

(b) The license information of the assets, if applicable.
[Not Applicable]

(c) New assets either in the supplemental material or
as a URL, if applicable. [Not Applicable]



Learning Straight Flows by Learning Curved Interpolants

Figure 4: From left to right, the figure depicts flows learned by (1) OT Coupling, (2) Independent Coupling, (3) Sinkhorn
Coupling and (4) Our method. For this example, the models were trained to transform Gaussian (source) to 4-square (target).
We can see that, as expected, the OT map yields a perfectly straight field. We also see that by using learnt interpolants, our
approach gets close to producing straight fields as well, despite using the independent coupling between the source and
target distributions.



Learning Straight Flows by Learning Curved Interpolants

(d) Information about consent from data providers/cu-
rators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Not Applicable]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

(a) The full text of instructions given to participants
and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant compen-
sation. [Not Applicable]

C.1. Training Details

CIFAR 10 ImageNet 32 CelebA AFHQ-Cat
Channel Multipliers 1,2,2,2 1,2,2,2 1, 1, 2, 2, 2, 2, 2 1, 1, 2, 2, 2, 2, 2
BlockType biggan biggan biggan biggan
Nonlinearity swish swish swish swish
Attention resolution 16 16 16 16
GPUS 2 A100 4 A100 4 A100 4 A100
Iterations 500k 300k 350k 350k

Table 6: Training details for different datasets


	Introduction
	Preliminaries
	Learning Straight Flows by Tuning Interpolants
	Bi-Level Formulation for Straight Flows
	Reformulating Flow Matching
	Derivation of eq:opt

	Straightening the Flow
	Segmented Objective
	Scalable Computation

	Related Work
	Experiments
	Toy Datasets
	Real Data
	Results


	Conclusion
	Impact Statement
	Additional Related Work
	Additional results
	Synthetic Data
	Real Data

	Counterexample for bartosh2024neural
	Training Details


