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Abstract—Integration of information from non-auditory cues
can significantly improve the performance of speech-separation
models. Often such models use deep modality-specific networks
to obtain unimodal features, which are statically combined to
obtain high-level fused representations. Such designs often risk
being too costly or lightweight but lacking capacity. In this
work, we present an iterative representation refinement approach
called Bottleneck Iterative Network (BIN), a technique that
repeatedly progresses through a lightweight fusion block, while
controlling nuisance representations in fusion by using bottleneck
fusion tokens. This helps improve the capacity of the model,
while avoiding major increase in model size and balancing
between the model performance and training cost. We test BIN
on challenging noisy audio-visual speech separation tasks, and
show that our approach consistently outperforms state-of-the-art
benchmark models with respect to SI-SDRi on NTCD-TIMIT
and LRS3+WHAM! datasets, while simultaneously reducing the
training and GPU inference time by 75%.

Index Terms—Multimodal Speech separation, Neural network

I. INTRODUCTION

The goal of speech separation is to separate a multi-speaker
audio stream into multiple single-speaker audio streams. This
task is critical not only as a standalone application but also
as an important first step in several downstream applications
like speech enhancement and audio editing. Pure audio-based
methods for this speech separation task have long been studied
in signal-processing [6, 15], but often face limitations when
factors like reverberations, heavy overlap and background
noise are common [18]. Inspired by multimodal speech cogni-
tion in humans [20, 17], contemporary research is pivoting to-
wards a multimodal approach that integrates visual cues in the
speech separation task. The Audio-Visual Speech Separation
(AVSS) problem is about taking a single-channel audio stream
of multiple speakers along with a corresponding video that
captures all the speakers’ faces, with the goal of identifying
the utterance of each speaker [15, 14, 16].

Related Work: AVconvTasnet [15] extended the ConvTasNet
[26] paradigm, an audio-only speech separation state-of-the-art
model, to the audio-visual domain, setting one of the earlier
baselines for the AVSS task. Since then, there have been
various deep learning methods developed for the task [10, 11].
Gao and Grauman [4] used speaker images as external cues
for separating audio using a large foundation model. RTFS-
Net [21] currently sets the frontier with respect to speech

separation quality but comes with not only expensive training
cost but also high inference time. This is a critical drawback
because lots of important audio enhancement applications,
such as real-time conference call enhancement, require fast
speech separation. AVLIT [16] and IIA-Net [13] are recent
lightweight AVSS models. However, we find that there is a
significant gap in output quality for noisy AVSS between these
lightweight models and SOTA (state-of-the-art) RTFS-Net.

To address this gap, we introduce a new AVSS model, called
Bottleneck Iterative Network (BIN), that iteratively refines the
audio and visual representations using their fused representa-
tion via a repetitive progression through the bottleneck fusion
variables and the outputs of the two modalities from the same
fusion block. Tested on two popular AVSS benchmarks, BIN
strikes a good balance between speech separation quality and
computing resources, being on par with RTFS-Net’s state-of-
the-art performance (and even improving on SI-SDR) while
saving up to 75% training time and GPU inference time.

Analysis on the progression of speech separation quality
and separation mask throughout multiple iterations of fusion
indicate the advantage of iterative fusion in the AVSS problem.
Furthermore importantly, our approach of iterative fusion re-
finement is model- and task-agnostic and potentially extensible
to a wider variety of multimodal tasks and architectures, which
can be further investigated in future works.

II. BOTTLENECK ITERATIVE NETWORK

The noisy AVSS problem can be formulated as follows.
There are two inputs: a noisy audio mixture record s, which is
composed of clean utterances of M speakers s1...M and back-
ground noise n, and video input v, which is a concatenation
of video frames of lip regions v1 to vM from the M speakers.
The expected outputs are a list of M separated single-speaker
audio streams ŝ1...M . Our proposed BIN (illustrated in Figure
1) for noisy AVSS consists of the following components:

Audio embedding model EA: For an input audio mixture
s of shape 1×T , where T is the length of the audio times the
sampling rate, we work on a latent embedding space EA(s)
by preprocessing the audio with an 1D convolution network
EA. EA(s) embeds s to a latent space of dimension CA×FA,
where CA expands the first dimension of s to a deeper hidden
channel size, and FA compresses the time axis. EA is only
called once before the BIN iteration for audio preprocessing.
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Fig. 1: BIN for Noisy AVSS model design.

Video embedding model EV : The video embedding model
consists of the encoder part of a 4-layer convolutional autoen-
coder pretrained for the video recover task, and a 1D convolu-
tion network. We freeze the autoencoder’s parameters during
training. A video sample v is of shape N×Fr×C×H×W ,
where N is the number of speakers, Fr is the total number of
frames, C is the RGB channel size, and H×W represents the
height and width of each frame. The embedding space is of
shape CV × FV , where FV preserves a compacted sequential
information along the time axis and CV is the latent dimension
combining the number of the speakers, the RGB channel size,
height and width for each frame. We further interpolate the
video embedding so that FV = FA.

Fusion Block: As detailed in Figure 1, there are four
components in the Fusion Block. The Fusion Block is repeated
for R iterations, with shared parameters.

a) Fusion variable: c: We utilize two learnable fusion
variables cA of shape CAH×FA and cV of shape CV H×FV ,
update them with the partial output of the audio and video
feature generator, and apply the variable fusion function on
them, as explained later in Equations 1,2,3.

b) Audio feature generator: GA: At iteration i, GA takes
the generated audio feature from the previous iteration as the
backward connection for refinement with a residual connection
to EA(s), a fusion variable ci−1 from last iteration for the
bottleneck audio-visual fusion information, and outputs the
new audio feature â(i) together with cAi . Formally,

â(i)||cAi = GA(â
(i−1) + EA(s), ci−1) (1)

We define â(0) = 0. At the first iteration, c0 is defined as
the average of the learnable cA and cV . For our model, we
used an Asynchronous Fully Recurrent Convolutional Neural
Network (A-FRCNN) [7] as the audio feature generator on a
convolved concatenation of â(i−1) + EA(s) and ci−1.

c) Video feature generator: GV : We follow the same
scheme as in GA, and produce v̂(i) together with cVi . Mathe-
matically, at iteration i,

v̂(i)||cVi = GV (v̂
(i−1) + EV (v), ci−1) (2)

Similar to the audio-modality we initialize v̂ with zeroes ,
and use an A-FRCNN [7] as the video feature generator

d) Variable Fusion function: F : We choose a simple
aggregation based fusion function [9] to reduce compute time
and model complexity. For a given cAi and cVi ,

ci = F(cAi , c
V
i ) =

1

2
(cAi + cVi ) (3)

Predictive function P and audio decoder D: A common
practice to separate audio records in AVSS tasks is to predict
the masks for the clean audio records [26, 16, 12]. Given the
output â(R) and v̂(R) after R iterations, a predictive function
P is a 1D convolution network mapping the latent output of
A-FRCNNs back to the embedding space as the mask m :

m = P(â(R), v̂(R)) (4)

Then the 1D transposed convolution network D retrieves
the clean audio from the masked embedding audio:

ŝi = D(EA(s)⊙m)[i− 1], i ∈ {1, 2, · · · ,M} (5)

where ⊙ represents the element-wise product.
A major design feature in BIN is that the multimodal fusion

relies on only fusing the partial output of GA and GV using
F , GA, and GV , bottlenecking the cross-modality information
exchange between the encoded modality. The bottleneck is
important when certain modality inputs have a significant level
of nuisance, as the fusion bottleneck forces the information
exchange to happen through a narrow channel, extracting only
AVSS relevant information. Bottlenecking layers has been
shown effective for regularization and has a compression and
distillation effect [23]. Previous research [19] has shown that
bottlenecking cross-attention tokens in transformers leads to
more robust performance multimodal action recognition tasks.



Following AVLIT [16], we use the lightweight A-FRCNN
instead of multiple recurrent networks in RTFS-Net [21].
Unlike AVLIT which directly fuses audio and visual modality,
we use the more computationally efficient bottlenecked fusion
mechanism. Thus our compute time remains manageable de-
spite having multiple iterations over the fusion blocks.

III. EXPERIMENTS

A. Datasets

We experiment on two datasets studied in Martel et al. [16]
NTCD-TIMIT: Following Martel et al. [16], we mix

clean audio records from TCD-TIMIT dataset [5] with noise
sampled uniformly from the NOISEX-91 database [24] with
varying loudness level of -5db, 0db, 5db, 10db, 15db, and
20db. Each record lasts 4 seconds at 16 kHz sampling rate.
NTCD-TIMIT consists of 5 hours of training data, 1 hour of
validation data and 1 hour of testing data.

LRS3 +WHAM!: We follow Martel et al. [16] to generate
50,000 pairs of audio records from LRS3 [1] as the training
set, 5000 pairs of audio records as the validation set, and 3000
pairs of audio records as the testing set. Every LRS3 record is
cut to 2-second long clip at 16 kHz sampling rate then mixed
with sample noise record from WHAM! [25] dataset.

B. Evaluation

We use Scale-invariant signal-to-distortion ratio improve-
ment (SI-SDRi) metric as the primary criterion to evaluate
the output speech because it reflects the noise reduction and
speech improvement brought by the separation. For com-
pleteness, we also report two other metrics: a) Perceptual
Evaluation of Speech Quality (PESQ) [22] and b) Extended
Short-time Objective Intelligibility (ESTOI) [8].

C. Performance

Table I reports the evaluation results on NTCD-TIMIT and
LRS3+WHAM!, comparing the audio separation qualities on
the testing split of the two datasets using the benchmark
models and our proposed BIN model. We also investigate the
complexity and compute cost of the models in Table II. These
experiments are run on NVIDIA A100 GPU on a sample input
of batch size 1 from LRS3+WHAM!.

We observe that for both datasets, BIN with different
number of iterations brings performance improvement to all
the three evaluation metrics compared with the lightweight
AVLIT and IIA-Net performance from our replication study.
Our most lightweight model, BIN/8 iterations, has computa-
tional complexity comparable to AVLIT, while yielding slight
performance improvement on LRS3+WHAM! and significant
improvement on NTCD-TIMIT.

1The replicated result of AVLIT in our experiment is comparable but
different from what is reported in the original paper, because the noise
distribution is different from that in Martel et al. [16]. This is because there
are no standard settings of the noise. We follow the same noise dB range
as described in Martel et al. [16] but noise sample using our own scripts,
therefore yielding different noise sample and noise dB level for every audio
mixture sample.

Compared to RTFS-Net, our BIN/16 iterations and BIN/12
iterations have better performance on the main separation
quality estimation metric SI-SDRi on NTCD-TIMIT and
LRS3+WHAM! respectively, while using only 55% and 26%
of RTFS-Net training time. Table II shows that these models
also cut the GPU inference time by 82% and 74% respectively.

D. Ablation Study

We investigate various modifications of the reported
BIN/12 iterations with respect to the fusion mechanism on
LRS3+WHAM! and report results in Table III. The first
row report the model performance with one single generator
function G, instead of two distinct feature generator functions
GA and GV for audio and video. In this case, the input to
the single generator function is the fused input of audio and
video embeddings, and no fusion token is needed. We can
observe a performance decrease compared to BIN, showing
that having separate fusion tokens is helpful. However we also
note that even the simplified model structure outperforms other
lightweight models on noisy AVSS.

Next, we ablate the different fusion tokens to evaluate their
impact on the performance. BIN-No cA removes the audio
fusion token and only allows the audio modality to receive
video fusion tokens. Similarly, only the video modality can
access the audio fusion tokens in BIN-No cV . Due to the
missing information from the other modality, performance is
lower in both experiments. In addition, BIN-No c removes
the variable fusion function F and ci, only allowing the two
tokens to iterate through their own modality pipelines, which
is similar to a late fusion design.

E. Further Analysis

Speaker1 Speaker2

Clean audio

Iteration 0

Iteration 2

Iteration 8

Iteration 10

… …

Fig. 2: The progression of the latent masks across fusion iter-
ations of the final trained BIN model on one LRS3+WHAM!
test sample. The masks in the later iterations show patterns
more aligned with the actual clean audio.

We next study how BIN refines the task across multiple
fusion iterations. Using the BIN/12 iterations model trained for
LRS3+WHAM!, we compute the audio separation masks m(i)

at each fusion iteration by applying the predictive function
P to the intermediate audio and video features generated at



Dataset Model SI-SDRi ↑ PESQ ↑ ESTOI ↑ Training time (h)↓

NTCD-TIMIT

AVConvTasNet[26] * 9.02 1.33 0.40 -
LAVSE[2] * 6.22 1.31 0.37 -
L2L[3] * 3.36 1.23 0.26 -
IIA-Net [13] ** 6.04 1.33 0.38 2.92
AVLIT [16] 1 8.59 1.39 0.44 3.88
RTFS-Net [21] ** 11.28 1.78 0.58 23.17
BIN/8 Iterations 10.68 1.51 0.50 5.45
BIN/12 Iterations 10.87 1.51 0.51 7.92
BIN/16 Iterations 11.62 1.57 0.53 12.71

LRS3+WHAM!

AVConvTasNet[26] * 6.21 1.29 0.60 -
LAVSE[2] * 5.59 1.24 0.50 -
L2L [3] * 7.60 1.16 0.51 -
IIA-Net [13] ** 8.93 1.36 0.55 16.74
AVLIT [16] 11.62 1.53 0.65 28.09
RTFS-Net [21] ** 12.14 1.74 0.70 193.45
BIN/8 Iterations 11.82 1.55 0.66 34.55
BIN/12 Iterations 12.25 1.59 0.68 50.58
BIN/16 Iterations 10.84 1.49 0.53 81.91

TABLE I: Test performance on NTCD-TIMIT and LRS3+WHAM!. * results are as reported in earlier literature.
** these models were originally designed for speech extraction task and then adapted by us to speech separation task.

Model MACs (G) #Params (M)
GPU

Inference
Time (s)

IIA-Net 9.93 3.52 0.03
AVLIT 36.76 5.72 0.02
RTFS-Net 67.38 1.07 0.23
BIN/8 iterations 42.95 6.05 0.03
BIN/12 iterations 63.58 6.05 0.04
BIN/16 iterations 84.22 6.05 0.06

TABLE II: Comparison with baseline models in terms of
computational efficiency with a sample of batch size 1 from
LRS3+WHAM!.

Model SI-SDRi PESQ ESTOI
BIN-Single G 11.99 1.57 0.67
BIN-No cA 11.53 1.53 0.65
BIN-No cV 11.55 1.52 0.65
BIN-No c 9.64 1.43 0.60
BIN (Full) 12.25 1.59 0.68

TABLE III: Ablation study of BIN/12 iterations on
LRS3+WHAM!.

each fusion iteration â(i) and v̂(i). In Fig 2, we visualize the
mask m as generated after each fusion along with the clean
signal for a sample mixture. It clearly shows the peaks and
troughs change and become sharper in estimated masks of
later iterations, matching the patterns in the clean speaker-
specific audio. This qualitatively indicates that the model is
progressively refining the mask through the fusion iterations.

Quantitatively, we demonstrate the overall progression of

Fig. 3: The progression of the audio separation quality through
BIN iterations in the trained BIN model on LRS3+WHAM!
testing split. The iterations are not epochs of training, but the
unrolling iterations R of the model during test time.

audio separation of the same model across fusion iterations on
the test-set of LRS3+WHAM! in Fig 3. We observe an initial
sharp and then steady increase in output quality throughout
the twelve iterations in the BIN/12 iterations model.

IV. CONCLUSION

Our paper presents a new approach for noisy AVSS that
incorporates backward connections to reduce compute com-
plexity, while retaining near SOTA performance. In our ex-
periments on two benchmark datasets designed for the noisy
AVSS task, we show that BIN can match and even slightly
improve SOTA models performance on AVSS while cutting
the GPU training time and GPU inference time significantly.
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