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Abstract— We introduce a particle filter-based approach to
representing and actively reducing uncertainty over articulated
motion models. The presented method provides a probabilistic
model that integrates visual observations with feedback from
manipulation actions to best characterize a distribution of
possible articulation models. We evaluate several action selec-
tion methods to efficiently reduce the uncertainty about the
articulation model. The full system is experimentally evaluated
using a PR2 mobile manipulator. Our experiments demonstrate
that the proposed system allows for intelligent reasoning about
sparse, noisy data in a number of common manipulation
scenarios.

I. INTRODUCTION

When operating in human environments, robots must

frequently cope with multiple types of uncertainty such

as systematic and random perceptual error, ambiguity due

to a lack of data, and changing environmental conditions.

While methods like Bayesian reasoning allow robots to make

intelligent decisions under uncertainty, in many situations it

is still advantageous, or even necessary, to actively gather

additional information about the environment. The paradigm

of interactive perception aims to use a robot’s manipulation

capabilities to gain the most useful perceptual information

to model the world and inform intelligent decision making.

In this work, we leverage interactive perception to directly

model and reduce the robot’s uncertainty over articulated

motion models. Many objects in human environments move

in structured ways relative to one another; articulation models

describe these movements, providing useful information for

both prediction and planning [1], [2]. For example, many

common household items like staplers, drawers, and cabinets

have parts that move rigidly, prismatically, and rotationally

with respect to each other.

Previous works on detection of articulated motion models

have generally used a passive maximum likelihood strategy

to fit models, ignoring uncertainty [1]–[3]. However, passive,

fit-based approaches can often lead to several problems. First,

these methods give no indication if there are competing

high-likelihood hypotheses, or if the fitted model is the only

reasonable explanation of the data. Second, purely observa-

tional models only look at the fit of observed data points,

but do not reason about rigidity constraints or certainty,

leading them to be tricked in many situations. Third, without
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Fig. 1. Top: The PR2 performing an action that reduces the uncertainty
over articulation models. Bottom: Three of the most probable articulation
model hypotheses: free-body(green), rotational(blue) and prismatic(pink).
Selected action is depicted in yellow and lies on the plane of the cabinet

a confidence metric, the robot cannot reason about how to

gather additional data intelligently when needed.

In this paper, we address all of the above challenges by

tracking a distribution over articulation models, updating the

model distribution based upon the outcome of manipulation

actions, and selecting informative actions to converge quickly

to accurate articulation models. An example of our method

in action is shown in Fig. 1.

The key contributions of our approach are that we: a) de-

velop a particle filter approach to keep track over uncertainty

over different articulation models and their parameters, b) de-

sign a manipulation sensor model that updates model likeli-

hoods based on the feedback from the robot’s manipulator,

and c) introduce a probabilistic action selection algorithm

that reduces uncertainty efficiently. The effectiveness of this

approach is demonstrated through a series of experiments

using a PR2 mobile manipulator.



II. RELATED WORK

Interactive perception has enjoyed success in many dif-

ferent applications, including object segmentation [4]–[6],

object recognition [7], [8], object sorting [9], [10], and

object search [11]. Some classes of problems have state

information that cannot be observed passively, requiring the

use of interactive perception. One instance of this is the

estimation of kinematic models of articulated objects.

The task of estimating articulation models has been ad-

dressed in various ways. Sturm et al. [1] use human demon-

strations to obtain visual data from tracked markers, which

is then used to characterize single or multiple joints in a

probabilistic fashion. Katz et al. [12], [13] and Pillai et al. [3]

were able to move away from a marker-based system by

using visual features to detect and track rigid parts. The

observed motion of these rigid bodies is then used to char-

acterize various joint types. Huang et al. [14] use different

camera view-points and make use of structure-from-motion

techniques to recover and classify the joint properties. In their

recent work, Martin and Brock [2] present an algorithm that

is able to perform articulation model estimation on the fly, in

contrast to previous offline algorithms. Jain and Kemp [15]

present an alternate approach in which an equilibrium point

control algorithm is used to open doors and drawers without

extensive use of visual data.

Otte et al. [16] present related work that addresses the

problem of physical exploration to estimate the articulation

model. However, the problem is formulated differently in

this case—the robot is searching for a high-level strategy (in

what order should the robot interact with objects?) in order

to estimate the structure of the whole environment.

In our work, we probabilistically combine visual observa-

tions with the outcomes of the robot’s manipulation actions

in a recursive state estimation framework. We use fiducial

markers to simplify the perceptual challenge, as the main

focus is on informative action selection and the represen-

tation of multiple hypotheses. By using this approach, it

is possible to improve any of the above-mentioned visual

articulation model frameworks by taking advantage of the

robot’s manipulation capabilities to estimate the underlying

model in a principled way.

III. APPROACH

A. Articulation Model Representation

Our approach takes advantage of robot manipulation ca-

pabilities to actively reduce the uncertainty over articulation

models and their parameters. This requires fusing different

sensor modalities—vision-based object tracking and out-

comes of manipulation actions performed by the robot. Both

sensor measurements are fused using a recursive Bayesian

update formulation which is implemented as a particle fil-

ter [17] (Fig. 2).

Articulation Models and their Parameters: We consider

four types of articulation models: rigid, prismatic, rotational

and free-body, parametrized similarly to Sturm et al. [1].

The rigid model has 6 parameters specifying a fixed relative

Fig. 2. Particles representing different hypothesis of the underlying
articulation model. Blue is a rotational model, pink is a prismatic model
and green is a free-body model.
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Fig. 3. Probabilistic graphical model for articulation recognition.

transformation between two objects or parts; the prismatic

model has 2 more parameters than the rigid model that

indicate the direction of the prismatic axis; the rotational

model has 3 more parameters than the rigid model that

indicate the axis of rotation and the radius; the free-body

model does not contain any parameters, as the objects can

move freely with respect to each other.

Probabilistic Graphical Model for State Estimation: Our

estimate of the articulation model can be represented as the

probabilistic graphical model shown in Fig. 3, where we

assume that the model and its parameters do not change

over time. The model consists of the type of articulation

model M, its parameters θ, sets of 6-DOF object pose

measurements zm
t

which are represented in a plate notation

(there exist Nt measurements for each time step t), action

sensor measurements zat and actions At.

Given this probabilistic graphical model the posterior
probability of the articulation model and its parameters can
be factorized:

P = p(M,θ|za1:t, z
m

1:t, A1:t−1) ∝

p(zmt |M,θ)
︸ ︷︷ ︸

visual sensor model

p(zat |M,θ, At−1)
︸ ︷︷ ︸

action sensor model

p(M,θ|za1:t−1, z
m

1:t−1, A1:t−2)
︸ ︷︷ ︸

previous belief

.

(1)

This formulation enables us to fuse all the sensor measure-

ments coming from vision as well manipulation data. In the

following subsections, we describe the respective parts of the

above factorization.



B. Visual Sensor Model

In order to evaluate how the observed poses of the objects

can be explained by the model and its parameters, a visual

sensor model is needed. Having obtained the current noisy

measurement zmt , similarly to Sturm et al. [1], it is projected

onto the model that is being evaluated. The projection is

achieved by using the model’s inverse kinematics function:

q̂ = f−1
M,θ(z

m
t ). (2)

The resulting configuration estimate q̂ is the configuration

(i.e. a scalar joint position or rotational angle in the prismatic

and rotational models, and a constant for the rigid model)

to the original observation zmt that lies on the surface of

the model. This configuration is then used with the model’s

forward kinematics function to obtain the 6-DOF pose cor-

responding to the projected configuration:

Mẑmt = fM,θ(q̂). (3)

Finally, the visual sensor model is approximated with a 2-

dimensional multivariate normal distribution (Eq. 5) that is

centered around 2-dimensional vector of zeros and depends

on the translational and rotational distance d (Eq. 4) between

the projected Mẑmt and the observed zmt measurement. Since

the visual measurements are conditionally independent given

the model and its parameters, we are able to write the final

sensor model:

d(zmt ,Mẑmt ) := [transd(z
m
t ,Mẑmt ), rotd(z

m
t ,Mẑmt )] (4)

p(zm
t
|M,θ) =

∏

zm

t
∈zm

t

N (d(zmt ,Mẑmt );0,Σ), (5)

where Σ is the estimated covariance of the observations. In

the case of a free-body model, the above formulas do not

hold, as it does not have forward and inverse kinematics

functions defined. The likelihood update for the free-body

model corresponds to a constant probability density value

that is defined by a uniform distribution over all possible

poses in the robot’s workspace. This follows from the intu-

ition that a free-body is not constrained by any joint and is

roughly equally likely to be anywhere in the workspace.

C. Action/Manipulation Sensor Model

The second sensor modality that is incorporated in the

model is the outcome of manipulation actions. The actions

are defined as short translational movements performed on a

scale of 10cm, where a stable grasp of the articulated object

is assumed. Each action is represented as a vector WVa

t
in

the world frame W .

The observed quantity in the manipulation sensor model

is defined as a binary variable that is equal to 0 if the

manipulation was unsuccessful (the manipulator cannot com-

plete the motion because the joint friction is too high, it

attempted motion in a rigid direction, etc.) and 1 otherwise

(the expected motion is observed).

For each model, its parameters, and the selected action, we

can compute the likelihood of the action being successful as:

p(zat |M,θ, At−1) = e−γβ , (6)

β

Fig. 4. The angle β between the action vector W
V

a

t
and the tangent vector

to the current model W
V

m

t
(rotational in this case).

where γ is the weighting factor dependent on stiffness of the

arm controller used in the robot; β is the angle between the

vector WVm

t
describing the motion prediction at the current

grasping point Wzmt for a given model M in the world

frame W and the action vector WVa

t
that is the direction

of the movement of the manipulator. It worth noting that

one can use other functions to estimate the likelihood of the

action being successful as long as the likelihood is inversely

proportional to the angle β. To estimate WVm

t
, the most

recent noisy observation Wzmt is used as a point estimate

of the pose of the articulated part at the grasping location.

We introduce a function f that, given the model M and the

current estimate of the pose Wzmt , returns a vector that is

a tangent to the predicted motion path of the object at the

current point (the blue vector depicted in Fig. 4):

WVm

t
= f(M,Wzmt ) (7)

β = arccos

( WVm

t
· WVa

t

|WVm
t
||WVa

t
|

)

. (8)

This formulation results in a decrease of the likelihood of

successful motion as the angle between predicted motion

vector and action vector increases. In the case of the rigid

and the free-body models, we assume that the only reason

for zat = 0 is the configuration of the articulated object (there

are no singularities and the robot’s arm movement is in its

workspace), which leads to the definition of the manipulation

sensor model:

p(zat = 0|Mrigid,θ, At−1) = 1 (9)

p(zat = 1|Mrigid,θ, At−1) = 0 (10)

p(zat = 0|Mfree,θ, At−1) = 0 (11)

p(zat = 1|Mfree,θ, At−1) = 1. (12)

D. Best Action Selection

In order to select the best action (e.g. the action that re-

duces the uncertainty over the model the most), we compare

two different strategies.

Entropy-based Action Selection: In this case, we define the

best action as the action that will maximally reduce the en-

tropy over the model distribution in expectation. Because the

outcome zat+1 of the future action At has not been observed,



we compute the expected entropy, H, of the distribution over

articulation models after the action is executed:

A∗
t = argmin

At

Eza

t+1
∼p(za

t+1
|M,θ)H

[

M,θ|Za
1:t+1, z

m
1:t, At

]

. (13)

Intuitively, the action that maximally reduces the entropy

should disambiguate the current hypotheses of articulation

models in the most efficient way. However, as we will show

later, this intuition is incorrect in many situations.

Information Gain-based Action Selection: Our second

approach is based on an information gain metric, rather than

on entropy itself. Similar to entropy-based action selection,

first, the expected posterior is calculated:

Q = Eza

t+1
∼p(za

t+1
|M,θ)p(M,θ|Za

1:t+1, z
m
1:t, At). (14)

Next, we look for the action that will maximize the informa-

tion gain between the current distribution and the expected

distribution, given the action that is being evaluated. Informa-

tion gain is defined as the Kullback-Leibler divergence [18]

between these two distributions:

A∗
t = argmax

At

DKL(P ||Q). (15)

IV. IMPLEMENTATION

A. Particle Filter

Since the joint distribution of a model and its param-

eters has no simple parametric form and may often be

multimodal, we approximate it using a particle filter. Each

particle represents an articulation model type (e.g. rigid,

free-body, rotational, or prismatic) and the associated model

parameters. An example showing the state of the particle

filter is depicted in Fig. 2. Since the particle filter has to cover

a high dimensional space, we propose a particle initialization

algorithm that ensures that the highest likelihood areas of the

joint distribution are well-covered.

The action selection algorithm is then applied after up-

dating the particle weights according to the visual sensor

model. For particle resampling, stratified resampling [19] is

used because it better ensures that the full support of the

underlying distribution is covered adequately.

Initialization of Particles: We take advantage of human

demonstrations or prior observation data in order to initialize

the particles, though this step is not strictly required. An

equal number of particles are used for each articulation

model. In order to fit model parameters to the data, the

algorithm from Sturm et. al [1] is employed, in which the

authors use MLESAC (maximum likelihood sample consen-

sus) [20] to fit and refine parameters. For more details we

refer the reader to [1]. It is important to emphasize that a

small number of MLESAC iterations are used to estimate

the parameters of the model. This ensures that more of the

high-dimensional parameter space is covered, rather than just

the highest likelihood settings, given the noisy visual data.

Fig. 5. Automatically generated candidate actions.

B. Visual Sensor Model

We record all available object pose data during demon-

strations, as well as during robot manipulation actions. Every

time a correction step of the particle filter step occurs, we

make use of all the new data that was not previously used

to update the weights of the particles according to Eqn. 5.

C. Manipulation Sensor Model

In our robot experiments, we use a PR2 mobile manipu-

lator that does not contain a force/torque sensor to directly

measure the forces in the robot’s wrist. In order to obtain

manipulation feedback from the robot, we implemented a

compliant controller that stops whenever the controller effort

exceeds a certain threshold. In this way, we are able to detect

the sensor output zat that specifies if the interaction with the

articulation model was successful (i.e. if the part moved as

expected or resisted motion).

D. Best Action Selection

To select the optimal action, a set of candidate actions is

first generated. The actions are sampled such that they cover

the range of directions that the robot can act in order to

move the articulated object from a known grasp point. One

set of candidate actions is depicted in Fig. 5. Next, either

the expected entropy (post-action) or the relative entropy

(compared to pre-action) of the particle filter is calculated

for each generated action. Finally, based on the chosen

optimality criteria, the action optimal with respect to the

selected criteria is chosen.

Entropy-based Action Selection: In order to estimate the

entropy of the distribution represented in the particle filter,

taking only particles’ weights into account is not sufficient.

For example, if the particles are concentrated around the

true estimate of the articulation model, their weights will

be similar, making the entropy large. To solve this problem,

the position of the particles must be taken into account

by estimating the underlying differential entropy of the

distribution.



For each model we perform kernel density estimation [21]

over its parameters with Gaussian kernels:

f̂H(θ) =
1

n

n
∑

i=1

KH(θ − θi) (16)

KH(θ) = |H|−1/2K(H−1/2
θ) (17)

K(θ) = (2π)−d/2e−1/2θT
θ. (18)

The bandwidth matrix H is estimated according to Scott’s

rule [22]:

Hij = 0, i 6= j (19)
√

Hii = n
−1

d+4σi, (20)

where σi is the standard deviation of the i-th variable, d is

the dimensionality of the parameters, and n is the number

of samples.

By sampling the kernel density estimate at the (weighted)

locations of the original particles, we are able to estimate

the differential entropy of the joint distribution represented

in the particle filter with the resubstitution estimate proposed

in [23]:

H = −
1

n

n
∑

i=1

ln f̂H(θi). (21)

At the end of this process, the expected entropy of the joint

distribution of models and their parameters is estimated as

the sum of the entropies (according to Eq. 21) of all the

model types for each action. The action with the smallest

expected entropy is considered optimal with respect to the

entropy-based criteria.

Information Gain Action Selection: In this case, we look

for the action that will maximize the information gain (e.g.

relative entropy) of the joint distribution approximated with

the particle filter. Information gain is defined as the Kullback-

Leibler divergence between the current distribution and the

expected distribution post-action:

IG(P,Q) = DKL(P ||Q) =
∑

i

P (i) ln
P (i)

Q(i)
. (22)

It is worth noting that in this case, kernel density estimation

is not needed since the algorithm can operate on the particle

weights directly, making it more computationally efficient

than the previous method.

V. EVALUATION AND DISCUSSION

A. Experimental Setup

In the following experiments, we use a PR2 mobile

manipulator with a Microsoft Kinect sensor attached to its

head. Since object recognition is not the focus of this work,

we use RGB-D data to track the pose of objects in the world

with AR tags, a type of visual fiducial. All code used in the

following experiments is open source and available online as

a ROS package1.

1http://wiki.ros.org/active_articulation

Fig. 6. Four experimental scenarios. Top-left: rotational cabinet door with
an incomplete demonstration; top-right: two free-body erasers moved apart
in a straight line; bottom-left: locked drawer as a rigid joint; bottom-right:
stapler as a rotational joint.

We designed four experimental scenarios in which the

visual demonstration data leaves room for ambiguity about

the articulation model type and parameters. In the first

scenario, the underlying model is rotational and involves a

cabinet door, in which the demonstration consists of a single

opening and closing of the door to an angle of approximately

30 degrees. The second scenario is a free-body model and

consists of a whiteboard eraser that the demonstrator moves

along a straight line with respect to another eraser. The third

scenario consists of a rigid model and involves the robot

initializing the filter without a demonstration by attempting

to open a locked drawer, tracking only the fiducial markers

on this static object. The final scenario is a rotational model

and consists of a stapler that is dynamically moved around

the scene during the demonstration. Fig. 6 shows all four

scenarios.

For the visual sensor model, we set Σ to a diagonal

matrix with 0.04m for the translational component and 30
degrees for the rotational component based on empirical

data. Throughout the experiments, the number of MLESAC

iterations was set to 3 when initializing the particle filter.

B. Action Selection

In order to evaluate our system, we first compare different

action selection strategies on the cabinet door scenario.

After choosing the most efficient action selection strategy,

we perform the remainder of our experiments in all four

scenarios. In all experiments, 500 particles were used to

cover the space of the probability distribution.

Evaluation: We evaluate three different action selection

strategies: minimum expected entropy and maximum KL-

divergence as described in Sec. III-D, and random action

selection. In the cabinet door scenario, each action selection

method was tested by having the robot perform 7 actions

with that method. The results are averaged over 5 runs of the

experiment. We measure the success of each action selection

strategy by its reduction in uncertainty (i.e. minimizing

the entropy over models) and by the number of particles



Fig. 7. Top: Entropy over articulation model types after each action for the
cabinet door experiment. Bottom: Probability of the true articulation model
(rotational) after each action.

representing the correct model—a rotational joint in this

case. In order to eliminate the influence of unsuccessful

action execution (e.g. the gripper slips off the door handle)

on the action strategy comparison, we simulate the output of

the manipulation sensor model by analyzing data from exe-

cutions where manipulation performed well; empirically, we

found that the manipulation action was generally successful

when the angle between the action vector and the tangent to

the model was less than 30 degrees. Using this, we simulated

a binary success criteria based on a threshold of 30 degrees.

Results: Fig. 7 presents the obtained entropy over artic-

ulation model types and probability of the correct model

after each action. It can be seen that the KL-divergence

action selection method reduces entropy much faster than

the other evaluated methods. Somewhat surprisingly, the

expected entropy strategy is almost as slow as selecting an

action randomly.

To gain some insight into this, recall that the goal of max-

imizing the KL-divergence is to change the distribution as

much as possible, whereas minimizing the expected entropy

aims to obtain as ‘peaky‘ of distribution as possible. In the

presented scenarios, it is the case that in order to minimize

the entropy of the articulation models, the algorithm needs to

increase it initially to find the right model, which eventually,

leads to a significant reduction of the entropy. In other

words, the minimum entropy strategy fails because it reduces

entropy greedily at each step and gets stuck in local minima;

by contrast, the information gain approach aims to change the

distribution as much as possible in any direction, allowing

escape from minima. One can observe this effect in the

bottom graph of Fig. 7. After one action, the entropy-based

method yields better results (in terms of the probability of

the correct model as well as the entropy) than the KLD-

based algorithm, but in all following steps, the KLD-based

algorithm outperforms the other methods.

Fig. 8 emphasizes the difference between the two pre-

sented action selection methods, showing the probability

distribution and chosen actions for both methods. Although

both methods chose a similarly good first action, the KLD

algorithm selects a much better second action. The entropy-

based method chose an action that is perpendicular to the

motion predictions of two competing articulation models,

resulting in a minimal entropy reduction. The KLD approach

selects an action that shifts the probability density over

articulation models towards rotational—a model type with

a larger entropy in its parameters. This causes the overall

entropy of the joint distribution to increase temporarily. In

the long run, it is desirable to move belief towards the correct

model type, so that in the next step, the entropy over its

parameters can be reduced. However, an entropy reduction

method is unlikely to select this action because of the 1-step

entropy increase.

C. Articulation Model Estimation

Evaluation: We now use the superior KL-divergence ac-

tion selection method to test the overall performance of our

system. For each of the previously described experimental

scenarios, the algorithm is run 5 times and the resulting

statistics are averaged over all the runs. A different number of

actions were taken in each scenario based on the convergence

rate of the algorithm.

Results: The second row of Fig. 8 shows the distribution

of the articulation model types in the cabinet door experiment

before any action was taken (based only on the visual data

from the demonstration), after the first action, and after the

second action, respectively. One can see that the algorithm

has shifted most of the probability mass to the correct model

(rotational) after only two actions. The first action (in the

door plane, Fig. 8, top-left) was selected in order to eliminate

the free-body model hypothesis while the second action

(towards the normal of the door plane, Fig. 8, top-right) was

chosen to distinguish between the prismatic and rotational

hypotheses, as they act on different angles.

It is worth noting that once the rotational articulation

model type has converged, the standard deviation of each of

the parameters of that model was smaller than 0.04 which

demonstrates that both the model type and its parameters

have converged.



freerevolute prismatic rigid action

Fig. 8. Outcomes of performing actions on the cabinet door. Top-left: the
current state of the particle filter with most probable hypotheses of each
articulation model. The yellow arrow shows the optimal action in terms of
maximizing the information gain. Top-right: the state of the particle filter
after performing the first action (za

1
= 0, door did not move), together with

the currently chosen most informative action. Second row-left: Percentage
of each of the models’ particles in the particle filter before any action, after
the first action, and after the second action (za

2
= 1, door did move). The

two bottom rows depict the same idea, but the action is selected based on
minimization the expected entropy. The outcomes of the actions in this case
were both za

2
= 1.

Fig. 9 presents a similar comparison for the other two

experiments. As before, the first column of the graph shows

the averaged distribution before any action was taken, and the

consecutive columns show the results after each respective

action. In case of the eraser experiment, it is apparent that

one action was enough to converge on the correct free-

body model (Fig. 9, top row). This is because the KL-

divergence action selection algorithm chose the action that is

perpendicular to the previously demonstrated linear motion.

Since the eraser can move freely in this direction, the

prismatic hypothesis is pruned out and the free-body model

is the only hypothesis that can explain both the visual and

the manipulation data. The rigid model is not taken into

consideration since the demonstration movements were too

large to support this hypothesis. Note that a passive, fit-based

freerevolute prismatic rigid

Fig. 9. Top: Probability distribution over models before and after the action
in the eraser experiment. Bottom: Analogous statistics for the rigid-joint
experiment. Results of 3 actions are presented.

Fig. 10. Rotational particles in the stapler experiment before (left) and
after (right) a manipulation action.

method would be tricked in this scenario by almost certainly

fitting a prismatic model to the visual data.

The rigid-body experiment required three actions to shift

the majority of the belief to the correct model (Fig. 9,

bottom row). The explanation of this behavior lies in the

measurement noise of the fiducial marker tracking. Since the

marker appears to slightly oscillate in the demonstration, the

particle initialization algorithm is able to fit many different

models to the data, including prismatic joints with axes

in many different directions. Manipulation actions help to

change this initial belief by moving along the axis of the most

likely prismatic hypotheses. Since the manipulation output

confirms that there is no movement in this direction, the

prismatic hypotheses are pruned out. However, due to a large

number of different prismatic hypotheses, many actions are

needed to be certain that it is actually a rigid model.

The final experiment illustrates uncertainty over model

parameters caused by systematic observation noise, rather

than over model type. Fig. 10 shows the state of the particle

filter in the stapler scenario before and after an action was

taken. In this case, the articulation model type is clear from

the demonstration (rotational joint), but there is significant

ambiguity in the parameter space of this model. Since there is

systematic noise in the marker detection (resulting from the

changing viewing angle of the markers), it is crucial to use

the particle filter in order to model all potential articulation



model hypotheses and use manipulation to prune out the

incorrect ones. In this experiment, one action was sufficient

in order for the algorithm to converge.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a probabilistic interactive perception sys-

tem to represent and reduce uncertainty over various types

of articulated motion models. The system includes a visual

sensor model to deal with perceptual noise, a manipulation

model to probabilistically reason about the outcomes of ac-

tions, and an action selection metric that allows for efficient

reduction of uncertainty over models and parameters.

Experiments demonstrated, somewhat counter-intuitively,

that the most efficient way of reducing the entropy of the

distribution over candidate models and parameters is not

achieved by greedily minimizing the expected entropy after

each action. Instead, an information gain approach based on

KL-divergence was shown to be significantly more effective

than minimizing entropy or performing random actions.

We then showed that the full system can actively cope

with ambiguity and reduce uncertainty over models and their

parameters in a variety of situations. The PR2 was able to

actively manipulate objects to disambiguate a limited cabinet

door demonstration; to prevent being fooled by prismatic

motion between two free-body erasers; to eliminate alternate

hypotheses of a rigid locked drawer caused by random visual

noise; and to narrow the distribution of rotational parameters

of a stapler that were corrupted by systematic perceptual

noise.

There are several clear areas for future work in this

domain. At present, we restrict our method to look for the

best action over a one-step horizon. It may be useful to

investigate this problem with a further lookahead in the

future. Unfortunately, in this work we could not use direct

force measurements due to the lack of force-torque sensors

on the PR2 robot. Nevertheless, our probabilistic framework

allows to easily integrate these measurements, which is a

possible extension of the current system. We also plan to

move away from using initial demonstrations, instead taking

advantage of previously learned priors in order to initialize

the particles. Additionally, removing fiducial markers and

using visual features to track objects (similarly to [2]) is a

natural extension of this work. Finally, it is desirable to be

able to apply this method to more sophisticated joint types

like helical screws, loose joints, and compositions of multiple

joints, allowing the use of this method in more complex

tasks, such as assembly.
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