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Abstract—We introduce CHAMP, an algorithm for online
Bayesian changepoint detection in settings where it is difficult or
undesirable to integrate over the parameters of candidate models.
CHAMP is used in combination with several articulation models
to detect changes in articulated motion of objects in the world,
allowing a robot to infer physically-grounded task information.
We focus on three settings where a changepoint model is appro-
priate: objects with intrinsic articulation relationships that can
change over time, object-object contact that results in quasi-static
articulated motion, and assembly tasks where each step changes
articulation relationships. We experimentally demonstrate that
this system can be used to infer various types of information
from demonstration data including causal manipulation models,
human-robot grasp correspondences, and skill verification tests.

I. INTRODUCTION

Many manipulation problems in robotics are characterized
by articulation properties of objects such as rotating doors,
sliding drawers, and rigidly connected parts. Several methods
have recently been proposed to identify articulation relation-
ships from visual observations [9, 15] but have assumed that
these relationships remain static over time. However, much
articulated motion is of a changing nature—a door can both
rotate and then lock rigidly in place; a loose grasp allows
for quasi-static revolute and prismatic motion of an object
when external force is applied; assembly procedures aim
to change articulation relationships between parts with each
step. Learning generalizable policies for many tasks requires
understanding the nature of these changing relationships and
identifying what brings about these changes. To address this,
we propose an online method to detect changes in the un-
derlying articulation models that are generating the robot’s
observations and infer the parameters of each of these models.

First, we introduce an algorithm for online Bayesian change-
point detection in settings where it is difficult to analytically or
numerically integrate over the parameters of candidate models.
Building on the work of Fearnhead and Liu [6], we show
that with some modifications, approximate online Bayesian
changepoint detection can be performed using estimates of
the maximum likelihood parameters for each segment—for
example, via regression or a sample consensus method. We
call this new algorithm CHAMP (Changepoint detection using
Approximate Model Parameters). This algorithm is a general
contribution that is useful beyond finding changes in articula-
tion models.

Next, we use CHAMP in conjunction with a set of articula-
tion models (revolute, prismatic, and rigid) to detect changes
in the articulated motion of objects in the world and to infer
the parameterized models that describe those articulations. We
examine three settings where a changepoint model is appro-
priate: objects with intrinsic articulation relationships that can
change over time, object-object contact that results in quasi-
static articulated motion, and assembly tasks where each step
changes articulation relationships. Experiments are performed
in a learning from demonstration setting and show how this
system can be used to infer various types of information
from demonstration data, including causal manipulation mod-
els, human-robot grasp correspondences, and skill verification
tests.

II. RELATED WORK

A. Changepoint Detection

Hidden Markov Models (HMMs) are largely the de facto
tool of choice when analyzing time series data, but the standard
HMM formulation has several undesirable properties. The
number of hidden states must be known ahead of time (or
chosen using model selection), inference is often costly and
subject to local minima when algorithms like Expectation-
Maximization are used, and segment lengths are inherently
geometrically distributed. Nonparametric Bayesian models like
the HDP-HMM [7] relax some of these conditions, but incur
a new set of challenges, including the need for MCMC-
based inference. In settings where the primary objective is
to identify model changes without considering shared hidden
states across segments, changepoint detection methods can be
a more appropriate algorithmic choice.

Frequentist approaches to changepoint detection and piece-
wise regression include methods such as PELT [10] that can
perform exact inference in linear time over a wide range of
cost functions. Alternately, Chopin [4] introduces a Bayesian
changepoint detection algorithm that uses a recursive filtering
approach, but requires MCMC steps for parameter inference.
Building on this work, Fearnhead and Liu present an approx-
imate Bayesian changepoint detection algorithm [6] that can
perform online inference efficiently, finding the distribution
of locations of the changepoints and the model parameters of
each segment using computational time linear in the number
of observations. However, this work requires that model pa-
rameters can be marginalized. This technique has been used in



related work to detect changes in the abstraction that underlies
a value function [? ]. Other approaches to multiple model
fitting have been proposed, such as MultiRANSAC [17], but
cannot take advantage of the time-series nature of our setting.

B. Articulation Models

Many previous methods have been proposed to identify
static articulation relationships between objects from sensor
observations. Two of most salient recent examples are the
work of Katz and Brock [9] and Sturm et al. [15]. Katz and
Brock use interactive perception to actively manipulate objects
and visually identify object parts and articulation relationships.
Visual features are identified and tracked in the scene to
identify rigid bodies and a kinematic graph of connections
between parts described by planar kinematic models. Sturm et
al. infer kinematic graphs that describe fully 3-D articulation
relationships between object parts by analyzing the movement
of known objects or object parts. Rather than tracking visual
features, they track either visual fiducials or use a markerless
framework to detect retangular objects. In addition to rigid,
revolute, and prismatic models, they also allow for the discov-
ery of more complex articulations (like the straight-and-curved
track of a garage door opening) using a Gaussian process
model. To the best of our knowledge, we present the first
work that addresses articulation relationships that can change
over time.

C. Learning from Demonstration

Learning from Demonstration (LfD) methods [2? ] have
emerged as a fast, effective way to provide robots with human
insight into tasks. To date, the majority of these methods have
focused on approaches to policy learning, including trajectory
libraries [13], inverse reinforcement learning [1], and dynamic
movement primitives [8]. By contrast, other recent work has
used LfD to learn information about tasks and objects in
the world that is not directly policy-related. Examples of
this include incremental learning of object-centric skills and
global task structure [12], inference of object affordances
from demonstration data [11], and the discovery of articulated
relationships between objects [15].

While the above types of information do not encode a policy
directly, they provide an understanding of tasks and the world
that can be used to generate generalized behavior. Direct policy
learning can be highly effective for monolithic actions like a
tennis swing [14], but our belief is that complex manipulation
tasks are best approached by learning physically interpretable
task-related qualities, which can be used to generate appropri-
ate behavior in any given situation.

III. CHANGEPOINT DETECTION USING APPROXIMATE
MODEL PARAMETERS

A. Online MAP Changepoint Detection

First, we describe the online MAP (maximum a poste-
riori) changepoint detection model of Fearnhead and Liu
[6]. Assume we have time-series observations y1:n =
(y1, y2, . . . , yn) and a set of candidate models Q. Our goal

is to infer the MAP set of changepoints times τ1, τ2, . . . , τm,
with τ0 = 0 and τm+1 = n, giving us m+ 1 segments. Thus,
the ith segment consists of observations yτi+1:τi+1

and has an
associated model qi ∈ Q with parameters θi.

We assume that data after a changepoint is independent of
data prior to that changepoint, and we model the changepoint
positions as a Markov chain in which the transition probabil-
ities are defined by the time since the last changepoint:

p(τi+1 = t|τi = s) = g(t− s), (1)

where g(·) is a probability distribution over time and G(·) is
its cumulative distribution function.

Given a segment from time s to t and a model q, define the
model evidence for that segment as:

L(s, t, q) = p(ys+1:t|q) =

∫
p(ys+1:t|q, θ)p(θ)dθ. (2)

It can be shown how the standard Bayesian filtering recursions
and an online Viterbi algorithm can be used to efficiently
estimate Ct, the distribution over the position of the first
changepoint prior to time t [6]. Define Ej as the event that
given a changepoint at time j, the MAP choice of changepoints
has occurred prior to time j and define:

Pt(j, q) = p(Ct = j, q, Ej ,y1:t) (3)
PMAP
t = p(Changepoint at t, Et,y1:t). (4)

This results in the equations:

Pt(j, q) = (1−G(t− j − 1))L(j, t, q)p(q)PMAP
j (5)

PMAP
t = max

j,q

[
g(t− j)

1−G(t− j − 1)
Pt(j, q)

]
. (6)

At any point, the Viterbi path can be recovered by finding
the (j, q) values that maximize PMAP

t . This process can then
be repeated for the values that maximize PMAP

j , until time
zero is reached. A straightforward alternate formulation [6]
allows for the simulation of the full posterior distribution of
changepoint locations, though in this work, we focus only on
the MAP changepoints.

The algorithm is fully online, but requires O(n) computa-
tion at each time step, since Pt(j, q) values must be calculated
for all j < t. To reduce computation time to a constant,
ideas from particle filtering can be leveraged to keep only
a constant number of particles, M , at each time step, each
of which represent a support point in the approximate density
p(Ct = j,y1:t). At each time step, if the number of particles
exceeds M , stratified optimal resampling [6] can be used to
choose which particles to keep in a manner that minimizes
the Kolmogorov-Smirnov distance from the true distribution
in expectation.

B. CHAMP

The model evidence shown in Equation 2 requires that the
parameters of the underlying model can be marginalized. This
requires the use of either conjugate priors, allowing analytical
integration, or a low dimensional parameter space that can be



efficiently numerically integrated. However, many models do
not fit into either of these categories, requiring an alternate
solution for when only point-estimates of model parameters
are available.

We present CHAMP (Changepoint detection using
Approximate Model Parameters)—a modified version of
Fearnhead and Liu’s changepoint algorithm that allows the
use of models of any form, in which parameter estimates are
available via means such as maximum likelihood fit, MCMC,
or sample consensus methods. We propose three primary
changes to best accommodate this new setting.

1) Approximate model evidence: The Bayesian Information
Criterion (BIC) is a well-known approximation to integrated
model evidence [3] that provides a principled penalty against
more complex models by assuming a Gaussian posterior dis-
tribution of parameters around the estimated parameter value
θ̂. Using the BIC, the model evidence can be approximated
as:

lnL(s, t, q) ≈ ln p(ys+1:t|q, θ̂)−
1

2
kq ln(t− s), (7)

where kq is the number of free parameters of model q. This
approximation allows us to avoid directly evaluating the model
evidence integral.

2) Minimum segment length: Since we are now assuming
that parameter estimates come from some type of model fitting
procedure, the quantity L(s, t, q) is no longer well-defined for
all t > s. Instead, each model q has a minimum value of t−s
for which the model is defined. For example, a line requires
a minimum of two points to define, whereas a plane requires
three. As a simplification, and to prevent overfitting, some
sufficient minimum segment length α can be chosen for all
models. This requires three changes: changepoints can only
begin to be considered at time t = 2α (when a changepoint in
the center would create two equal halves of length α), Pt(j, q)
must only be calculated for values of t−j > α, and the choice
of a segment length distribution g(·) must be reconsidered.

Fearnhead and Liu suggest the use of a geometric length
distribution [6], as it arises naturally from a constant prob-
ability of seeing a changepoint at each time step. However,
it is a monotonically decreasing distribution with a mode of
1 that favors shorter segments, which can lead to overfitting,
especially in a setting with fitted model parameters. As an
alternative, Chopin [4] suggests using a uniform prior over
limited support to ensure it is well-defined. However, this
artificially places a hard limit on segment lengths, regardless of
the data. We propose the use of a truncated normal distribution,
which enforces a minimum segment length naturally, has
easily interpretable parameters, and is less prone to overfitting:

g(t) =
1
σφ
(
t−µ
σ

)
1− Φ

(
α−µ
σ

) (8)

G(t) = Φ

(
t− µ
σ

)
− Φ

(
α− µ
σ

)
, (9)

where φ is the standard normal PDF, Φ is its CDF, and
α is the minimum segment length. Since the mode of the

distribution is close to the mean (or identical if no truncation
occurs), segment lengths are pushed toward the mean, instead
of being pushed toward 1. By using a broad value of σ, we can
support a wide range of segments lengths, while leaving µ as
a adjustable parameter that can be tuned if over-segmentation
or under-segmentation is an issue. Alternatively, if specific
prior knowledge about segment length is known, µ can be set
accordingly with a more narrow value of σ to restrict segment
length appropriately.

3) Particle definition: Finally, since model fitting can be
an expensive procedure, we suggest a slight revision of the
definition of a particle from that of Fearnhead and Liu. Previ-
ously, each particle represented a support point to approximate
the joint distribution p(Ct = j,y1:t), marginalizing over
models q. To potentially save on the number of required model
fits, we suggest each particle also include the model, so that
our approximated distribution is p(Ct = j, q,y1:t), allowing
particular models to be selectively discarded at each time step.
This also prevents us from overlooking the possibility of a
changepoint at a given time step when only one model is a
reasonable fit and the others are very poor.

Figure 1 provides pseudocode for CHAMP. Additionally, an
open-source implementation of CHAMP as a ROS service is
available online 1.

IV. ARTICULATION CHANGEPOINT DETECTION

In order to use CHAMP to detect changes in observed
articulated motion between objects, we require an articulation
likelihood model and a parameter estimation method for any
particular data segment. In this work, we use the articulation
models of Sturm et al. [15] and MLESAC [16] for parameter
estimation. Define the relative transform between two objects
with poses xi and xj ∈ SE(3) as ∆ij = xi 	 xj

2. Given
covariance Σy , the observation model is defined as:

y ∼

{
∆ +N (0,Σy) if v = 1

U if v = 0,
(10)

where the probability of the observation being an outlier is
p(v = 0) = γ, in which case it is drawn from a uniform
distribution U . The data likelihood is then defined as:

p(y|∆) = p(y|∆, γ)p(γ) (11)

with:

p(y|∆, γ) = (1− γ)p(y|v = 1) + γp(y|v = 0) (12)

p(γ) ∝ e−wγ , (13)

where w is a weighting constant. This formulation allows for
the overall data likelihood to be only minimally affected by a
small number of outliers.

We then use three candidate articulation models Mrigid,
Mprismatic, and Mrevolute to describe the relationship between

1http://wiki.ros.org/changepoint
2For example, if xi,xj ∈ R4x4 are homogeneous matrices, then xi	xj =

x−1
i xj

http://wiki.ros.org/changepoint


Input: Observations y1:n, candidate models q1, . . . , qr,
prior distribution π(q), minimum segment length α, and
maximum number of particles M .
Output: Viterbi path of changepoint times and models

// Initialize data structures
1: max path, prev queue, particles = {}
2: prev queue.push(1/r)
3: for i = 1 : r do
4: new p = newParticle(pos = 0, model = qi,

prev MAP = 1/r)
5: particles.add(new p)
6: end for

// Do for all incoming data, starting at time α
7: for t = α : n do

// Add new particles
8: if t >= 2α then
9: pref = prev queue.pop() // PMAP

t α steps ago
10: for i = 1 : r do
11: new p = newParticle(pos = t−α, model = qi,

prev MAP = prev)
12: particles.add(new p)
13: end for
14: end if

// Compute fit probabilities for all particles
15: for p ∈ particles do
16: p tjq = L(p.pos, t, q) · π(q) · p.prev MAP
17: p.MAP = g(t− p.pos) · p tjq
18: end for

// Find max particle and update Viterbi path
19: max p = maxp p.MAP
20: prev queue.push(max p.MAP)
21: max path.add(j = max p.pos, q = max p.model)

// Resample if too many particles
22: if particles.length > M then
23: particles = stratOptResample(particles, M)
24: end if

25: end for

// Recover the Viterbi path
26: v path = {}
27: curr cp = n
28: while curr cp > 0 do
29: 〈j, q〉 = max path[curr cp - α]
30: v path.add(start = j, end = curr cp, model = q)
31: curr cp = j
32: end while
33: return v path

Fig. 1. CHAMP

Fig. 2. Five segments of mean-zero Gaussian data with changing variance
accurately segmented by CHAMP

two objects. Define p(y|M, θ) as the likelihood function of
the observed relative transform y between two objects under
modelM with parameters θ. The rigid model has 6 parameters
that encode the rigid transform between the two objects. The
prismatic model has 8 parameters which define the transform
between the base object and the origin of the prismatic joint
and its axis. The revolute model has 9 parameters that define
the transform between the base object and the center of
rotation, and a transform from the center of rotation to the
moving point.

The full derivation of the forward and inverse kinematic
functions defined by these articulation models is outside the
scope of this work; for more details, see Sturm et al. [15].
However, each model defines functions of the form:

f−1M,θ(y) = c (inverse kinematics)
fM,θ(c) = ∆ (forward kinematics),

where c is a configuration (ex. a scalar position on a prismatic
axis, or an angle in radians on an axis of rotation). These
can be used to project an observation y onto a model, giving
us a predicted relative pose ∆̂, and allowing us to define a
likelihood function, using the observation model introduced in
Equation 11:

p(y1:n|M, θ̂) =

n∏
t=1

p(yt|∆̂t). (14)

Finally, we use these models to define our BIC-penalized
likelihood function for CHAMP:

lnL(s, t, q) ≈ ln p(ys+1:t|Mq, θ̂)−
1

2
kq ln(t− s), (15)

where estimated parameters θ̂ are inferred using MLESAC
(Maximum Likelihood Estimation Sample Consensus) [16].
MLESAC is a sample consensus method that generates a guess
for the model parameters θ by randomly choosing a minimal
set of points that can be used to define the model. After
generating many guesses, the guess that maximizes that data
likelihood is retained and can be improved iteratively with a
nonlinear optimization method, BFGS, and by estimating the
outlier ratio γ with Expectation-Maximization.



Fig. 3. Demonstrations of stapler manipulation (top), re-grasp of a whiteboard eraser (middle), and partial table assembly (bottom).

V. EXPERIMENTS

A. 1-D Gaussian Experiment

First, we present an experiment to demonstrate the ability
of CHAMP to reliably detect changepoints using maximum
likelihood parameter estimates. Five segments of data were
generated (of lengths 40, 60, 30, 50, and 70) by making draws
from a zero-mean Gaussian distribution with parameterized
variance (σ = 2.0, 1.0, 3.0, 1.5, and 2.5), shown in the left
panel of Figure 2. CHAMP was then used to try to recover the
locations of the changepoints with the following parameters:
a truncated Gaussian length distribution with µ = 50 and
σ = 10, a minimum segment length of 2, and 100 maximum
particles.

Figure 2 shows a segmentation of the data by CHAMP that
correctly divides the data into 5 segments. In 100 out of 100
trials, CHAMP discovered the correct number of changepoints
and their locations were all found to be within 2 time steps of
the true changepoint locations.

B. Articulation Experiments

We now present three scenarios in which CHAMP is
used to detect changes in articulated motion between objects
during task demonstrations. The timing of these changes and
the parameters of each articulated motion are then used to
infer physically-grounded information about the task and the
associated objects. In each experiment, a human demonstration
is observed via an RGB-D sensor mounted on a PR2 mobile
manipulator. We have restricted each scene to contain only two
relevant objects, or object parts, which are marked with AR-
tags, a type of visual fiducial that allows for easy recovery of
the 6-DOF object pose. Data is collected at 10 Hz, recording

the relative pose of the two objects y ∈ SE(3), and ignoring
the data point if either object is not visible.

For all experiments, the following parameters were used
for CHAMP: a truncated Gaussian length distribution with
µ = 100 and σ = 5, a minimum segment length of 10, and
10 maximum particles. Additionally, the following parameters
we used for the articulation models: observation covariance
diag(Σy) = {σpos, σorient} = {0.0075 m, π/12 rad}, 50
sample consensus iterations, and no parameter optimization,
except for the final set of segment parameters, which go
through 10 iterations of optimization.

In each experiment, only a single demonstration is given,
emphasizing the possibility for one-shot learning when using
our system, in contrast to the larger number of demonstrations
often required by LfD methods that learn policies directly. In
all experiments, segmentation was performed 10 times, always
yielding highly similar results as in the Gaussian example.
As a proof-of-concept, the changepoint times, models, and
model parameters discovered by CHAMP are used to infer
physically-interpretable task information in each case that
could be used in the future to improve decision making,
planning, and policy learning.

1) Stapler Manipulation: The first experiment focuses on
an object that has multiple intrinsic articulation states that
can change over time—a stapler that can act as a revolute
joint or lock rigidly when rotated beyond a certain point. The
robot is shown a demonstration of a human manipulating the
top arm of the stapler, as shown in the top row of Figure
3, first showing it’s ability to rotate, then pushing it into
a locked position and demonstrating rigid movement of the
whole object.

The left panel of Figure 4 shows the segmentation produced



by CHAMP, in which each data point is a relative pose
between the two tags, and points are colored to indicate the
segment they belong to. Two segments were found—first a
rotational segment, denoted by the red circle drawn to show
all possible relative poses allowed by the model, and a rigid
segment, indicated by the green sphere with radius equal to
3σpos. Thus, CHAMP was able to accurately detect the two
separate articulation states.

Using this segmentation data, a simple proof-of-concept
causal model can be learned to explain the cause of the
articulation model change from revolute to rigid. First, all
the data prior to the changepoint is projected onto the model
using the its inverse kinematic equation, providing rotational
configurations c. We then examine the configurations that
occur in the 2 second window prior to the changepoint,
and check if those configurations are outside the range of
configurations observed at any other prior time; if they are
unique in that sense, then we take that as evidence that those
configurations may have caused the model change.

The left column of Figure 5 shows a green cone of con-
figurations (where a configuration angle corresponds to the
location of the center of the tag on the top arm of the stapler)
that appears to cause the model change. The bottom image
shows the stapler resting at a position just short of becoming
locked; it can be seen that the center of the tag is just above the
beginning of the cone, showing that our system has accurately
learned that if the arm were pushed any further, it would likely
change to a rigid locked state. This is a simple example, but
it illustrates the power of being able to identify changepoints,
allowing relevant facts to be learned about objects in the world.
It is easy to imagine extending this to mine a larger set of
experiences for causal structure and to use additional types of
data like force to understand, for example, how much force is
required to unlock the stapler and make it rotate again.

2) Eraser Regrasp: The next experiment examines the case
of frictional contact that can create quasi-static articulated
motion—a loose grasp of an object can produce rigid motion
with the hand, but can also afford revolute and prismatic
motion when external forces are applied. We are motivated
by the concept of extrinsic dexterity [5], in which in-hand
regrasps of objects are accomplished by leveraging forces like
gravity and contact with external objects, rather than relying
on complex, high-DOF manipulation with the hand. Thus far,
such re-grasps have been hand-coded for particular objects [5],
but we provide a proof-of-concept that it is possible to learn
these re-grasps from demonstration by identifying changes in
articulation models.

The robot is shown a demonstration of a re-grasp of a
whiteboard eraser, as shown in the center row of Figure
3: it begins with a side-grasp from a table top, and then
uses the table to rotate the eraser 90 degrees, followed by a
repositioning, and another assist from the table to prismatically
slide the grasp to the center of mass so that the grasp is suitable
for using the eraser. The center panel of Figure 4 shows the
segmentation produced by CHAMP, in which 3 segments are
found—a rotation, a rigid segment (moving into position for

the next table contact), and a prismatic shift.
It would be desirable for the robot to be able to reproduce

this behavior, possibly in a new environment, after seeing the
demonstration, but there is the correspondence problem, in
which the robot does not know how its body corresponds
to that of the demonstrator. For example, from the robot’s
point of view, it only saw two tags moving around, and has
no concept of hands, fingers, or the grasp locations utilized
by the demonstrator. However, using the segmentation data,
we can work backwards and infer the human’s initial grasp
location, without resorting to computer vision or other more
complicated means.

Examining the first rotational segment, we simply identify
the perpendicular axis that goes through the center of rotation,
giving us the initial grasp location. The center column of
Figure 5 shows a green arrow representing this axis, which
can serve as an approximately correct grasp location at the
edge of the eraser. From this initial location, it would then
be trivial to calculate where to apply forces on the eraser to
produce the desired motion from the demonstration, and also
how the expected grasp location would change, giving us a
full map of the re-grasp to follow in the future.

3) Table Assembly: The final experiment involves an as-
sembly task, in which each step of the task intentionally
changes the articulation relationships between objects. Our
goal is to analyze demonstrations to discover the underlying
number of steps and the associated articulation changes. These
expected changes in articulation relationships can then be used
to automatically design kinematic tests that can be used to
verify if an assembly step has be successfully accomplished.

The robot is shown an example of a partial table assembly
task, as shown in the bottom row Figure 3. First, the table
leg and screw are inserted into the main table surface. The
demonstrator then moves the leg in the plane, causing the
table to move as well, showing the solid connection that has
been made. The demonstrator then screws the leg in until it
is rigid and again moves the leg, this time showing rigidity
out of the plane as well. We preprocess the data, identifying
segments of free-body movement if the leg and table are too
far apart to be touching. The right panel of Figure 4 shows the
segmentation produced by CHAMP, in which 6 segments are
found—a free-body segment (the insertion approach), a rigid
segment (the movement in the plane), 3 rotational segments
during the screwing-in process (as the screw went further
in, the center of rotation got lower, and CHAMP correctly
detected that as a change in parameters), and a final rigid
segment (the movement in and out of the plane).

In sequential tasks that require precision, it is often im-
portant to verify that each step has been completed correctly
before moving on to the next step. In this case, the rigid data
segments can be leveraged by using them as templates for
verification tests. Each rigid segment is analyzed to determine
in which axis-aligned directions rigid movement between the
objects was actually observed, and in which directions no
movement was observed, using a threshold to account for
noise.



Fig. 4. Segmentation via CHAMP of the stapler data (left), eraser data (center), and table data(right). Data points (relative poses), along with their corresponding
articulation, are colored by segment. A colored sphere indicates a rigid model, where the radius corresponds to 3σpos in the observation model. A line and
circle illustrate a fitted revolute and prismatic model, respectively.

Fig. 5. (Left) The green cone shows the range of configurations that are associated with a change from a revolute to a rigid model. (Center) The green
arrow indicates the estimated initial grasp position used by the human demonstrator. (Right) The purple arrows indicate the directions (relative to a fixed table
coordinate frame) in which rigidity between the parts has been observed at various times during the task. When the leg/screw is inserted, rigidity in the plane
is observed (top), but after the leg is screwed in, there is also rigidity out of the plane (bottom).

The right column of Figure 5 shows purple arrows that have
been drawn relative to the table to illustrate the directions rigid
motion was observed after the insertion (top image, arrows
only in the x-y plane) and after fully screwing in the leg
(bottom image, arrows in the x-y plane, and in the z-direction
as well). We see that our approach is able to infer that after
the insertion, rigidity is expected in the plane of the table,
but not out of it (since that would pull out the screw), and
that after the screw has been tightened, rigidity is expected in
all directions. In the future, such information could be used
to automatically design skill verification tests—-for example,
applying force in each direction that rigidity is expected and
checking visually or through force sensing for the appropriate
response.

VI. DISCUSSION AND CONCLUSION

Many everyday tasks in robotics depend on understanding
the changing physical relationships between objects in the
world. We introduced a general-purpose changepoint detec-
tion algorithm, CHAMP, that extends Bayesian changepoint
detection to settings in which it is difficult or undesirable to
integrate out the parameters of candidate models. We then used
CHAMP in conjunction with several models of articulated
movement to identify changes in articulation relationships
between observed objects in the world. This changepoint
information was then used to infer physically grounded task-
relevant information that could be used to assist in future
robotic decision making and policy generation. Specifically,
we inferred a simple causal manipulation model, solved a



human-robot grasp correspondence problem, and automati-
cally generated skill verification tests for a task.

More generally, we view this work as one particular ex-
ample of how robots can learn about the physical world
from demonstration data to inform robust decision making,
rather than learning potentially brittle policies directly from
demonstrations. When using structured models that reflect
prior knowledge about the world (in this case, a limited
number of basic articulation types), we show that this kind
of inference can be performed robustly with very little data.

Our application of CHAMP advances the state-of-the-art
in both changepoint detection and articulation identification,
but leaves several interesting issues to be addressed in future
work. First, we could consider additional articulation models
(such as a helical screw), compositions of models, or even
use CHAMP on entirely different types of data like force
measurements. Second, the MLESAC method of fitting artic-
ulation models is entirely passive and can be tricked easily.
For example, if two unconnected objects move only along a
line with respect to each other, our method will assume that
a prismatic joint connects them, despite having no evidence
that they are connected rigidly in other directions. To remedy
this, future work could include a model of uncertainty over
various hypotheses, and additionally could use active learning
to allow the robot to actively reduce uncertainty and learn
about articulation relationships autonomously.
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