
Classification Error Correction: A Case Study in Brain-Computer Interfacing

Hasan A. Poonawala, Mohammed Alshiekh, Scott Niekum and Ufuk Topcu

Abstract— Classification techniques are useful for processing
complex signals into labels with semantic value. For example,
they can be used to interpret brain signals generated by humans
corresponding to a finite set of commands for a physical
device. The classifier, however, may interpret the signal as a
command that is different from the intended one. This error
in classification leads to poor performance in tasks where the
class labels are used to learn some information or to control
a physical device. We propose a computationally efficient
algorithm to identify which class labels may be misclassified
out of a sequence of class labels, when these labels are used
in a given learning or control task. The algorithm is based on
inference methods using Markov random fields. We apply the
algorithm to goal-learning and tracking using brain-computer
interfacing (BCI), in which signals from the brain are commonly
processed using classification techniques. We demonstrate the
proposed algorithm reduces the time taken to identify the goal
state in control experiments.

I. INTRODUCTION

In most dynamical systems, the output of the system is a
vector of real numbers obtained through sensors. The sensed
output is used in estimation and feedback control techniques
for achieving various tasks, such as set-point regulation or
trajectory tracking. If the sensor is noisy, the noise usually
takes the form of an additive numerical term with zero mean.
In some systems, a classification process [1] yields the sensed
output, which is a member of a discrete finite set of labels
instead of a continuous value. The noise in classification
processes results in a feature or data sample being assigned
a label different from the true label that should have been
assigned to the feature. This type of error is different from
noise in systems with continuous numeric outputs, since real
numbers have a well-known ordering relation but a finite set
of labels has no a priori order.

The shared control of semi-autonomous devices using
brain-computer interfaces (BCIs) [2] is an example where
classifier outputs are used for control. Brain-computer in-
terface technology will enable increased effectiveness of
human-machine interaction in general. Current research in
BCIs is largely motivated by human-machine interaction in
the context of rehabilitation devices. The human nervous

This work was supported by grants from AFRL (#FA8650-15-C-2546),
DARPA (#W911NF-16-1-0001), ARO (#W911NF-15-1-0592), and NSF
(#1550212 and #1652113).

Hasan A. Poonawala and Mohammed Alshiekh are with the In-
stitute for Computational Engineering and Science, University of
texas at Austin, Austin, TX 78712, USA. hasanp@utexas.edu,
malshiekh@utexas.edu

Scott Niekum is with the Department of Computer Science, University of
texas at Austin, Austin, TX 78712, USA. sniekum@cs.utexas.edu

Ufuk Topcu is with the Department of Aerospace Engineering, University
of texas at Austin, Austin, TX 78712, USA. utopcu@utexas.edu

system generates signals which can be recorded using tech-
niques such as electroencephalography (EEG) or electromyo-
graphy (EMG). A signicant number of BCI approaches ex-
tract signals from the human brain by recording brain activity
in the form of EEG signals through the human scalp [3]–
[6]. Using only EEG has the benefit of requiring the user to
wear only one piece of headgear to allow interaction with the
device. However, extracting meaningful signals using EEG
is challenging [2]. Determination of the user’s intention is
achieved either by training the user to generate a fixed set
of signals, or using machine learning techniques to classify
recorded EEG signals [3], [5], [6].

A common task for such devices is to reach a goal state
known by the user but unknown to the device, using only
classified brain signals as available feedback [3]–[6]. The
user either generates brain signals corresponding to control
actions, or performs the role of an expert who evaluates the
actions selected by the device. Either way, the information
that the human wants to transmit is extracted as complex
and noisy EEGs signals in many situations, and a classifier
may be required to interpret this information. A technique
for learning which goal is intended by the user is presented
in [5]. However, no technique to infer when misclassification
occurs is attempted. The presence of misclassified commands
or evaluations in the goal-learning task results in longer times
taken to reach the goal [5].

Contributions

We develop an algorithm to estimate when classification
errors occurred in control through BCI. The main intellectual
contribution is the insight that Markov random fields (MRFs)
can be used to construct a useful prior distribution over
the true class labels associated with a set of observed
class labels. This prior distribution is then used to perform
Bayesian inference. We also show how judicious choice of
the Markov random field’s structure renders the algorithm
computationally efficient and therefore suitable for real-time
implementation. Through simulations and experiments, we
demonstrate that using the proposed algorithm to identify
classification errors results in lower times taken to estimate
the unknown goal intended to be reached by the user.

II. BACKGROUND

A. Finite Transition Systems

A finite transition system (FTS) [7] consists of a tuple
(S,A, T) where S is a finite set of states, A is a finite set
of actions, and T : S × A → S is a transition function.
The evolution of a FTS occurs in discrete time. At every
time step t ∈ N, the state is s(t) ∈ S, and an action a(t) ∈

BCI Device Human

ClassifierGoal Learning

f(t)

s(t)

b(t)

b(t)
s(t)ĝ(t)

Fig. 1: Human and BCI system together as a classifier-in-the-loop
system. Once the goal learning is complete, the BCI system can
take over control from the human.

A is selected which results in a new state determined by
T (s(t), a(t)).

B. Classifiers

A classifier C consists of a tuple (F,L,Q) where F is
a set of features, L is a finite set of class labels, and Q
is a map that assigns a label from L to a feature f ∈ F .
A confusion matrix R captures the imperfection of the
classification process, and is obtained during testing of the
classifier. If the classifier is perfect, then R is the identity
matrix.

C. Markov Random Fields

A Markov random field (MRF) [8] is a graph G = (V, E)
where V is a set of nodes, and E is a set of undirected edges
in V × V . Furthermore, each node i ∈ V is associated with
a random variable xi.

The main property of a MRF is that the edge structure E
determines the conditional independence of the nodes. That
is, a node is conditionally independent of all nodes that it is
not connected to via an edge:

(1)p
(
xi: {xj}(j)∈V\{i}

)
= p

(
xi: {xj}(i,j)∈E

)
.

The random variables xi for each node are combined
together to form the random variable x. The symbol p(x)
denotes the joint probabilitiy distribution of the random
variables xi. The random variables xi of a discrete MRF have
values in a finite discrete set. A sample from p(x) consists
of an assignment of one of the discrete values to each node
in V . We will refer to such a sample as an assignment of the
MRF, or simply, an assignment.

III. GOAL-LEARNING THROUGH BRAIN-COMPUTER
INTERFACES

A common task to be achieved by an assistive device is
for it to reach a desired goal state g ∈ S determined by the
human user [3]–[6], but unknown to the device, where S
is the set of states that can be reached by the device. The
device must learn the goal based on the user’s commands.

We model the dynamics of the device as a finite transition
system. We will focus on a finite state space arranged in
a one-dimensional grid, as seen in Figure 2. The set A of
actions of the device is {a0, a1, a2} corresponding to moving
left, staying in the same state, and moving right. As shown in

s1 s2 s3 s4 s5 s6 s7 s8 s9

a2a0
a1

Fig. 2: Example of a finite transition system.

Section V, we can treat the case of multi-dimensional state
spaces using the case of one-dimensional state spaces.

The transition function T of this device is given by three
simple rules:

T (si, a2) = si+1, (2)
T (si, a0) = si−1, and (3)
T (si, a1) = si. (4)

Of course, we must impose the end cases T (s1, a0) = s1
and T (s|S|, a2) = s|S|.

We denote the state of the system at time t by s(t). At each
time step t, the human generates an EEG-based feature f(t)
to command an action a(t) ∈ {a0, a1, a2} (see Figure 1). The
classifier Q, obtained by prior training, classifies f(t) as label
b(t). There is, however, a non-zero probability that a(t) 6=
b(t). The probability of making an error in classification is
captured by the confusion matrix R of C obtained during
testing. To summarize, the device is controlled via a classifier
C = (F,L,Q), where F is the set of EEG features that can be
obtained, L = A, and Q has confusion matrix R associated
with it. We refer to the pair (s(t), b(t)) as the state-label pair
at time t, where s(t) and b(t) are the state and label at time
t respectively.

We represent the estimate ĝ(t) ∈ S of the goal g at
any time t by a probability mass-like function Pt defined
on the finite state space S. Note that g = sj for some
j ∈ {1, 2, . . . , |S|}. Once a state si ∈ S uniquely achieves a
value of Pt(si) greater than a threshold δ ∈ [0, 1], we take
it to be the goal state. We denote the time step at which a
goal state is identified by tf . We want the value of tf to be
small, implying that the goal is identified quickly.

We update the values of Pt(si) for all si ∈ S after every
action is received. The update takes the form

(5)Pt+1(si) =
kt(si)

ηt
Pt(si),

where si ∈ S, and ηt is a normalizing factor given by ηt =∑
si∈S kt(si)Pt(si). The term kt(si) acts as a multiplicative

update factor of Pt(si).The update factor kt(si) can be only
one of the elements of {kL, kH} for each si ∈ S. The
parameters kL and kH are any two real numbers such that
kH > kL > 0.

Let the current state be si. If b(t) = a1 then kt(si) = kH ,
and kt(sj) = kL for all other states sj 6= si. If b(t) = a2,
then kt(sj) = kH for all sj ∈ S where j > i, and kt(sj) =
kL for all j ≤ i. If b(t) = a0, then kt(sj) = kH for all
sj ∈ S where j < i, and kt(sj) = kL for all j ≥ i.

If actions are classified perfectly, then Pt(g) will increase
monotonically and become larger than the threshold δ, and

s1 s2 s3 s4 s5 s6 s7 s8

Fig. 3: Optimal actions to be taken in each state in order to reach
the goal s5 and stay there: a2 is indicated by the color dark green,
a1 by red, and a0 by blue.

· · · · · ·
sa sb sc sd se sf sg

Fig. 4: The grid graph structure of the MRF with each node
corresponding to a state-label pair. The nodes are ordered based on
the state of each state-label pair (indicated below the node), meaning
that the indices of the states are such that a ≤ b ≤ c ≤ d ≤ . . . ≤ g.
Equality of the indices occurs when a state is visited multiple times.

therefore g will always be identified as the goal state given
enough time steps. However, due to misclassification, Pt(g)
may not always increase. Even if Pt(g) eventually crosses
the threshold, it will take more time steps to do so when
compared to the case without any classification errors. To
prevent this increase in tf , we want to identify which actions
have been misclassified. We define the following problem.

Inference problem: Given a sequence of state-label pairs
(s(t), b(t)), t ∈ {1, 2, . . . , N}, estimate the true labels a(t)
associated with b(t) for t ∈ {1, 2, . . . , N}.

IV. INFERENCE USING MARKOV RANDOM FIELDS

Assume that a human user generates a feature fi to
communicate a class label xi ∈ L to a device. The classifier
assigns the class label yi to fi, and it is possible that
yi 6= xi. The class label yi is a noisy measurement of the true
class label xi. We combine the measurements yi obtained at
different time steps to obtain the set y of measuremed class
labels. We treat the true class labels x as random variables
since they cannot be observed directly. Our aim is to estimate
the most likely class labels x̂ given the measured class labels
y. We will use Bayesian inference to estimate x̂. The error
rates of the classifier will determine the likelihood function
p(y|x). The prior distribution p(x) is undetermined. We
describe the procedure to choose this prior distribution in
an intelligent way.

A naive choice for the prior distribution is that all possible
values of x are equally likely; we choose the prior differently.
Figure 3 shows an example of the optimal actions in the
states given a goal state. Notice that the optimal action to be
taken in two adjacent states is almost always the same. The
only exceptions occur when one of the two adjacent states
is the goal state. This spatial pattern of the true class labels
in states is independent of which state the goal is, and we
want a prior distribution that associates a high probability to
assignments x that possess such a spatial pattern of state-
label pairs.

We obtain this desired prior distribution by using Markov
random fields (MRFs). In order to specify the MRF, we
must provide the connectivity structure and the clique energy
functions [8]. Inference using Markov random fields becomes

s1 s2 s2 s3 s3 s4 s4 s5

· · ·

s5 s5 s5 s5 s5 s6 s6 s7

· · ·

(a) An example of the MRF constructed from the state-label pairs
(s(t), b(t)) obtained for 16 time steps, where s(1) = s1. There
are six time instants when the label is misclassified.

s1 s2 s2 s3 s3 s4 s4 s5

· · ·

s5 s5 s5 s5 s5 s6 s6 s7

· · ·

(b) The assignment of the MRF in Figure 5a when the optimal
action is assigned in each state.

Fig. 5: Examples of MRFs obtained for a sequence of state-label
pairs. Each state-label pair is associated with a node in the MRF.
The state associated with a node is indicated below the node, and
the label is indicated by the color of the node. a2 is indicated by
the color dark green, a1 by red, and a0 by blue.

an energy-minimization problem. In general, this energy-
minimization problem is difficult to solve. We show how
to choose the connectivity and energy functions in such a
way that approximate energy-minimization can be performed
using efficient algorithms [9]–[11].

Each node in the MRF G = (V, E) will correspond to
a state-label pair (s(t), b(t)) for some t ∈ N. Therefore,
|V|= N . We connect the nodes to form a chain, as seen
in Figure 4. Each node has two neighbors in this graph,
except the nodes at the ends of the chain. Consider a node
associated with state si, and let the states associated with
its two neighboring nodes be sj and sk. Then, j ≤ i ≤
k or k ≤ i ≤ j. This condition simply says that the
graph G represents a chain of nodes arranged so that the
corresponding states si of the nodes are in order of the
indices i. Figure 5 shows an example of such an MRF. The
MRF can accommodate missing state-label pairs, or repeated
state-label pairs obtained at different times.

The Hammersley-Clifford Theorem [12] states that the
prior distribution p(x) of an MRF can be expressed as the
(normalized) exponential of the sum of energy functions
defined over the cliques of the graph. A clique of a graph
is a subset of nodes of the graph in which all nodes in
the subset are connected to all other nodes in the subset.
Let C be the cliques in the MRF. Let xc be the set of
random variables corresponding to nodes in c ∈ C. Then,
p(x) = 1

Z exp
(
−
∑

c∈C Vc(xc)
)
, where Z is an appropriate

normalizing factor.
The chain graph structure of the MRF ensures that the

cliques consist of only pairs of nodes connected by an edge.
The clique energy function Vc for cliques in the MRF is
given by

Vc (xi, xj) =

{
β if xi 6= xj

0 otherwise,
(6)

where β > 0 is an adjustable parameter. The function Vc

is also referred to as the binary potential energy function
of the MRF. An important property of Vc is that it is
submodular [11], since, for any a, b ∈ L,

(7)Vc(a, a) + Vc(b, b) ≤ Vc(a, b) + Vc(b, a).

Informally, an energy function Vc is submodular when its
arguments that are more similar are assigned smaller energy.
The submodularity of Vc implies that p(x) is higher when
connected labels are similar, which a property we want the
MRF to possess. Furthermore, efficient inference methods
exist for MRFs with submodular binary potential energy
functions [11].

We define the unary potential energy function D as

(8)D(yi, xi) = − log p(yi|xi).

Equivalently, p(yi|xi) = eD(yi,xi). Therefore, p(y|x) =
e
∑

i∈V D(yi,xi). The maximum a posteriori (MAP) estimate
is obtained from the posterior distribution as

x̂ = argmax
x

p(x|y).

Since p(y|x) and p(x) can be represented by energy
functions D and Vc, computing x̂ is equivalent to the
following energy-minimization problem (see [8] for details):

(9)x̂ = argmin
x

∑
i∈V

D(yi, xi) +
∑
c∈C

Vc(xc).

If L contains only two labels, then the global minimum of
the right hand side of (9) can be found exactly in polynomial
time [10], [11], provided Vc is submodular. Computing x̂
becomes equivalent to constructing a graph Gmin with edge
weights determined by the energy functions, and obtaining
the min-cut max-flow [10], [11] solution determined by this
graph. In general, solving the energy-minimization problem
with more than two labels exactly is computationally expen-
sive. However, an approximate minimum within a known
factor of the global minimum can be computed using an
iterative scheme [9].

To summarize, we develop an inference algorithm that
involves two steps. The first step is to construct a MRF from
the state-label pairs that encodes the prior distribution over
the true class labels associated with the measured labels. The
second step is to use an efficient inference algorithm, namely
the swap algorithm from [9], to obtain the true class labels
given these measured class labels.

V. MULTI-DIMENSIONAL STATE SPACES

We use the method for goal-learning in one-dimensional
state spaces to solve the goal-learning problem in state spaces
modeled by regular n-dimensional grids. We reduce the goal-
learning in an n-dimensional grid to n goal-learning prob-
lems in one-dimensional grids. Figure 6 shows an example
of this reduction.

Each state in the n-dimensional grid has n indices, one
index per dimension. The index denotes the position of
the state along the associated dimension (see Figure 6,
for example). For the kth dimension, we create a one-
dimensional grid where the states are denoted as ski . The

si1 si2 si3 si4 si5 si6

s1j

s2j

s3j

s4j

s5j

s21 s22 s23 s24 s25 s26

s11

s12

s13

s14

s15

Fig. 6: Example of the decomposition of a two-dimensional grid
into two one-dimensional grids. A state sij in the two-dimensional
grid has index i and j corresponding to the first and second dimen-
sions of the grid. The states s1i and s2j in the vertical and horizontal
one-dimensional grids respectively represent sij . The transitions in
the two-dimensional grid marked by blue arrows become transitions
in the vertical one-dimensional grid, while those marked with red
arrows become transitions in the horizontal one-dimensional grid.
The goal s23, marked green, in the two-dimensional grid becomes
the goals s12 and s23 in the two one-dimensional grids respectively.

subscript i indicates that this state is the ith state in the
one-dimensional grid associated with the kth dimension.
Moreover, this state represents all those states in the n-
dimensional grid which have their kth index equal to i. In
a regular n-dimensional grid, a transition results in the next
state differing from the previous state by only one index, say
the kth index. Therefore, this transition in the n-dimensional
grid induces a transition only in the one-dimensional grid
associated with the kth dimension. In this way, we create
n one-dimensional goal-learning problems. We combine the
solution to the n goal-learning problems in one dimension
to obtain the solution to the goal-learning problem in n
dimensions.

VI. SIMULATIONS

We simulate a goal-learning scenario for one-dimensional
and two-dimensional state spaces in multiple trials. In each
trial, we update the state based on a sequence of actions.
The probability of choosing the optimal action in a state
is 0.7 in the one-dimensional case, and 0.6 in the two-
dimensional case. The remaining non-optimal actions in a
state are equally likely to be chosen. Choosing a non-optimal
action in a state simulates a classification error. This process
yields a sequence of state-label pairs in a trial.

At each time step, the available sequence of state-label
pairs yields a set of measured labels y, and a set of estimated
true labels x̂ obtained by using our inference algorithm.
We choose β to be 1.0 in our algorithm. We compute the
energy function (8) using the simulated error probabilities
mentioned in the previous paragraph. We use both y and x̂ to
identify the goal using separate probability mass functions, as
described in Section III, for each set of labels. The threshold
δ is 0.95. We denote the time taken to identify the goal when
using the measured labels y as tf (y), and that when using

0.1 0.2 0.3 0.4

20

30

40

50

60

Error rate (%)

To
ta

l
tim

e
(s

te
ps

)
tf (y)

tf (x̂)

Fig. 7: Scatter plot of time tf (y) taken to identify the goal using
the measured labels and time tf (x̂) taken to identify the goal using
the labels estimated by our inference algorithm, vs the error rate
associated with tf (y), for trials in Sim 1.

0.1 0.2 0.3 0.4

−10

0

10

20

30

Error rate (%)

D
iff

er
en

ce
in

tim
e

(s
te

ps
)

Fig. 8: Scatter plot of tf (y)−tf (x̂) versus the error rate, for trials
in Sim 1.

the estimated labels x̂ as tf (x̂). The error rate for a trial is
the ratio of the total number of errors and the value of tf .
We stop a trial after 60 time steps have passed.

We refer to these one-dimensional and two-dimensional
simulations as Sim 1 and Sim 2 respectively. Figures 7 and 8
show the results for Sim 1. Each point denotes a single trial.
The ordinate is the value of tf for the trials. The abscissa
is the error rate in the trial associated with tf (y). Similarly,
Figures 9 and 10 show the results for Sim 2.

The null hypothesis for our simulation experiment is that
the value of tf is not affected by whether the estimated true
labels x̂ or the measured labels y are used to identify the
goal. Figures 7 and 9 show that on average, tf (x̂) is smaller
than tf (y). The t-statistic values (penultimate row of Table I)
for Sim 1 and Sim 2 are greater than the required paired t-
test values (bottom row of Table I) for rejecting the null
hypothesis with 99.95% confidence. We conclude that the
proposed inference algorithm enables faster identification of
the goal on average, when compared to using the measured

0.1 0.15 0.2 0.25 0.3 0.35

100

200

300

400

Error rate (%)

To
ta

l
tim

e
(s

te
ps

)

tf (y)

tf (x̂)

Fig. 9: Scatter plot of time tf (y) taken to identify the goal using
the measured labels and time tf (x̂) taken to identify the goal using
the labels estimated by our inference algorithm, vs the error rate
associated with tf (y), for trials in Sim 2.

Sim 1 Sim 2 Sim 3 Exp 1
Mean 4.63 48.06 44.14 3.59

Std. dev. 5.46 49.91 34.77 4.14
Min −9 −44 0 −1
Max 31 182 190 18

of samples 285 84 483 43
t-statistic 14.56 8.83 27.899 5.67
t.9995 3.39 3.416 3.39 3.551

TABLE I: Results of statistical analysis of the data for the
simulations (Sim 1-3) and experiment (Exp 1). The unit for the
first four rows is the number of time steps.

class labels. Figures 7-10 also show that the reduction in
time steps increases with the error rate. This matches our
expectation that the inference algorithm results in faster goal-
learning when the number of errors are higher, by identifying
classification errors.

For some trials, tf (x̂) is larger than tf (y). The state-
label pairs corresponding to these trials contain several errors
that occur in the same state in consecutive time steps, and
our inference algorithm is less likely to correct these errors.
Furthermore, for Sim 2, the t-statistic is not as high as for
Sim 1. We simulate a case where the parameters for the
energy function (8) are different from the values determined
by the simulated probabilities of choosing actions in a state.
We decrease the probability of choosing the optimal action to
0.36, and the probability of choosing the non-optimal actions
in a state to be 0.16. The resulting simulation is referred to
as Sim 3. Table I shows that the performance of the inference
algorithm improves for Sim 3. Therefore, choosing a more
conservative success rate for the classifier rather than the one
given by the confusion matrix associated with the classifier
may be one way to overcome the issue related to consecutive
errors in the same state.

VII. EXPERIMENTS

We implement the proposed inference algorithm for a
classifier-in-the-loop system in an experiment involving the

0.1 0.15 0.2 0.25 0.3 0.35

−100

0

100

200

Error rate (%)

D
iff

er
en

ce
in

tim
e

(s
te

ps
)

Fig. 10: Scatter plot of tf (y) − tf (x̂) versus the error rate, for
trials in Sim 2.

control of a virtual device using a brain-computer interface.
The null hypothesis for the experiment is, again, that using
our proposed inference algorithm does not affect the number
of time steps taken to identify the goal.

A. Setup

We present the human subject with a one-dimensional grid
containing 10 states displayed on a computer screen (see
Figure 11). We mark the current state of the system is by a
green cursor. The cursor can move horizontally in the grid.
The task for the subject is to command the cursor to move
towards the goal (taken as s4) and stay there upon reaching
it. We also present three squares which flash (between
black and white) at 12Hz, 15Hz, and 20Hz respectively.
Each square flashing at a unique frequency corresponds to
a unique action. The user selects an action by looking at
the flashing square corresponding to an assigned action. We
extract EEG signals from the human using the OpenBCI
R&D Kit [13]. The headset has 16 channels, and uses a 32
bit microprocessor to process the measured potentials.

We perform the simulation and processing for the ex-
periment on a Lenovo Thinkpad with an Intel Core i7
2.1GHz CPU and 8GB of RAM running Ubuntu 14.04 as
the operating system. We generate the flashing squares using
the software program Psychopy [14]. We simulate the virtual
device using the Robot Operating System (Indigo version).

B. Classification

The user commands an action by looking at the flashing
square associated with that action. These flashing squares
result in EEG signals known as steady-state visually evoked
potentials (SSVEP). We use the O1 and O2 electrodes to
record the EEG signals at a sampling rate of 250Hz. We
construct each feature vector (observation) by calculating
the average spectral power magnitudes (SPMs) across three
disjoint bandwidths centered at 12Hz, 15Hz, and 20Hz with
a width of ±1.5Hz for 100 consecutive samples resulting
in three averages per channel. This procedure results in a
feature vector with 6 elements.

Fig. 11: Setup for experiments involving the control of a virtual
device using a brain-computer interface with a classifier in the loop.

Predicted label
a0 a1 a2

Actual label
a0 0.85 0.07 0.07
a1 0.10 0.80 0.10
a2 0.09 0.04 0.87

TABLE II: Confusion matrix for Q.

The resulting dataset contains 1,191 labeled observations
after processing 119,100 samples. We split the dataset into
a training set and a testing set, containing 893 and 298 ob-
servations respectively. We train a logistic regression model
to obtain our classifier. Table II shows the confusion matrix
obtained after testing of the classifier.

C. Procedure

A trial consists of simulating a sequence of actions taken
by the cursor at discrete instants of time. The interval
between two actions is two seconds. The feature corresponds
to data collected for one second just before the cursor is
moved. As mentioned, the cursor takes an action based on
the output of the classifier. We assume that the user looks
at the flashing square corresponding to the optimal action in
the current state when commanding an action.

We compute the value of Pt(g) is at every time step after
an action is performed, using all state-label pairs obtained in
the trial so far. We use both the measured class labels y and
the estimated class labels x̂ obtained by using the proposed
inference algorithm to compute two separate estimates of
Pt(g). We end the trial either when both values reach 0.95,
or 60 time steps have been completed. We discard trials in
which Pt(g) does not cross 0.95 when using either y or x̂.
We refer to this experiment as Exp 1 in Table I.

We choose parameter β to be 1 based on the simulations.
Based on the discussion at the end of Section VI, the energy
function in (8) is not defined by using the confusion matrix
in Table II. Instead, we set p(yi|xi) as 0.55 when yi = xi,
and 0.225 otherwise. We select these values through trial and
error using simulations.

D. Results

We present the experimental data collected over 43 trials.
The t-statistic for Exp 1 (5.67) is higher than that required
to reject the null hypothesis with 99.95% confidence (3.55).

0.15 0.2 0.25 0.3 0.35 0.4

20

30

40

50

60

Error rate (%)

To
ta

l
tim

e
(s

te
ps

)
tf (y)

tf (x̂)

Fig. 12: Scatter plot of time tf (y) taken to identify the goal using
the measured labels and time tf (x̂) taken to identify the goal using
the labels estimated by our inference algorithm, vs the error rate
associated with tf (y), for trials in Exp 1.

0.1 0.2 0.3 0.4

0

5

10

15

Error rate (%)

D
iff

er
en

ce
in

tim
e

(s
te

ps
)

Fig. 13: Scatter plot of tf (y) − tf (x̂) versus the error rate, for
trials in Exp 1.

Therefore, even in experiment, the proposed inference algo-
rithm is effective in reducing the time taken to identify the
goal. As seen in Figures 12 and 13, the reduction in time
taken increases as the error rate increases.

VIII. CONCLUSION

We have outlined a learning and control task in which
the information available for control is in the form of class
labels which are the output of a classifier. The class labels
are used to determine the unknown goal state selected by
a human user. The classification process can make errors,
and therefore we proposed a method to detect and correct
classification errors, leading to improved performance in the
goal-learning task.

The main insight we use is that the correct class labels
for each state-action pair are related in a predictable way.
In particular, the correct labels in adjacent states are more
likely to be the same than to be different, no matter which
state the goal is. This property can be used to identify

errors in classification at individual time steps. Moreover,
the process of inferring the correct labels can be done
efficiently by exploiting existing algorithms for optimization
of submodular functions. The computational efficiency of the
inference algorithm makes its use in experiments feasible.
It may be possible to apply the proposed method to other
situations where the correct class labels in states possess a
known spatial relationship.

The simulations and experiments presented show that the
inference algorithm reduces the time taken to identify the
true goal on average. However, there are sequences of state-
label pairs which may result in no real improvement in the
time taken due to a failure to identify all misclassified labels.
Often, this failure is linked to a concentration of errors in the
same state. We observed that using a higher misclassification
rate than given by the confusion matrix as a parameter in
the proposed inference algorithm can reduce the instances in
which the proposed algorithm does not perform well. One
issue that has not been addressed is the selection of β. The
MAP estimate is sensitive to the choice of the value of β.
Future work will consist of estimating the true labels using
multiple values of β, until the labels match an expected
pattern associated with perfect classification.

REFERENCES

[1] E. Alpaydin, Introduction to Machine Learning, 2nd ed. The MIT
Press, 2010.

[2] G. Dornhege, J. del R. Millán, T. Hinterberger, D. J. McFarland, and
K.-R. Müller, Towards Brain Computer Interfacing. MIT Press, 2007.

[3] J. Grizou, I. Iturrate, L. Montesano, P.-Y. Oudeyer, and M. Lopes,
“Calibration-Free BCI Based Control,” in AAAI Conference on Artifi-
cial Intelligence, Quebec, Canada, July 2014, pp. 1–8.

[4] J. d. R. Millan, “Brain-controlled devices: the perception-action closed
loop,” in International Winter Conference on Brain-Computer Inter-
face (BCI), Feb 2016, pp. 1–2.

[5] I. Iturrate, L. Montesano, and J. Minguez, “Shared-control brain-
computer interface for a two dimensional reaching task using EEG
error-related potentials,” in International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBS), July 2013, pp.
5258–5262.

[6] L. J. Trejo, R. Rosipal, and B. Matthews, “Brain-computer interfaces
for 1-D and 2-D cursor control: designs using volitional control of the
EEG spectrum or steady-state visual evoked potentials,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 14,
no. 2, pp. 225–229, June 2006.

[7] C. Baier and J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[8] D. Koller and N. Friedman, Probabilistic Graphical Models: Princi-
ples and Techniques - Adaptive Computation and Machine Learning.
The MIT Press, 2009.

[9] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, November
2001.

[10] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124–1137, Sept 2004.

[11] V. Kolmogorov and R. Zabin, “What energy functions can be mini-
mized via graph cuts?” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 2, pp. 147–159, Feb 2004.

[12] R. Kinderman and S. Snell, Markov random fields and their applica-
tions. American mathematical society, 1980.

[13] OpenBCI, “http://openbci.com/.”
[14] J. Peirce, “Generating stimuli for neuroscience using PsychoPy,”

Frontiers in Neuroinformatics, vol. 2, p. 10, 2009.

