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Abstract— In realistic environments, fully specifying a task
model such that a robot can perform a task in all situations
is impractical. In this work, we present Incremental Task
Modification via Corrective Demonstrations (ITMCD), a novel
algorithm that allows a robot to update a learned model by
making use of corrective demonstrations from an end-user in
its environment. We propose three different types of model
updates that make structural changes to a finite state automaton
(FSA) representation of the task by first converting the FSA
into a state transition auto-regressive hidden Markov model
(STARHMM). The STARHMM’s probabilistic properties are
then used to perform approximate Bayesian model selection
to choose the best model update, if any. We evaluate ITMCD
Model Selection in a simulated block sorting domain and the
full algorithm on a real-world pouring task. The simulation
results show our approach can choose new task models that
sufficiently incorporate new demonstrations while remaining
as simple as possible. The results from the pouring task show
that ITMCD performs well when the modeled segments of the
corrective demonstrations closely comply with the original task
model.

I. INTRODUCTION

Robots deployed into real-world environments will in-
evitably encounter situations not covered by their initial task
models and will need to incorporate new information to
handle these unanticipated circumstances (e.g. an engineer
cannot anticipate all conditions needed for a robot deployed
with a set of preprogrammed household task models). Due
to the intractability of enumerating all scenarios the robot
may encounter, it is advantageous to have mechanisms that
allow robots to interact with end users to update and adapt
task models by providing corrective demonstrations in the
environment in which the robot operates. This leads to the
question: How can a task model be efficiently updated to
incorporate new information when that information may or
may not fit into the policy defined by the existing model?

Learning from demonstration (LfD) allows robots to learn
new skills from example task executions provided by hu-
mans [1, 2]. While much work has focused on learning
single policies for skill execution [3, 4] or sequencing a
set of learned policy primitives [5, 6], recent efforts have
focused on learning task models by jointly reasoning over
action primitives and their sequences while tackling the
problem of incremental learning of such task models [7]–
[12]. However, these methods require an explicit reward
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Fig. 1. ITMCD was evaluated on a pouring task, where the pitcher can
be either open or closed. Starting from a task model that can complete the
pouring task in the open condition, the objective is to learn the task model
to operate in the closed condition given corrective demonstrations.

function definition [8, 9], utilize computationally expensive
processes such as a simulated evaluation [12] or Markov
chain Monte Carlo (MCMC) sampling [10, 11], or require
hand-coded segments [7]. Utilizing a parametric method with
closed-form inference could remove the need for a reward
function while decreasing the computational overhead.

In this work, we present Incremental Task Modification
via Corrective Demonstrations (ITMCD), a new method
that utilizes corrective demonstrations to inform incremental
changes to a task model represented as a finite-state au-
tomaton (FSA) whose primitives are specified by initiation,
termination, dynamics, and policy models. Given a new
demonstration, a set of model updates are proposed that
make specified structural changes to the FSA. These changes
are instantiated through conversion into a state transition
auto-regressive hidden Markov model (STARHMM) [13].
The STARHMM’s probabilistic properties are then used
to perform approximate Bayesian model selection, which
chooses the best update to incorporate into the model.

We evaluate the ITMCD Model Selection step on a
simulated block sorting domain and the full algorithm on
a real-world pouring task. Given corrective demonstrations,
ITMCD Model Selection is able to select the simplest good-
fit model from a set of candidate FSA updates. Although
the primitive representation used was sensitive to small
variations in the modeled trajectories, ITMCD is able to
appropriately add new primitives to the task model when the
modeled segments of the corrective demonstrations comply
with the original task model.
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Fig. 2. The ITMCD algorithm starts with an FSA model and applies a
set of edits given the demonstrations. Then, the edited model’s likelihoods
given the data are compared to select an update to the model.

II. RELATED WORK

One method of representing complex skills needed by
robots is through finite state automata (FSA), which define
the transitions between a set of primitives. Kappler et al.
[7] learn associative skill memories (ASMs), which are
sequenced through a manually-specified manipulation graph.
ASMs utilize sensor traces as a feedback mechanism to
enforce stereotypical behavior of the encoded skills. These
sensor traces can also be used to evaluate the success
and failure of the skills, allowing transition into recovery
behaviors dictated by the manipulation graph. Alternatively,
Konidaris et al. [8] utilize reward signals to discover the
subgoals of a demonstration, which provide a segmentation
of the demonstration and results in a skill chain. These
skill chains are then merged to form skill trees. This work
was later extended to learn skill trees autonomously [9].
In closely-related work, Riano and McGinnity [12] discover
FSAs to accomplish a task through an evolutionary algorithm
that permutes the structure of the FSA, but requires many
simulated executions to evaluate an FSA’s fitness. Niekum
et al. [10, 11] segment demonstrations with a Beta Process
Autoregressive hidden Markov model (BP-AR-HMM) and
constructs an FSA using those segments. This approach al-
lows corrective demonstrations to improve the FSA, but this
MCMC sampling approach does not provide a mechanism
for algorithm termination.

Interactive learning has been used in prior work to up-
date an agent’s task model. Akgun et al. [3] introduced a
method for learning keyframe-based models of skills, and
an interaction method to iteratively add/remove keyframes
in the learned model in subsequent interactions. Embodied
Queries is an active learning approach in which a robot
queries a human to gain specific demonstrations or follow-up
information about a recently learned skill [14]. In work by
Sauser et al. [15], a teacher can provide tactile feedback to
a robot during playback of a learned skill to adapt or correct
object grasping behaviors. The Confidence-Based Autonomy
(CBA) algorithm intelligently queries a human teacher for

Fig. 3. Graphical representation of STARHMM [13]. The model includes
states s, actions a, phases ρ and termination variables ε. The gray nodes
are observed variables, while the white nodes are hidden variables.

more demonstrations in low-confidence states [16]. Jain et
al. [17] introduce a method for iterative improvement of
trajectories in order to incorporate user preferences. Each
demonstration potentially provides new information regard-
ing task constraints, which are then incorporated into the
task model. However, these methods are currently limited to
low-level skills and do not reason over the sequencing of
multiple low-level skills.

III. BACKGROUND

We use two different graphical representations to model
and modify tasks: (1) finite state automaton (FSA) and
(2) state transition auto-regressive hidden Markov model
(STARHMM). We represent a task using an FSA, a directed
graph in which nodes represent low-level primitives and
edges indicate transitions between primitives. We convert
this existing FSA into a STARHMM and use the probabilistic
properties of the STARHMM to evaluate changes to the FSA.
This next section briefly discusses these two models before
continuing to our algorithm, ITMCD.

A. Finite State Automaton

A finite state automaton (FSA) is defined as a directed
graph, with nodes representing primitives and edges repre-
senting valid transitions between primitives. In this work,
each node zi within the FSA is a primitive defined by an
initiation classifier - when the primitive should begin (Pinit),
a termination classifier - describing when a primitive should
end (Pterm), a state dynamics model - describing how the
state changes with actions (Pdyn), and a policy model -
describing when to take what action (π). More concretely,
zi is defined below where i ∈ {1, . . . , κ}, st ∈ Rn is the
observed state at time t, at ∈ Rm is the action at time t,
and κ is the number of nodes in the FSA.

zi = {Piniti (st),Ptermi (st),

Pdyni (st+1|st,at),
πi(at|st)}

(1)

The edges of the graph are encoded through the following
two functions.



• parent(i): returns the parents of primitive i
• children(i): returns the children of primitive i
A full policy execution is computed by selecting a primi-

tive and executing its policy at each time step. The primitive
selection follows the structure of the graph such that if the
current primitive is zi, the most likely primitive from the
set Z = {zj |j ∈ {{i} ∪ children(i)}} is selected as the
primitive in the next time step.

B. State Transition Auto-Regressive Hidden Markov Model

A state transition auto-regressive hidden Markov model
(STARHMM) [13] is a probabilistic graphical model that
captures the entry and exit conditions that represent the
subgoals of multi-phase tasks. In addition to the state and
action variables outlined in Section III, a STARHMM has
hidden states, which we refer to as phases (ρt ∈ {1, . . . , κ}),
and termination states (εt ∈ {0, 1}). Hidden phases are
similar to nodes within an FSA in that they index a primitive.
The termination state governs when a phase can transition.

A STARHMM models the state dynamics with the distri-
bution P(st+1|st,at, ρt), which is similar to the FSA, except
it also depends on the hidden phase, ρ. The phase transitions
(ρt → ρt+1) depend on the current state st+1, the previous
phase ρt, and the termination status of the previous phase
εt. These dependencies are modeled with the distribution
P(ρt+1|st+1, ρt, εt). Phase transition can only occur when
the previous phase has terminated, which constrains the
phase transition distribution in the following manner.

P(ρt+1|st+1, ρt, εt = 0) =

{
1 ρt+1 = ρt

0 ρt+1 6= ρt
(2)

When εt = 1 (i.e. when pt has terminated), phase
transitions are governed by the initiation distribution
P(ρt+1|st+1, ρt, εt = 1). Finally, phase termination εt de-
pends on the current phase ρt and the next state st+1. This is
modeled by the distribution P(εt|st+1, ρt). The incorporation
of this auxiliary variable allows for the explicit modeling of
each phase’s state-dependent exit conditions. The graphical
representation of this model can be seen in Fig. 3.

Given the above distribution definitions, the probability of
observing a sequence of states s1:N+1, actions a1:N , phases
ρ1:N+1, and phase terminations ε0:N−1 is

P(s1:N+1,a1:N , ρ1:N+1, ρ0:N−1) = P(ε0, ρ1, s1)·
N∏
t=1

P(st+1|st,at, ρt)P(at)

N∏
t=2

P(ρt, εt−1|st, ρt−1)
(3)

where P(ε0, ρ1, s1) = P(s1, ε0)P(ρ1|s1, ε0) and
P(ρt, εt−1|st, ρt−1) = P(ρt|st, ρt−1, εt−1)P(εt−1|st, ρt−1).

IV. APPROACH

As described earlier, the goal of this work is to take a
model of a task and make use of corrective demonstrations
to inform incremental changes to this model. We present
the Incremental Task Modification via Corrective Demonstra-
tions (ITMCD) algorithm, which uses the following two-step

method for incremental task model updates: (1) searching for
model updates defined by a set of candidate corrections and
(2) selecting the best model from this set. The high-level
depiction of this algorithm can be seen in Fig. 2.

We assume that there exists an original task model FSA.
Given a new situation in which this task model is not able
to be applied successfully, we want to allow an end-user to
provide corrective demonstrations that show how the task
should be achieved in this new setting. Given a set of such
corrective demonstrations, we generate a set of candidate
corrections to the task model, corresponding to structural
changes to the FSA: node modification, node addition, and
edge addition. A candidate correction is a set of decisions
over these edit types, covering a range of transformations
needed to correct different modeling errors. For example,
a small change such as modifying the initiation conditions
of a node, may only require modifying an existing node,
while learning new sub-skills would require additional nodes.
In this way, each candidate correction defines a search
direction in the space of possible FSAs. For each candidate
correction, we find an associated model update through a
search procedure that learns the parameters of a STARHMM
that is created by converting the FSA into a STARHMM. The
search is constrained to modifications specific to the candi-
date correction (e.g. allowing only node modification). We
use the corrective demonstrations to instantiate these models
through the Expectation-Maximization (EM) algorithm for
STARHMMs [13]. Then ITMCD chooses the most likely
correction through approximate Bayesian model comparison.
The remainder of this section details each of these steps.

A. FSA-STARHMM Conversion

In order to instantiate the model updates needed for
model comparison, the original FSA must be converted to
an equivalent STARHMM. The initiation and termination
classifiers of the FSA are modeled using logistic regression,
where ωiniti ∈ Rd and ωtermi ∈ Rd are the weights for the
initiation and termination classifiers and φ(st) ∈ Rd is the
feature vector for state st.

Piniti (st) =
1

1 + e−ω
initT
i φ(st)

(4)

Ptermi (st) =
1

1 + e−ω
termT
i φ(st)

(5)

The dynamics of each primitive are represented as linear
Gaussian models

Pdyni (st+1|st,at) = N (Aist +Biat,Σi) (6)

where Ai ∈ Rn×n, Bi ∈ Rn×m, and Σi ∈ Rn×n are
specific to each primitive zi.The policy of each primitive
πi can be derived with any algorithm that can be trained on
trajectory segments (e.g. dynamic motion primitives [4]).



Each phase in the STARHMM indexes a primitive in the
FSA. Using the FSA models, we parameterize the termina-
tion and state transition distributions of the STARHMM as

P(εt|st+1, ρt = i) =

{
1− Ptermi (st+1) εt = 0

Ptermi (st+1) εt = 1
(7)

P(st+1|st,at, ρt = i) = Pdyni (st+1|st, at) (8)

thus directly mapping the termination classifier and dynamics
model of each primitive in the FSA to the termination
distribution and state transition distribution of the associated
phase in the STARHMM, respectively.

The initiation distribution P(ρt+1|st+1, ρt, εt = 1) takes
on different parameterizations depending on the edit type
during model learning and the structure of the FSA during
model selection. These parameterizations all take the follow-
ing form

P(ρt+1 = j|st+1, ρt, εt = 1) =

{
p j ∈ T (ρt)

0 j /∈ T (ρt)

p =
Pinitj (st+1)P(ρt+1 = j|ρt)∑

k∈T (i) Pinitk (st+1)P(ρt+1 = j|ρt)

(9)

where T is a function that takes a phase and returns the set
of allowable transitions. Sections IV-B and IV-D define T
for the model learning and selection steps respectively. The
distribution P(ρt+1|ρt) defines the prior probability of transi-
tioning from ρt to ρt+1. In the general case, this distribution
can be estimated by keeping a running count of all transitions
seen. In the simplest case, the allowable transitions can all be
given an equal prior probability. With this parameterization,
the phase transition distribution for ρt can be constructed
from the initiation classifiers of the primitives in T (ρt).
In other words, the transition probabilities for primitives
in T (ρt) are governed by the initiation classifiers of all
primitives in T (ρt), while all primitives not in T (ρt) have
a transition probability of zero. With these definitions, a
traversal of the FSA corresponds to a ρ sequence assignment
in the STARHMM.

B. Candidate Correction Application

A candidate correction is defined as a set of decisions over
the following edit types: node modification, node addition,
and edge addition. Specifically, a candidate correction can
allow node modification; allow the addition of K ≥ 1
new nodes; and/or allow the addition of new edges. This
leads to a total of 4K + 3 possible candidate corrections.
Note that the candidate corrections do not specify which
subset of nodes/edges are being modified. The decisions over
the edit types define the free parameters Γ = {Θ, T} for
the model learning procedure, where Θ is the set of node
model parameters and T is a function that returns the set of
allowable transitions for each phase.

1) Edit Types: Each edit type defines its own set of
free parameters γ = {θ, τ}. In the following, κ is
the current number of nodes and the notation θi =
{ωiniti ,ωtermi ,Ai,Bi,Σi} is used to denote the set of
model parameters in a STARHMM for node zi. We describe
each edit type in detail below. The full set of free parameters
for a candidate correction is the union over the edit type
free parameters (Θ = θnmod ∪ θnadd ∪ θeadd and T (i) =
τfsa(i) ∪ τnmod(i) ∪ τnadd(i) ∪ τeadd(i), where τfsa(i) =
{i} ∪ children(i)).
• Node Modification: Allowing node modification sets

all current node model parameters as free (θnmod =
{θi|i ∈ {1, . . . , κ}}). If node modification is not
allowed, there are no free node model parameters
(θnmod = {}). In both cases, τnmod(i) = {}.

• Node Addition: Allowing node addition creates a set
of free parameters for each new node (θnadd = {θi|i ∈
{κ + 1 . . . , κ + K}}) and allows all transitions to
and from these new nodes. Concretely, if i ≤ κ then
τnadd(i) = {j|j ∈ {κ + 1, . . . , κ + K}}; if i > κ then
τnadd(i) = {j|j ∈ {1, . . . , κ+K}}. If node addition is
not allowed, θnadd = {} and τnadd(i) = {}.

• Edge Addition: Allowing edge addition does not create
new free node model parameters (θeadd = {}) but
allows for potential transitions between all current nodes
(τeadd(i) = {j|j ∈ {1, . . . , κ}}). Several new edges
could be added, provided the demonstration dictates
their necessity. If edge addition is not allowed, θeadd =
{} and τeadd(i) = {}.

2) Model Learning: For each candidate correction, a new
STARHMM is instantiated with its parameters initialized
according to the FSA-STARHMM conversion procedure
outlined in Section IV-A. The union of the set of prior
demonstrations and the new set of corrective demonstrations
is used to train the STARHMMs according to the candidate
correction, using the Expectation-Maximization algorithm
for STARHMMs [13] to update the parameters Θ with
transitions governed by T .

C. FSA Updates

For each of the STARHMMs learned in the previous step,
the corresponding FSA can be constructed by first replacing
the initiation, termination, and dynamics models of all prim-
itives in the current FSA with the corresponding models in
the new STARHMM as defined in Section IV-A. Then, the
new STARHMM is used to infer the maximum likelihood
primitive sequence given the corrective demonstrations by
setting T according to the candidate correction (Section IV-
B) and running the Viterbi algorithm. The resultant sequence
is a combination of primitives in the current FSA and the
new learned primitives. After removing redundancies in the
sequence (e.g. 1, 2, 2, 2, 3, 3→ 1, 2, 3), a new FSA is defined
by iteratively merging the sequence with the current FSA
using a process similar to the one outlined by [8]: elements in
the sequence are merged with the nodes they index, with new
edges and nodes defined through the unmerged elements. As
an example, suppose that the subsequence 2, 7, 4 appears in
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Fig. 4. The simulation environment allows a user to give block sorting
demonstrations. A block appears on the table, which the user then grasps
with the cursor and moves it to the appropriate bin.

the maximum likelihood sequence and 7 is a new primitive.
This corresponds to a new node being added to the FSA
with parent z2 and child z4. The policies πi for the new
primitives added to the FSA are learned by training the policy
models on the segments of the demonstrations assigned to
each primitive by the maximum likelihood sequences.

D. Model Selection

Each corrective demonstration induces a most likely prim-
itive sequence in each of the learned FSAs. The likelihoods
of these sequences are computed by running the Viterbi
algorithm on each model’s associated STARHMM, with
the allowed transitions following the FSA structure. This
corresponds to:

T (i) = {i} ∪ children(i) (10)

In order to avoid over-fitting, the likelihoods must be
balanced with model complexity. Though we are currently
exploring full Bayesian model comparison, we presently use
the approximation given by the Akaike Information Criterion
(AIC), shown below:

AIC = 2k − 2 ln(L) (11)

where k is the number of parameters and L is the likelihood.
The model with the minimum AIC score is the best fit model.
The number of parameters k is computed as follows

k =

κ∑
i=1

ηi(|ωiniti |+ |ωtermi |) + |Ai|+ |Bi|+ |Σi| (12)

This corresponds to summing the number of transi-
tion and dynamics parameters of an FSA’s corresponding
STARHMM. The ηi parameters are weighting factors that
account for the number of times the ith primitive is used in
the construction of the phase transition distribution. With the
above T definition,

ηi = |parent(i)|+ 1(|children(i)| ≥ 1) (13)

Thus, the number of parameters is proportional to the number
of nodes and edges in the FSA.

E. Initial FSA Construction

The above sections outlined ITMCD assuming a preexist-
ing FSA. Thus, a method is required that can construct an
initial FSA to start the process. We propose two methods to
initialize the task model update pipeline. After initialization
with either of these methods, the learning procedure is run
to fine-tune the parameters.

1) User-Defined: Under this method, a user is asked to
provide a semantic breakdown of the task whereby a set of
requisite steps are described. For each of these steps, the user
provides examples of the state configurations that describe
the step’s goal. The user provides demonstrations for the
execution of each step as well as their sequential ordering.

Each step corresponds to a primitive in the FSA, whose
structure is defined by the user-provided ordering. The ini-
tiation and termination classifiers are initialized by training
the logistic regression models under the positive-unlabeled
paradigm described by Elkan and Noto [18]. The goal state
demonstrations of each step are used as positive examples
for that primitive’s termination model, while its initiation
model uses its parents’ goal state demonstrations as positive
examples. All demonstrations can be used as unlabeled
examples for all initiation and termination classifiers. This
leaves the first primitive’s initiation model undefined. To
resolve this, all points within a specified distance of the first
points of each demonstration for that primitive are used as
positive examples. Finally, the dynamics and policy models
are trained using the states and actions recorded during
demonstration.

2) Automated: Under this method, the user provides
demonstrations of the full execution of the task, which are
then used to train a STARHMM. An initial estimate of the
segmentation is needed to start the learning procedure. Kroe-
mer et al. [13] accomplish this through spectral clustering
using a similarity metric defined by contact distribution ker-
nels, effectively utilizing the making and breaking of object
contacts to define an initial segmentation into primitives.
This method assumes a one-to-one mapping from contact
configurations to primitives, which does not always hold.
Instead, we make use of a Gaussian Mixture Model (GMM)
over state, action pairs to produce the initial segmentation.
The FSA structure is defined by inferring the demonstrations’
primitive traversal and following the merging procedure
outlined in Section IV-C.

F. New Primitive Initialization

The node addition edit type requires a procedure to
initialize the model parameters of the new primitives. We
accomplish this by first estimating which points of the
demonstration are outside the current model by performing
anomaly detection utilizing the Gaussian components of the
state, action GMM learned during the initial model construc-
tion. A new GMM with K components is then learned over
the anomalous data, providing the segmentation estimates
for the new primitives. These new Gaussian components
are added to the existing set for subsequent rounds of node
addition.



(a) Node Addition (b) Node Modification (c) Edge Addition

Fig. 5. We evaluate ITMCD Model Selection with three experiments. (a) ITMCD should select the simplest color sort model (e.g. for green sort, the
second model is best). (b) and (c) Given an FSA and a corrective demonstration, ITMCD selected between two plausible model updates. In (b), an initial
model that can only sort from half the table must be updated by either modifying its current sort primitive or adding a new sort primitive. In (c), an initial
model that can only sort blue blocks placed in the gripper and must be updated by either modifying its current red grasp primitive or adding a new grasp
primitive.

V. EXPERIMENTS

This evaluation is conducted in two phases. The first is
aimed at evaluating ITMCD Model Selection across the
range of edit types and is conducted on a simulated block
sorting domain. The second phase evaluates the full ITMCD
algorithm on a pouring task performed by a physical robot,
which is designed to induce a node addition correction.

A. Simulation Experiments

The simulation environment consists of a table, three bins,
and a gripper start area. A user can move the gripper and
grasp blocks using the mouse. Blocks appear on the table
with a random color within a pre-specified range of red,
green, and blue (i.e for a red sort task, the block color
is sampled from a red color distribution). The simulated
environment can be seen in Fig. 4. The state space of this
environment consists of the gripper location e = (ex, ey),
block location b = (bx, by), block color c = (r, g, b),
and the distances between the gripper and each of the bins
(nr = (nrx, n

r
y), ng = (ngx, n

g
y), nb = (nbx, n

b
y)) and block:

S = (e, b, c, ‖e − nr‖, ‖e − ng‖, ‖e − nb‖, ‖e − b‖). The
action at each time step is the displacement of the gripper
and a binary variable k indicating if the gripper is closed:
A = (∆e, k). For each of the experiments described below,
expert demonstrations are used to construct the FSAs using
the first of the two methods outlined in Section IV-E.

1) Node Addition Experiment: For the first experiment,
we constructed three models: the first can only sort red
blocks; the second can only sort red and green blocks; and
the third can sort red, green, and blue blocks. One of the
authors provided a corrective sorting demonstration for each
color, moving a block from the table to the bin of that color
and returning the gripper to the start location. Then, ITMCD
Model Selection was used to select the appropriate model
for each demonstration. The FSAs used for this experiment
can be seen in Fig. 5(a). The Akaike information criterion
(AIC) scores for each model and demonstration are shown in
Fig. 6(a). As can be seen, the correct model was selected for
each demonstration. Specifically, ITMCD chose the simplest
FSA that encodes each demonstration.

Task Model
R RG RGB

Demo
Red -17716.53 -10533.59 -3693.94

Green ∞ -2492.32 3859.02
Blue ∞ 7299.87 5190.70

(a) Node Addition AIC Scores

Task Model
L R LR L/R

Demo Left - -10364.88 -13878.30 -11640.95
Right -5775.34 - -10873.87 -8152.87

(b) Node Modification AIC Scores

Task Model
RB* RB R/B

Demo Blue 34880.08 -771.55 -380.01

(c) Edge Addition AIC Scores

Fig. 6. Experiment 1 (a), ITMCD selected the smallest model that encodes
each color sort demonstration. Experiment 2 (b), ITMCD opted to expand
the initiation classifier to encompass the whole table (LR) instead of adding
a new primitive (L/R). Experiment 3 (c), ITMCD opted to add an edge
(RB) to model the blue sort demonstration instead of adding a new primitive
(R/B).

2) Node Modification Experiment: For the second experi-
ment, two initial models were constructed: red block sorting
from the left side of the table and red block sorting from
the right side of the table. In other words, they were trained
such that the initiation of the sort primitive only covers half
of the table. For the left sort model, an expert corrective
demonstration was provided that moved a red block from the
right side of the table to the bin and returned the gripper to
the start location. Then, ITMCD Model Selection was used to
select between two plausible model updates: expanding the
sort initiation to cover the entire table (node modification)
or adding a primitive to sort from the right side. We also ran
a symmetric experiment for the right sort model. The FSAs
used in this experiment can be seen in Fig. 5(b). The AIC
scores for each model and demonstration are shown in Fig.
6(b). ITMCD opted to expand the sort primitive initiation
classifier (LR) in each case since the increase in likelihood
achieved when adding a new primitive was not enough to



counterbalance the increase in parameters.
3) Edge Addition Experiment: For the third experiment,

an initial model was constructed that can sort red blocks
but could only sort blue blocks if they were placed in the
gripper. An expert corrective demonstration was provided
that moved a blue block from the table to the blue bin
and returned the gripper to the start location. Then, ITMCD
Model Selection was used to select between two plausible
model updates: adding an edge from the grasp to sort blue
primitive or adding a new grasp blue primitive. The FSAs
used in this experiment can be seen in Fig. 5(c). The AIC
scores for each model are shown in Fig. 6(c). As can be seen,
ITMCD opted to add a new edge (RB) since the increase
in likelihood achieved when adding a new primitive wasn’t
enough to counterbalance the increase in parameters.

B. Robot Experiments

Having demonstrated the ability ITMCD Model Selection
to make use of corrective demonstrations appropriately in
simulation for node/edge addition and node modification,
next we validate the full ITMCD algorithm with an experi-
ment on a physical robot.

1) Platform: The demonstrations were gathered on the
Poli mobile manipulator through kinesthetic teaching, see
Fig. 1. Poli has a pan/tilt head with a Kinect v2 for perception
and a 6 degree-of-freedom (DoF) Kinova JACO arm with
a Robotiq 2-finger adaptive gripper. The arm is gravity
compensated to aid in gathering kinesthetic demonstrations.

2) Task: The robot learns to pour from a pitcher to a mug
and return the pitcher to the table upon completion (Fig. 1).
The pitcher can be in one of two conditions: lid closed or lid
open. Under the closed condition, the lid must be removed
before the pouring can continue. This creates a need for
correction, since the robot first learns its model of the task
having only seen the lid open. Thus when encountering a
closed lid, there is need for a corrective demonstration. We
evaluate the ability of ITMCD to successfully modify the
initial model to account for this new portion of the skill.

The state space of this environment consists of the pair-
wise distances between the gripper e, pitcher p, and mug m;
the vertical distances between the table t and the gripper,
pitcher, and mug; 3 histogram features h = (h0, h1, h2)
over the dot product between the pitcher normals and table
normal; and the distance between the gripper fingertips k:
S = (‖e− p‖, ‖e−m‖, ‖p−m‖, ‖t− g‖z, ‖t− p‖z, ‖t−
m‖z,h, k). The action at each time step is the gripper
velocity with respect to both Cartesian coordinates and the
fingertip distance: A = (vgx, v

g
y , v

g
z , v

g
k).

3) Data Collection: We collected a set of 5 demonstra-
tions of the full pouring task under the closed lid condition.
From this we created a set of 5 initial demonstrations of the
scenario where the lid is already open, by manually trimming
each demonstration to start after the lid has been opened.
Then each of the 5 full demonstrations can be consid-
ered corrective demonstrations to a model learned from the
trimmed demonstrations that have never seen the closed lid
condition. These set of demonstrations were used to construct

25 datasets by selecting sets of 4 initial demonstrations and
4 corrective demonstrations.

4) Results: For each of the 25 datasets, the initial trajec-
tories with the already open lid were used to construct an
FSA, using the second of the two methods outlined in IV-E.
The corrective closed lid trajectories are then passed as input
to ITMCD. All 25 experimental conditions resulted in node
addition. The resultant FSA models fall into 3 categories:
• Correct: chain of new primitives for lid removal (4/25)
• Partially correct: correct update if one sequence is

removed during graph construction (9/25)
• Incorrect: loops in graph due to primitive confu-

sion/repetition (12/25)
Some examples of correct and incorrect updated FSAs can
be seen in Fig. 7. Though the correct models always add
primitives to the beginning of the chain, different numbers
of nodes are added.

Upon inspecting the demonstration sets that result in cor-
rect vs. partial vs. incorrect updates, we find a pattern. Recall
that our initial demonstrations set is created by trimming the
longer closed-lid corrective demonstrations. We find that if
the corrective closed-lid demonstrations represent the same
set of demonstrations trimmed to create the initial open-lid
demonstrations, a successful model update is achieved 4 out
of 5 times. If the corrective closed-lid demonstrations contain
one demonstration that was not used to construct the open lid
set, the resultant model either results in primitive confusion
(12/21) or can be corrected if this one demonstration is
removed (9/21). This suggests a bias in the model towards
classifying small changes in the trajectories as part of a new
primitive. Given that ITMCD achieves good performance
if the modeled segments of the corrective demonstrations
comply with the current task model, its overall performance
could be improved by increasing the generalizability of
the learned primitives. Explicitly modeling the execution
trajectories over time, as opposed to single time step updates
encoded in the dynamics, could be one way to achieve this.

VI. CONCLUSION

As robots enter unstructured real-world environments, they
will require a way to incrementally update and adapt their
task models in order to account for unforeseen scenarios.
We introduce the Incremental Task Modification via Cor-
rective Demonstrations (ITMCD) algorithm that discovers
such model updates through iterative constrained search and
selection. Given corrective demonstrations, model updates
are found that make specified changes to the task model,
after which the best among these updates is automatically
selected for incorporation into the original task model. In this
work, we evaluated ITMCD Model Selection with simulated
tasks and began an investigation of the full algorithm within
a real-world task designed to induce node addition.

We showed that given demonstrations of un-modeled
behavior, ITMCD Model Selection chooses the simplest task
model that fits the demonstrations. This then served as an
update to the original task model. Each of the experiments
resulted in the selection of the simplest good-fit model. Thus,
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Fig. 7. ITMCD was evaluated on a real-world pouring task. When the corrective demos represent the same set of demos trimmed to create the initial
open-lid demos (a), a correct model update is found 4 of 5 times. When this condition is not met (b), incorrect model updates are made due to primitive
confusion. The numbers in the nodes above are the primitive indices assigned by the ITMCD. They are included here to highlight the preservation of the
previously learned structure.

our experiments indicate that STARHMM representations of
FSA task models can be used to perform this model selection.
When evaluating ITMCD on a real-world task, we found
that it correctly adds primitives to account for new steps
in the task when the modeled segments of the corrective
demonstrations closely follow the learned primitives in the
current task model. These results suggest that a useful avenue
for investigation is improving the primitive representation
for greater generalizability, as this would serve to increase
ITMCD’s overall performance. Future work will seek to
address this issue as well as investigate learning within real-
world tasks that explicitly require node modification and
edge addition.
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