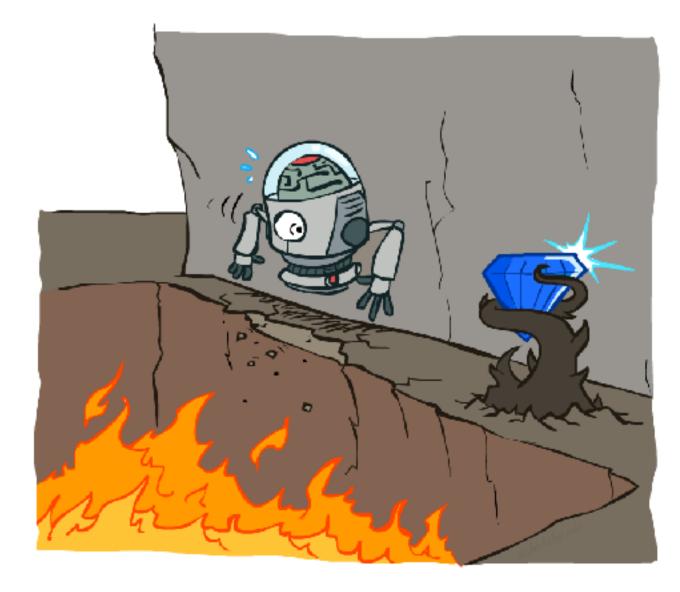
CS 383: Artificial Intelligence

Markov Decision Processes

Prof. Scott Niekum, UMass Amherst

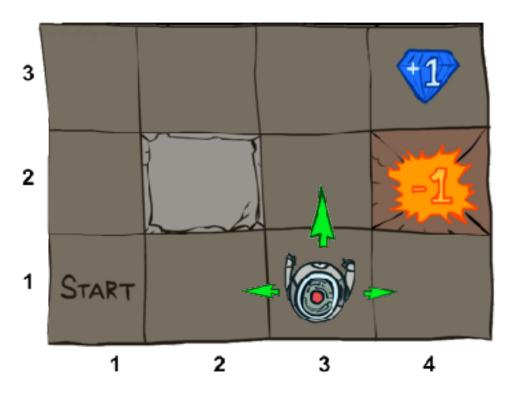
[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

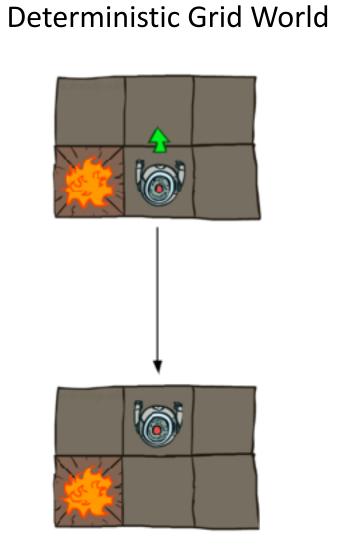


Example: Grid World

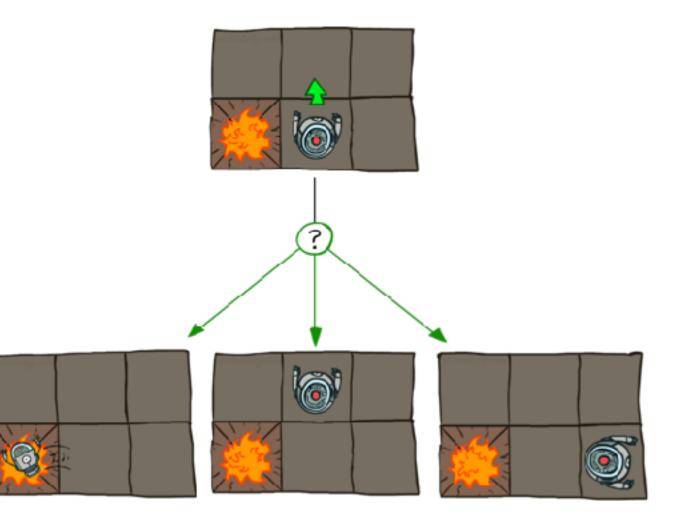
- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action has the intended effect (if there is no wall there)
 - 20% of the time an adjacent action occurs instead. Ex: North has 10% chance of East and 10% chance of West
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



Grid World Actions

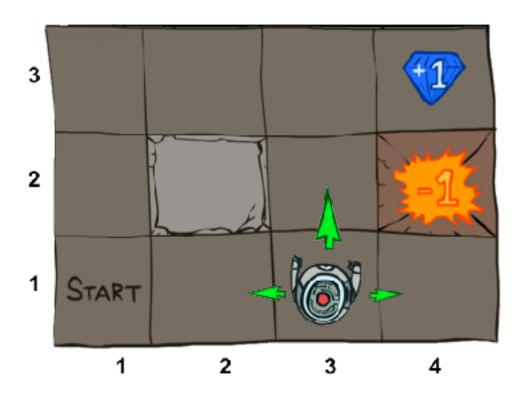


Stochastic Grid World



Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - ...but with modification to allow rewards along the way
 - We'll have a new, more efficient tool soon



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

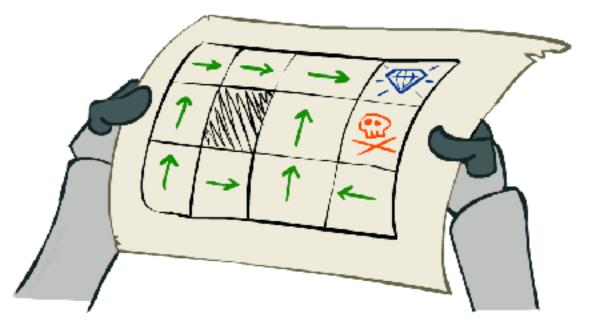
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

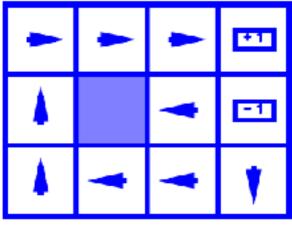
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

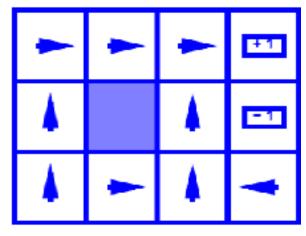


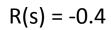
Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

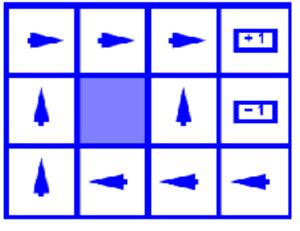
Optimal Policies



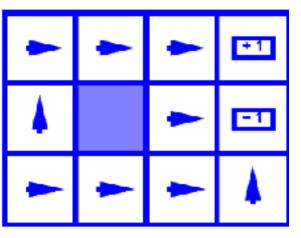
R(s) = -0.01





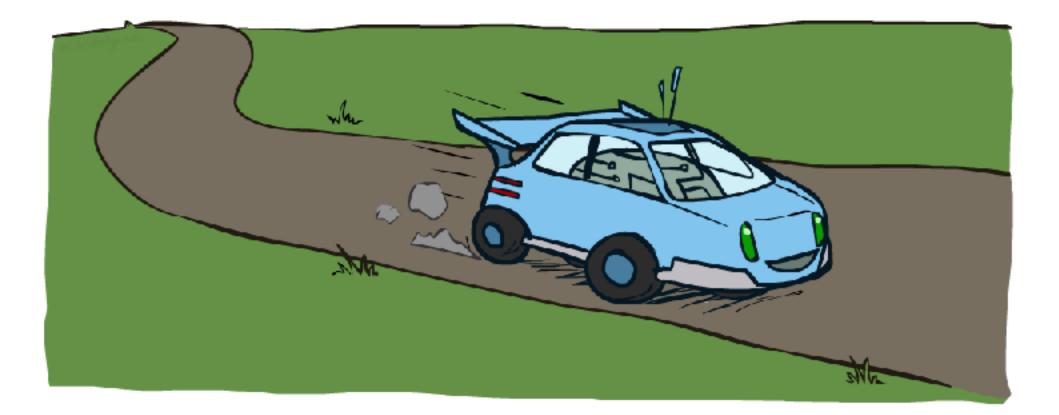


R(s) = -0.03



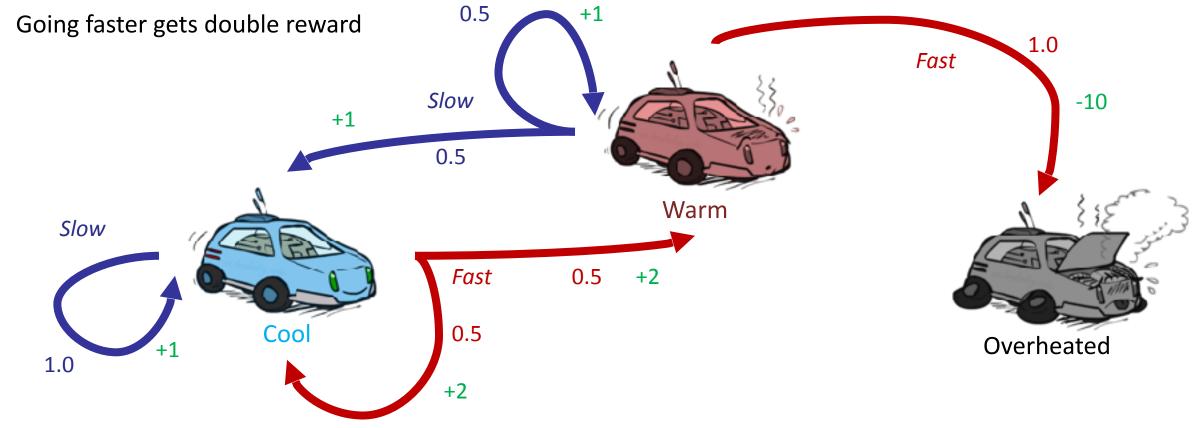
R(s) = -2.0

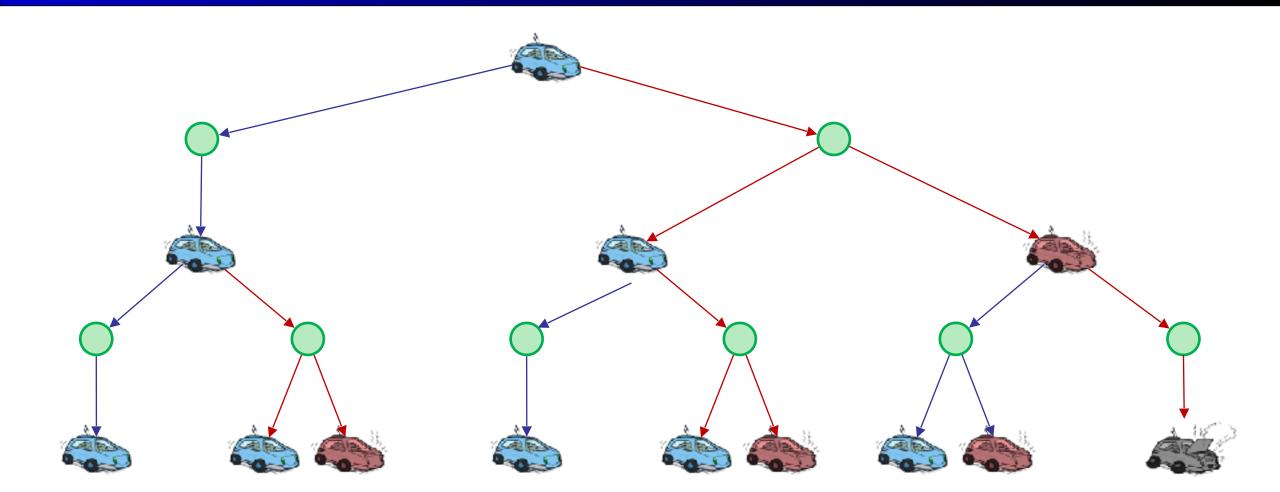
Example: Racing



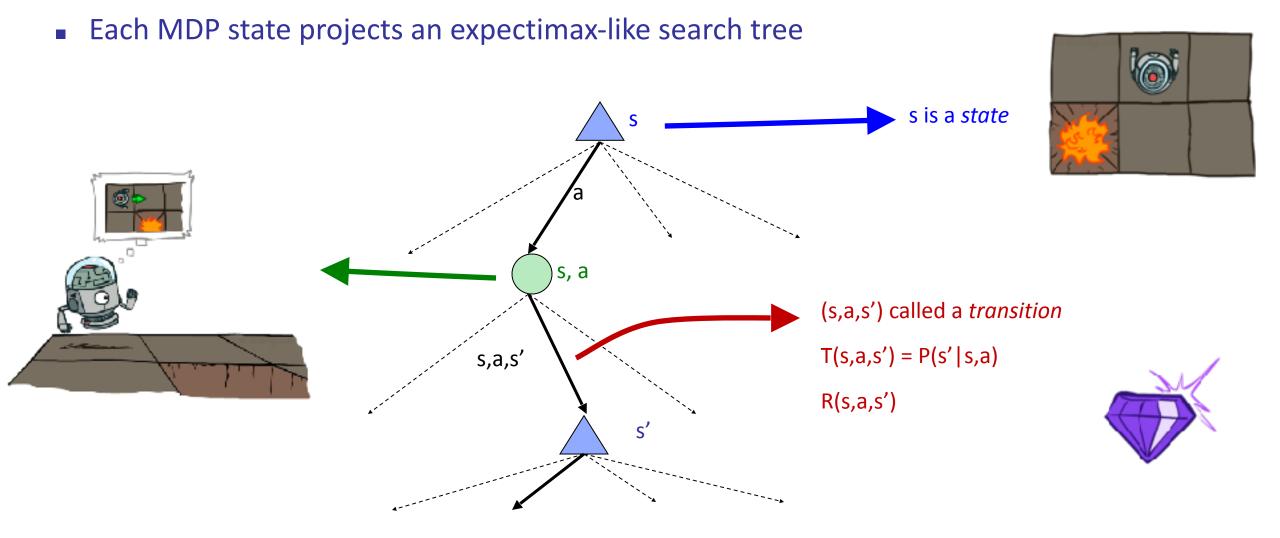
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*

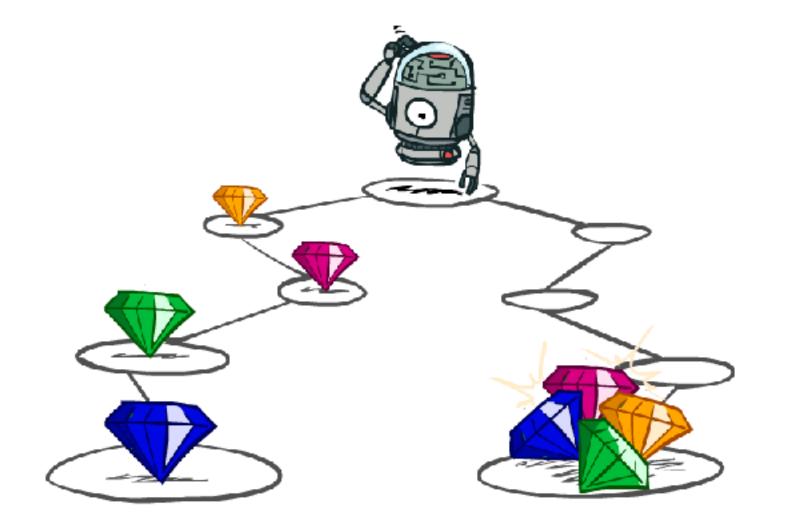




MDP Search Trees

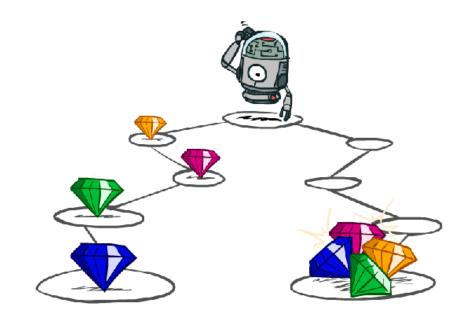


Utilities of Sequences



Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

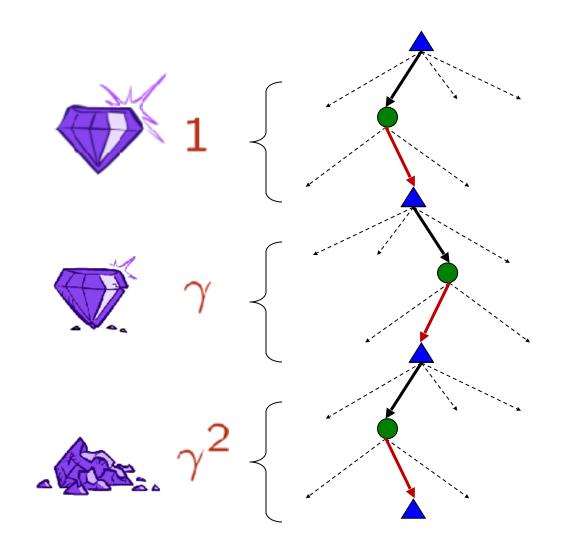


Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

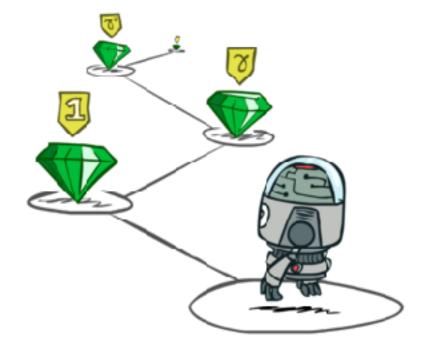


Stationary Preferences

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$



- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Quiz: Discounting

Given:

- Actions: Left, Right, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

- 10 1
- Quiz 2: For γ = 0.1, what is the optimal policy?
- Quiz 3: For which γ are Left and Right equally good when in state d?

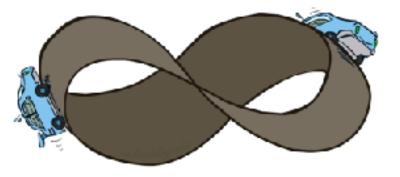
 $10 g^3 = 1 g \longrightarrow g = sqrt(1/10)$

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

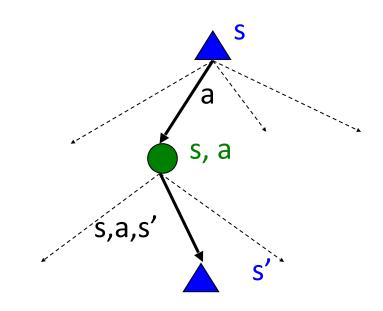
- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



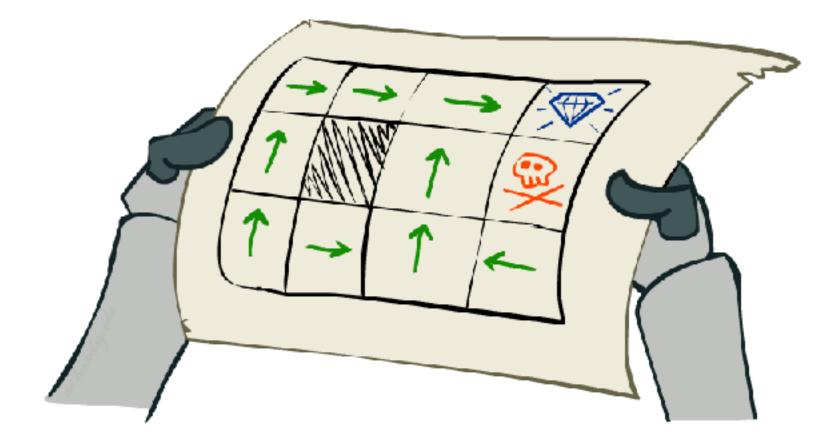
Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards



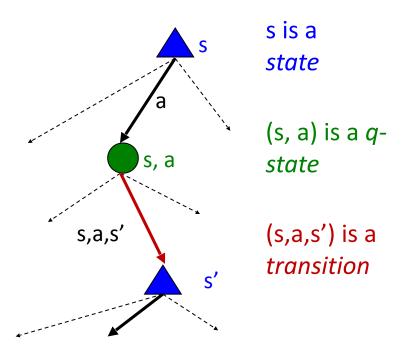
Solving MDPs



Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

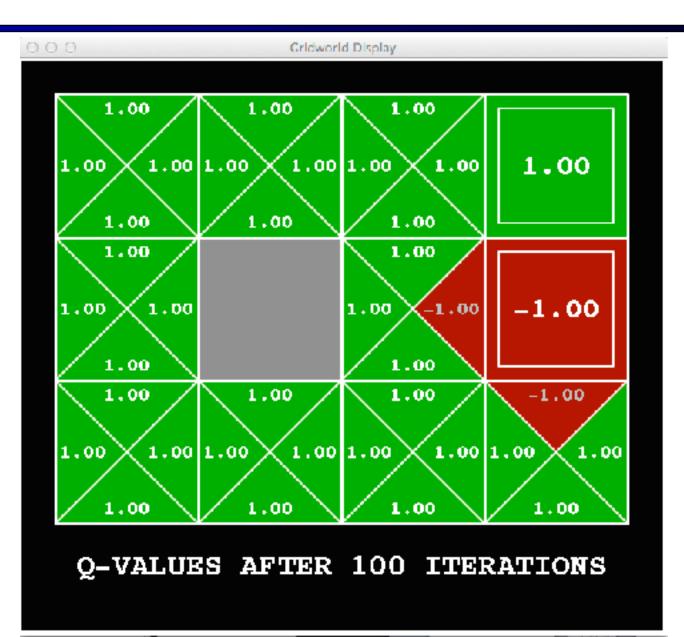
 $\pi^*(s)$ = optimal action from state s



Gridworld V Values

Gridworld Display			
• 1.00	▲ 1.00	▲ 1.00	1.00
1.00		• 1.00	-1.00
• 1.00	1.00	• 1.00	∢ 1.00
VALUES AFTER 100 ITERATIONS			

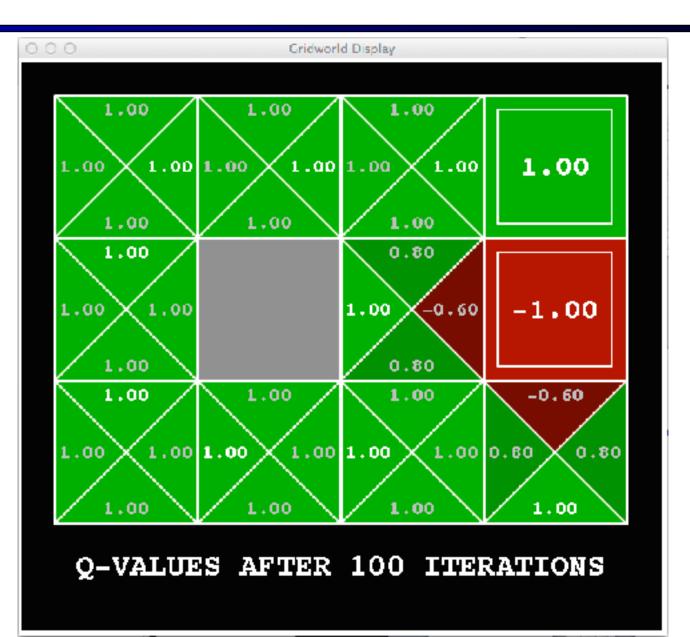
Gridworld Q Values



Gridworld V Values

00	O O Gridworld Display			
	1.00 →	1.00 →	1.00 →	1.00
	• 1.00		∢ 1.00	-1.00
	• 1.00	4 1.00	∢ 1.00	1.00
	VALUES AFTER 100 ITERATIONS			

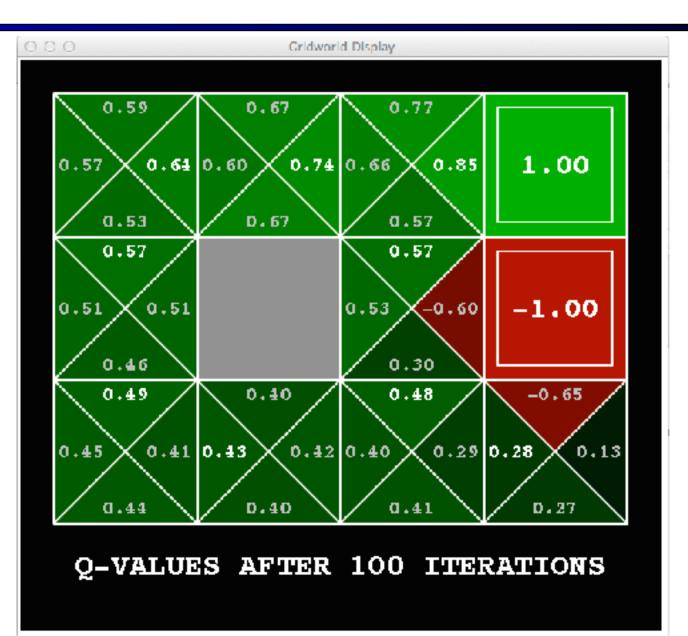
Gridworld Q Values



Gridworld V Values

Cridworld Display				
	0.64 ≯	0.74 →	0.85)	1.00
	• 0.57		• 0.57	-1.00
	• 0.49	∢ 0.43	• 0.48	∢ 0.28
	VALUES AFTER 100 ITERATIONS			

Gridworld Q Values



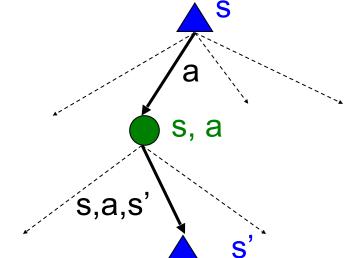
Values of States

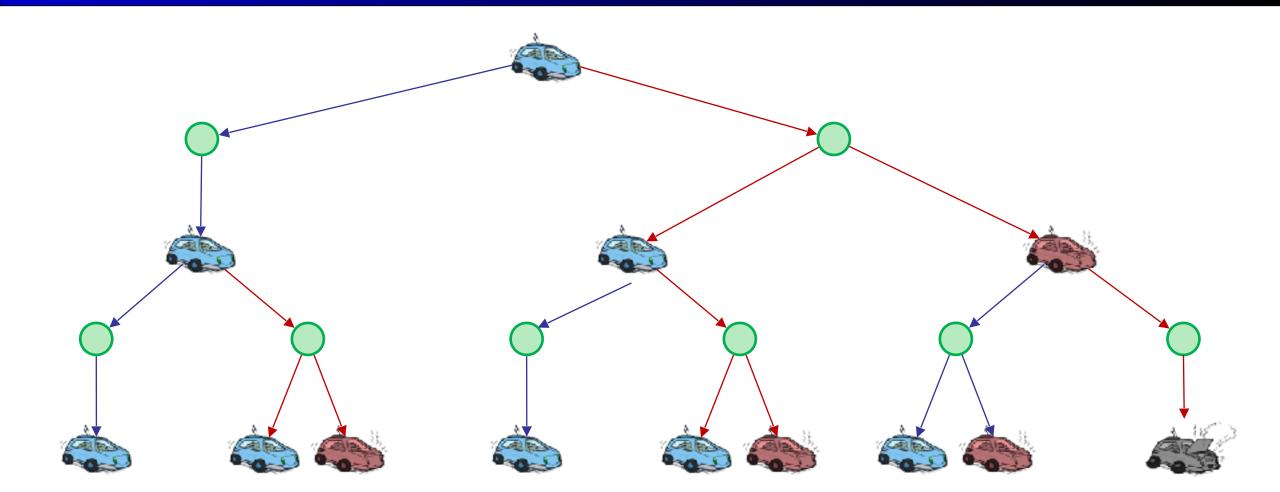
Fundamental operation: compute the (expectimax) value of a state

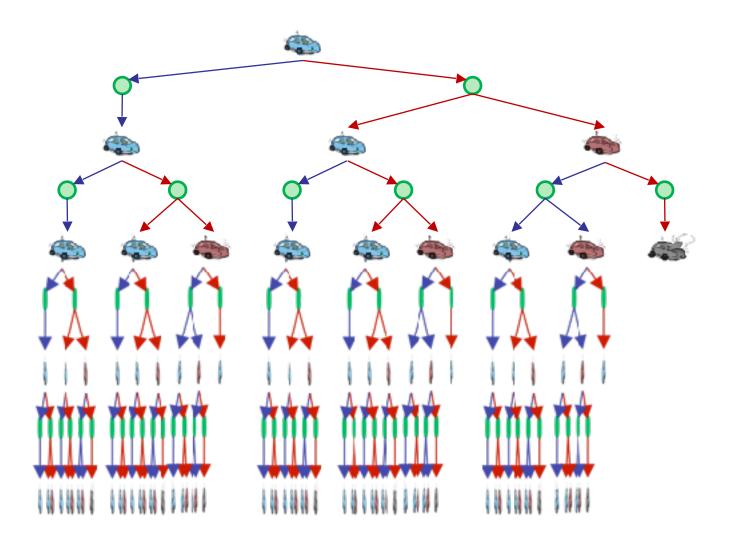
- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!

Recursive definition of (optimal) value:

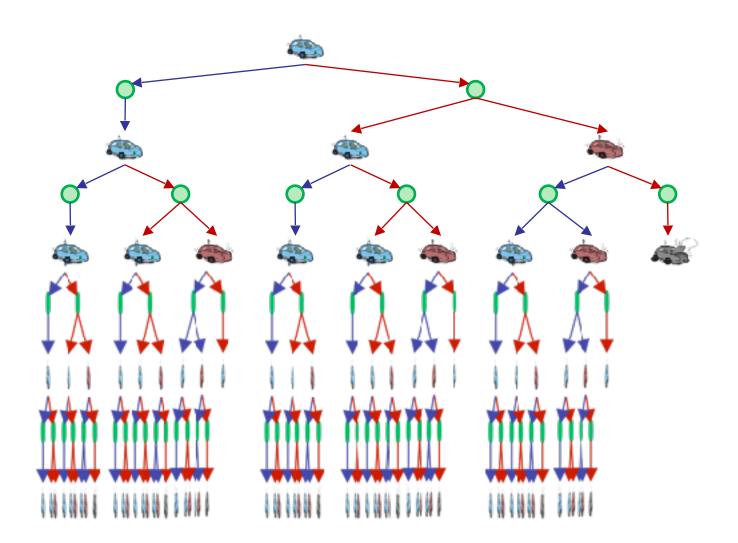
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$





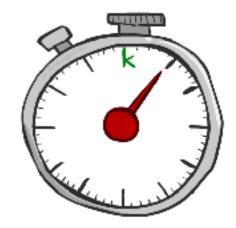


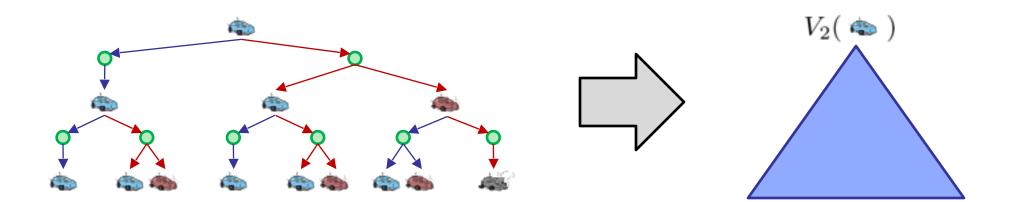
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1



Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s





k=0

0.0		Cridwori	d Display	
_				
	•	^	•	
	0.00	0.00	0.00	0.00
	^		•	
	0.00		0.00	0.00
	0.00		0.00	
	•	^	^	^
	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00
	VALUES AFTER 0 ITERATIONS			

k=1

0.0	○ ○ ○ Gridworld Display			
	•	•	0.00)	1.00
	• 0.00		∢ 0.00	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUES AFTER 1 ITERATIONS			

k=2

0.0	0	Gridwork	d Display	
	• 0.00	0.00)	0.72 →	1.00
	•		• 0.00	-1.00
	•	•	• 0.00	0.00
	VALUES AFTER 2 ITERATIONS			

k=3

0	0	Cridworl	d Display	
	0.00 +	0.52)	0.78 ▸	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUE	S AFTER	3 ITERA	FIONS

k=4

0	0	Cridwork	d Display	
	0.37)	0.66)	0.83)	1.00
	•		• 0.51	-1.00
	•	0.00 >	• 0.31	∢ 0.00
	VALUE	S AFTER	4 ITERA	FIONS

k=5

00	0	Gridworl	d Display	
	0.51)	0.72 →	0.84 ↓	1.00
	• 0.27		• 0.55	-1.00
	• 0.00	0.22 ▸	• 0.37	∢ 0.13
	VALUE	S AFTER	5 ITERA	FIONS

k=6

00	0	Cridworl	d Display	_	
	0.59)	0.73)	0.85)	1.00	
	•		• 0.57	-1.00	
	• 0.21	0.31 →	• 0.43	∢ 0.19	
	VALUES AFTER 6 ITERATIONS				

0.0	0	Gridwork	d Display	
	0.62)	0.74 →	0.85 →	1.00
	• 0.50		0.57	-1.00
	• 0.34	0.36)	• 0.45	∢ 0.24
VALUES AFTER 7 ITERATIONS				

k=8

0.0	0	Cridwork	d Display	
	0.63)	0.74)	0.85)	1.00
	•		•	
	0.53		0.57	-1.00
	^		^	
	0.42	0.39)	0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

k=9

00	0	Gridworl	d Display		
	0.64 •	0.74 >	0.85)	1.00	
	• 0.55		• 0.57	-1.00	
	• 0.46	0.40)	• 0.47	∢ 0. 27	
	VALUES AFTER 9 ITERATIONS				

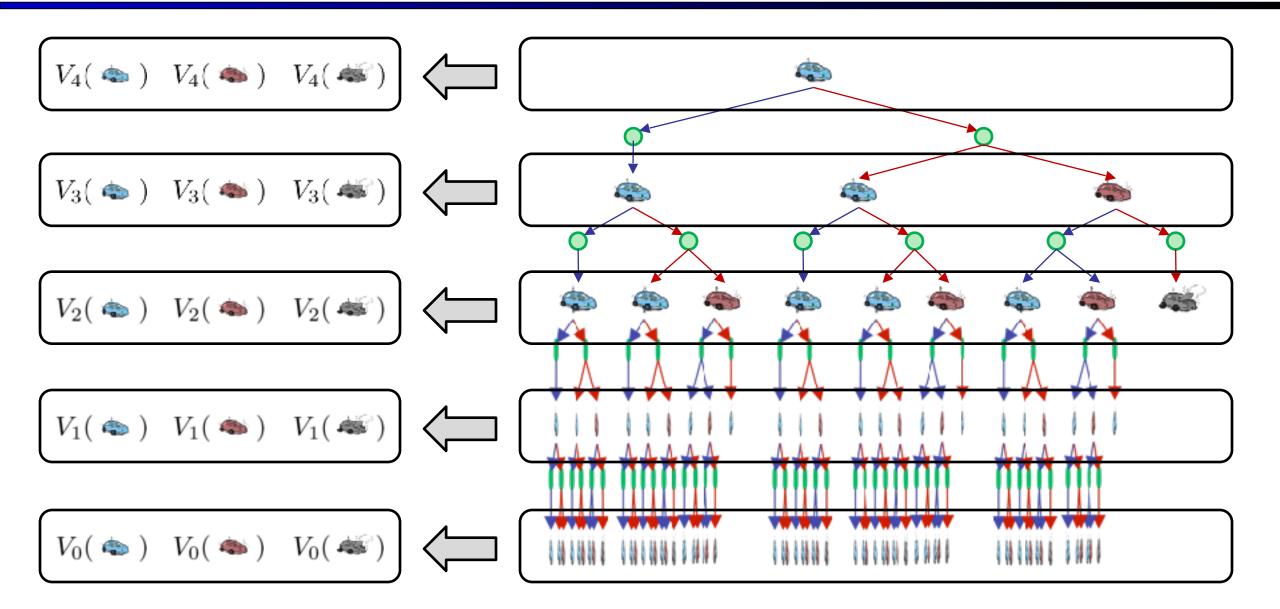
0.0	0	Gridworl	d Display		
	0.64)	0.74 →	0.85)	1.00	
	• 0.56		• 0.57	-1.00	
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27	
	VALUES AFTER 10 ITERATIONS				

000)	Gridworl	d Display	-
	0.64)	0.74 →	0.85)	1.00
	• 0.56		• 0.57	-1.00
	• 0.48	∢ 0.42	• 0.47	∢ 0.27
VALUES AFTER 11 ITERATIONS				

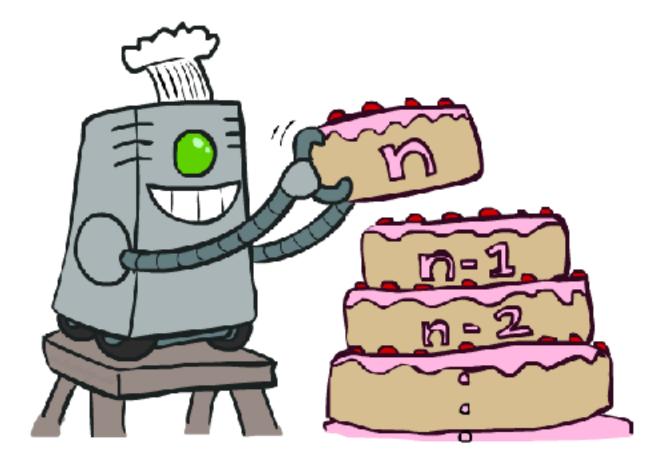
0.0	Cridworld Display				
	0.64)	0.74 →	0.85)	1.00	
	• 0.57		•	-1.00	
	• 0.49	∢ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

00	0	Cridwork	d Display	
	0.64)	0.74)	0.85 →	1.00
	• 0.57		• 0.57	-1.00
	• 0.49	∢ 0.43	• 0.48	∢ 0.28
	VALUES	AFTER 1	.00 ITER	ATIONS

Computing Time-Limited Values



Value Iteration

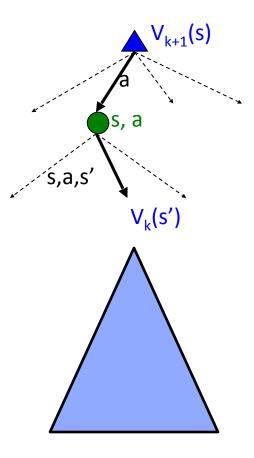


Value Iteration

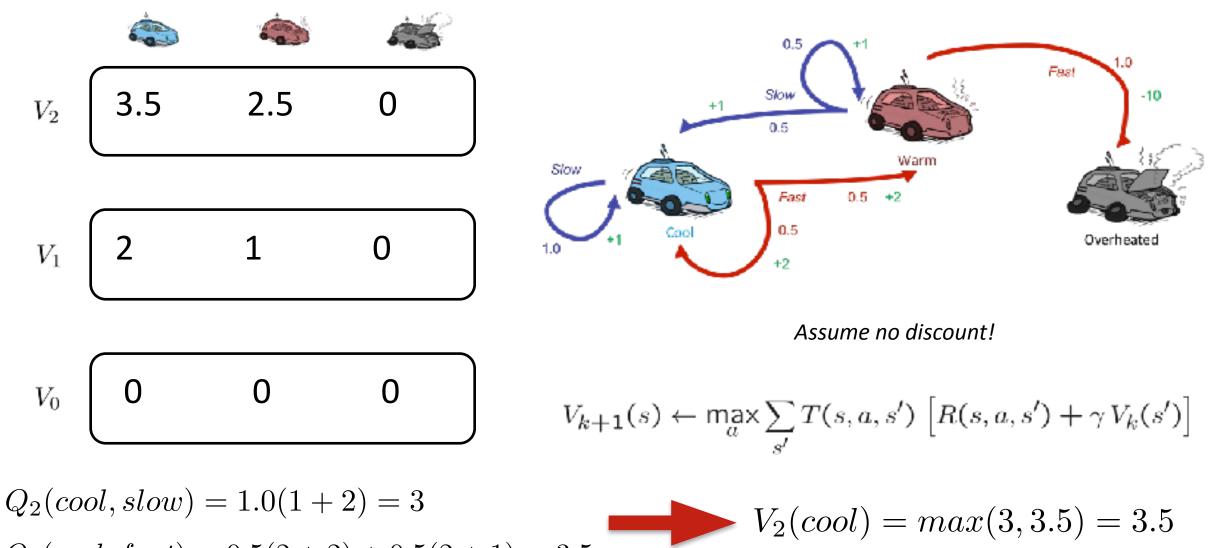
- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one step of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do



Example: Value Iteration



 $Q_2(cool, fast) = 0.5(2+2) + 0.5(2+1) = 3.5$