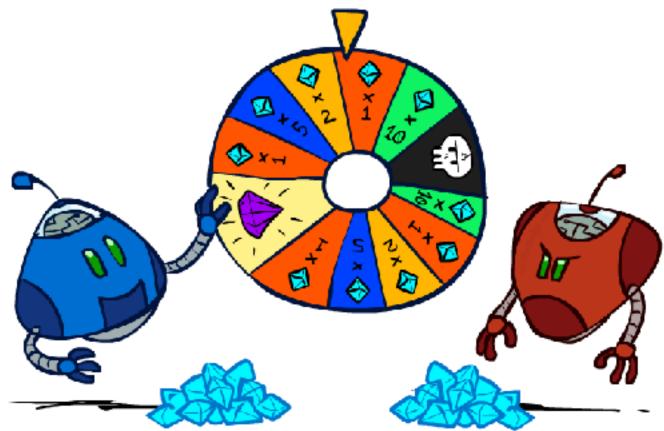
CS 383: Artificial Intelligence

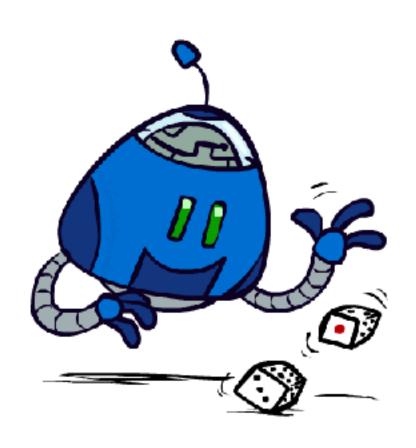
Uncertainty and Utilities



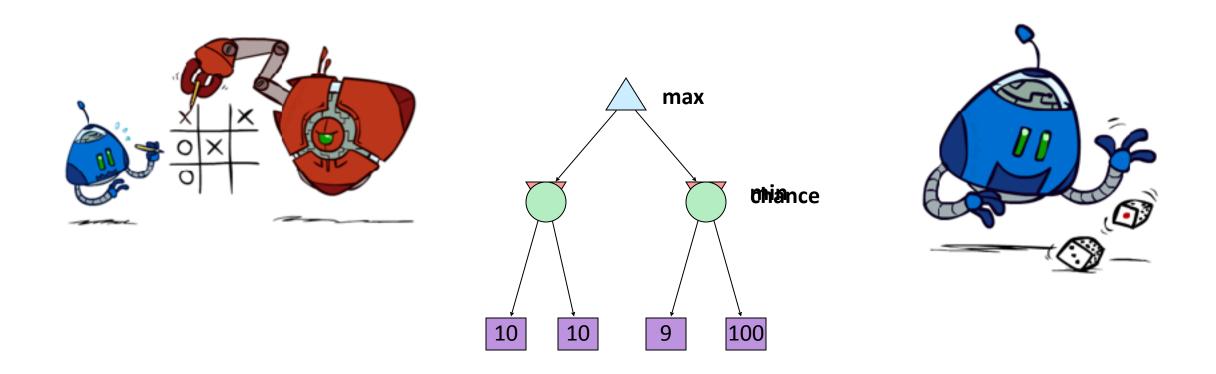
Prof. Scott Niekum

UMass Amherst

Uncertain Outcomes



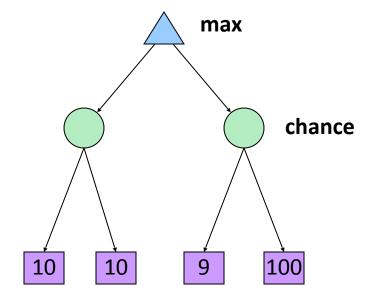
Worst-Case vs. Average Case



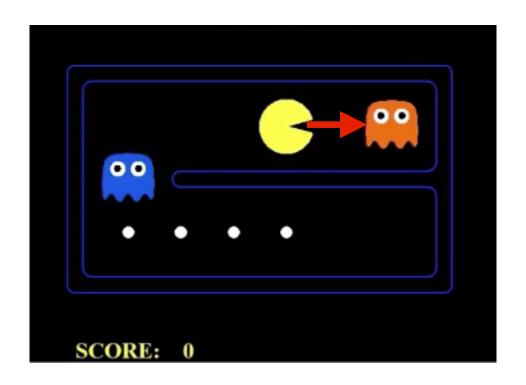
Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes

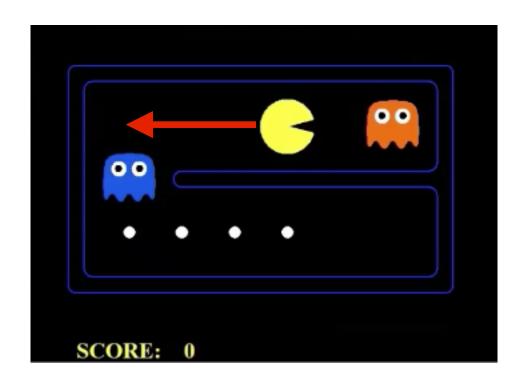


Minimax vs Expectimax (Min)



End your misery!

Minimax vs Expectimax (Exp)



Hold on to hope, Pacman!

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
 - We'll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

Reminder: Expectations

■ The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

Example: How long to get to the airport?

Time: 20 min

Probability:

X

0.25

+

30 min

Χ

0.50

+

0.25

Χ

60 min

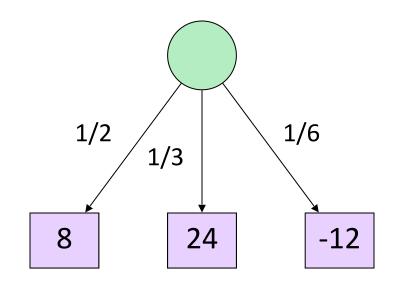
35 min

Expectimax Pseudocode

```
def value(state):
                       if the state is a terminal state: return the state's utility
                       if the next agent is MAX: return max-value(state)
                       if the next agent is EXP: return exp-value(state)
                                                                 def exp-value(state):
def max-value(state):
                                                                     initialize v = 0
    initialize v = -\infty
                                                                     for each successor of state:
    for each successor of state:
                                                                         p = probability(successor)
        v = max(v, value(successor))
                                                                         v += p * value(successor)
    return v
                                                                     return v
```

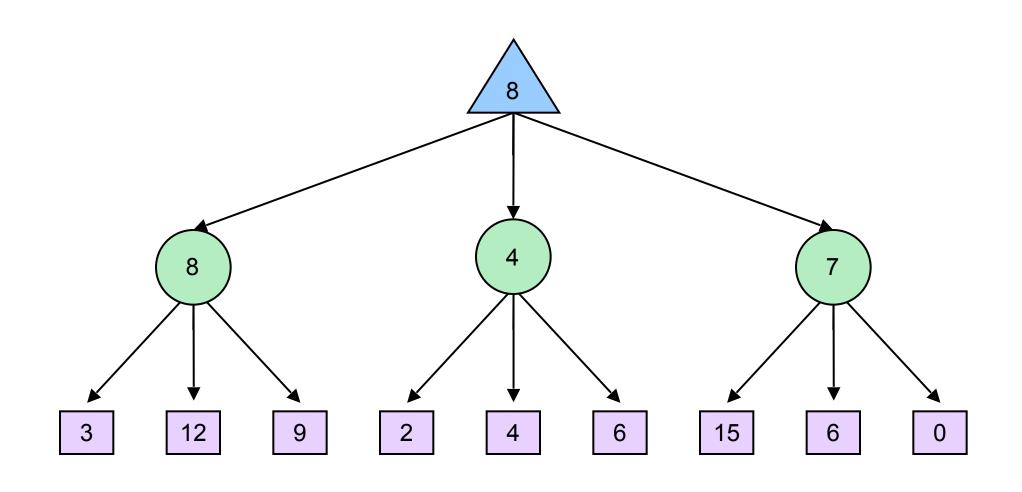
Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```

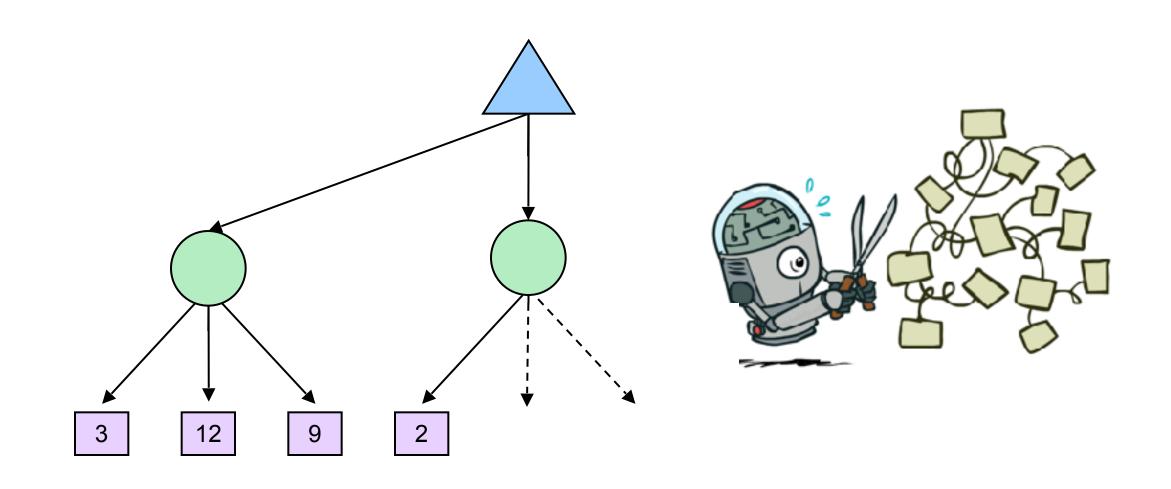


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

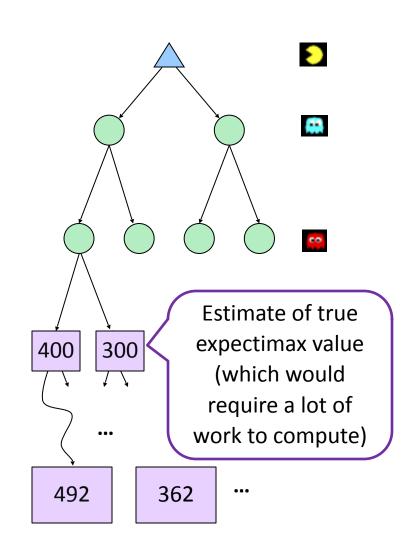
Expectimax Example



Expectimax Pruning?



Depth-Limited Expectimax



What Probabilities to Use?

 In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state

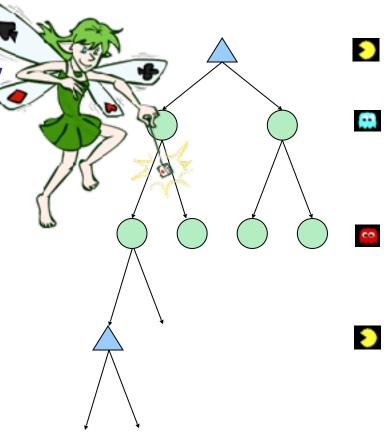
Model could be a simple uniform distribution (roll a die)

Model could be sophisticated and require a great deal of computation

We have a chance node for any outcome out of our control: opponent or environment

■ The model might say that adversarial actions are likely!

 For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes



Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

What are Probabilities?

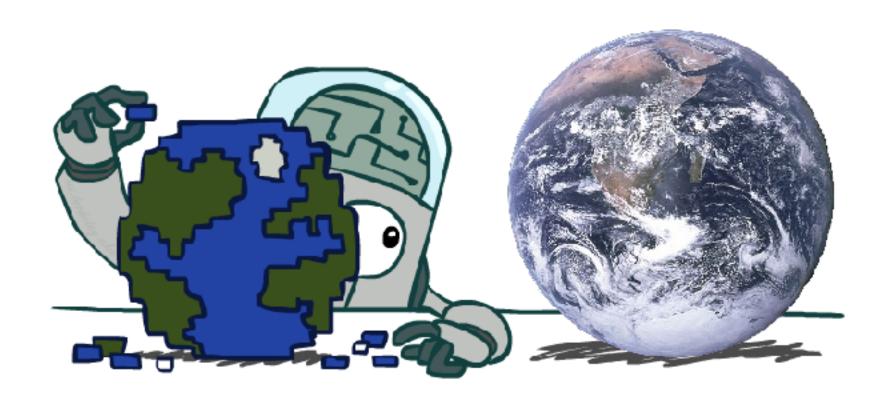
Objectivist / frequentist answer:

- Averages over repeated experiments
- E.g. empirically estimating P(rain) from historical observation
- Assertion about how future experiments will go (in the limit)
- Makes one think of inherently random events, like rolling dice

Subjectivist / Bayesian answer:

- Degrees of belief about unobserved variables
- E.g. an agent's belief that it's raining, given the temperature
- E.g. pacman's belief that the ghost will turn left, given the state
- Often *learn* probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Modeling Assumptions



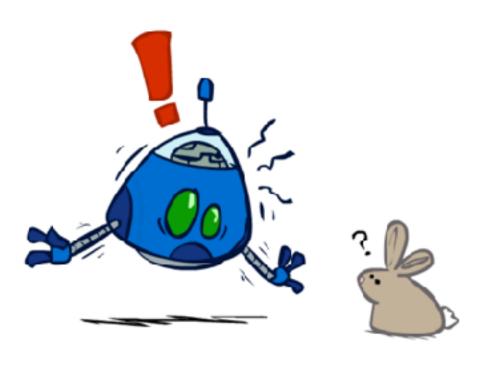
The Dangers of Optimism and Pessimism

Dangerous Optimism

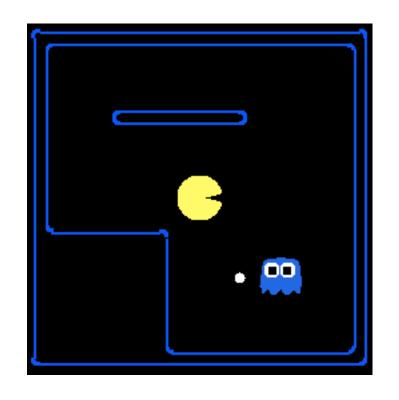
Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely



Assumptions vs. Reality

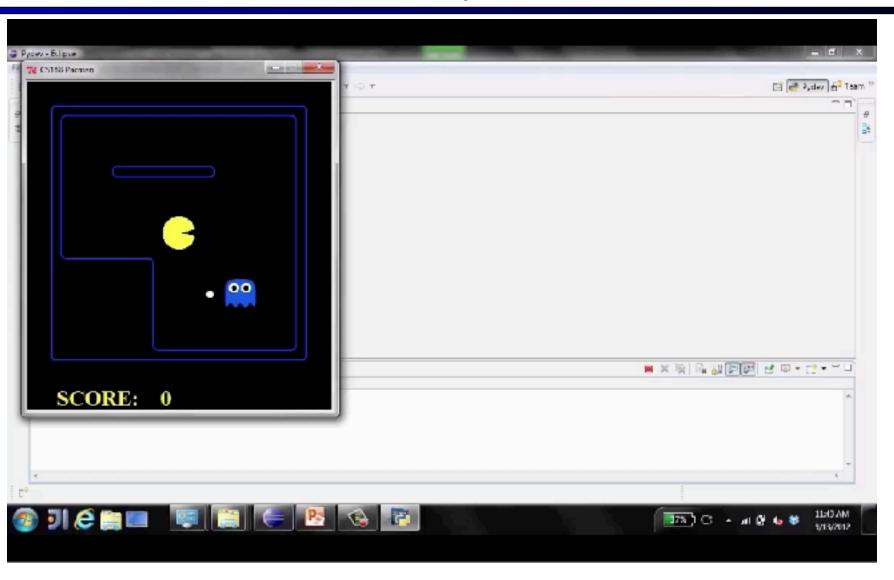


	Adversarial Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 483	Won 5/5 Avg. Score: 493
Expectimax Pacman	Won 1/5 Avg. Score: -303	Won 5/5 Avg. Score: 503

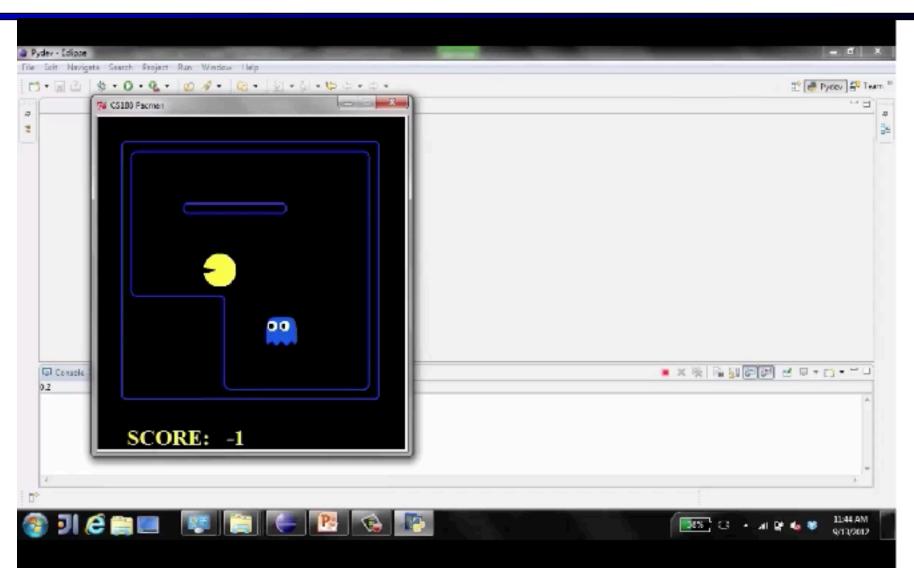
Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

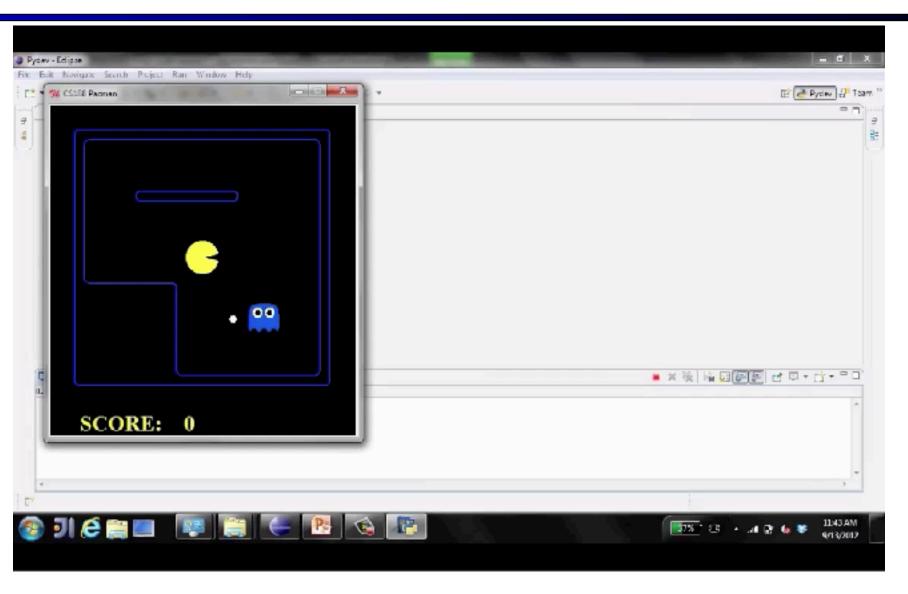
Video of Demo World Assumptions Random Ghost – Expectimax Pacman



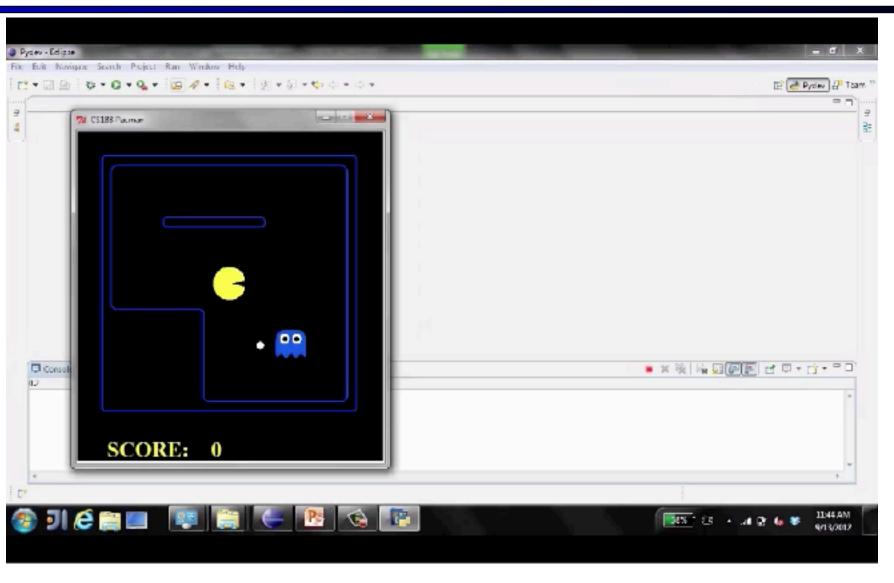
Video of Demo World Assumptions Random Ghost – Minimax Pacman



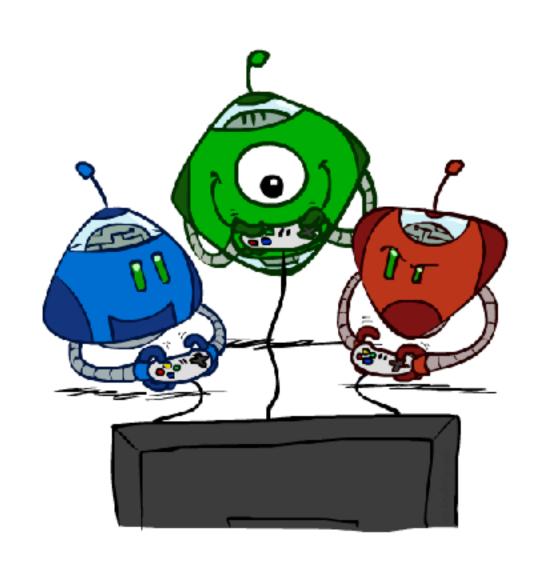
Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman



Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

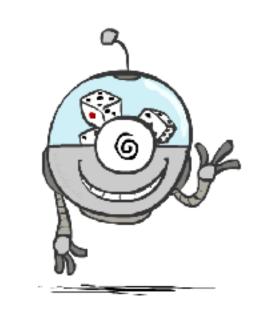


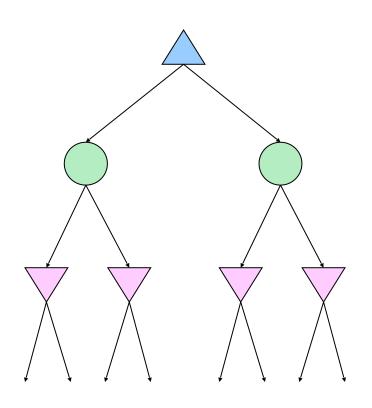
Other Game Types



Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node
 computes the
 appropriate
 combination of its
 children





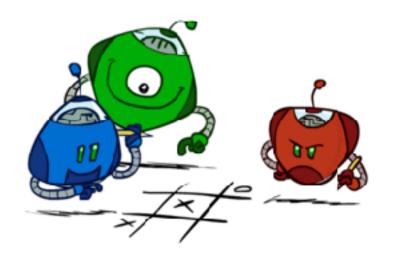
What if the game is not zero-sum, or has multiple players?

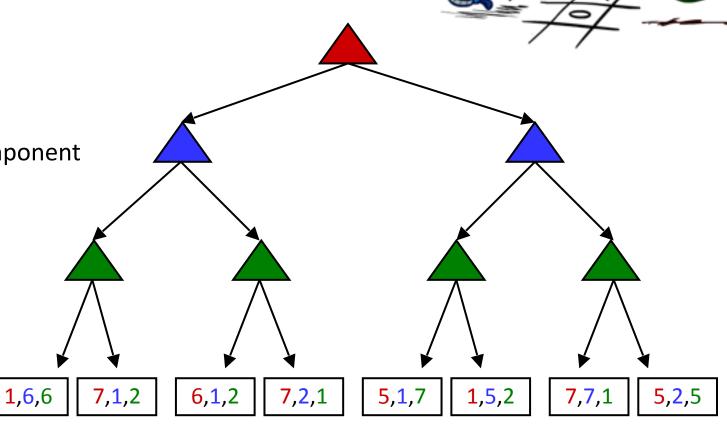
Terminals have utility tuples

Node values are also utility tuples

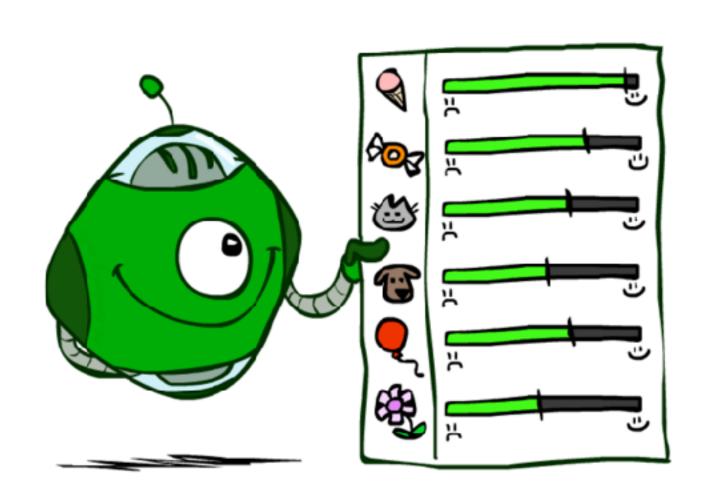
Each player maximizes its own component

 Can give rise to cooperation and competition dynamically...





Utilities



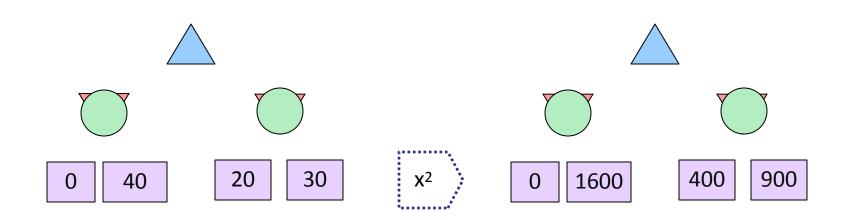
Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
 - A rational agent should chose the action that maximizes its expected utility, given its knowledge

• Questions:

- Where do utilities come from?
- How do we know such utilities even exist that represent our preferences?
- How do we know that averaging even makes sense?
- What if our behavior (preferences) can't be described by utilities?

What Utilities to Use?

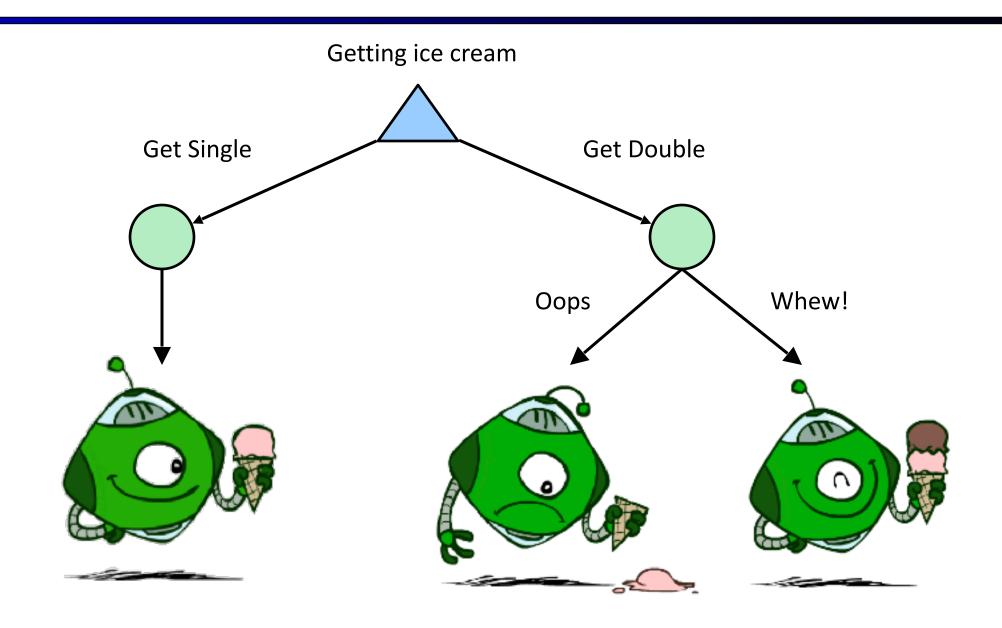


- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need magnitudes to be meaningful

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
 - Why don't we let agents pick utilities?
 - Why don't we prescribe behaviors?

Utilities: Uncertain Outcomes



Preferences

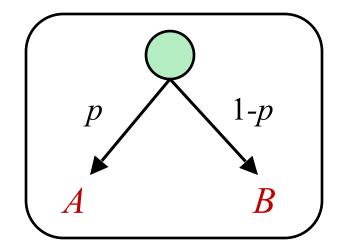
An agent must have preferences among:

- Prizes: *A*, *B*, etc.
- Lotteries: situations with uncertain prizes

$$L = [p, A; (1-p), B]$$

A Prize

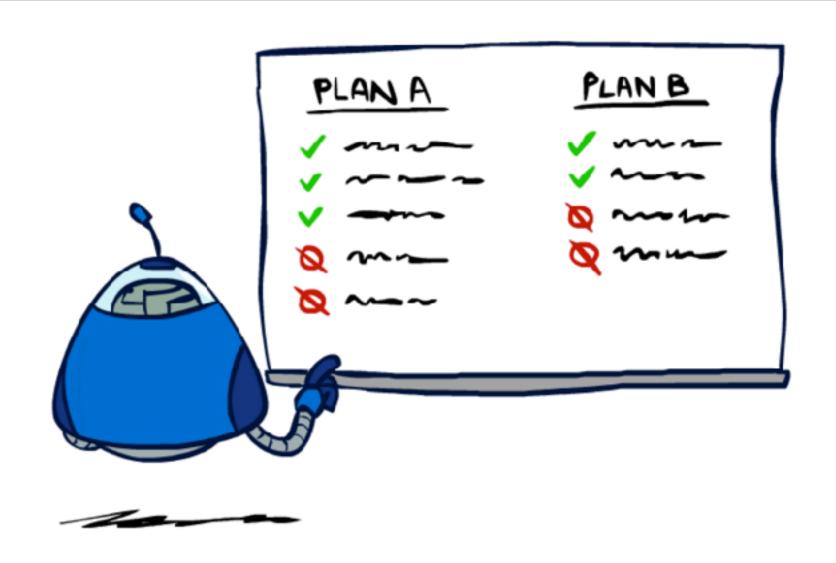
A Lottery



Notation:

- Preference: $A \succ B$
- Indifference: $A \sim B$

Rationality

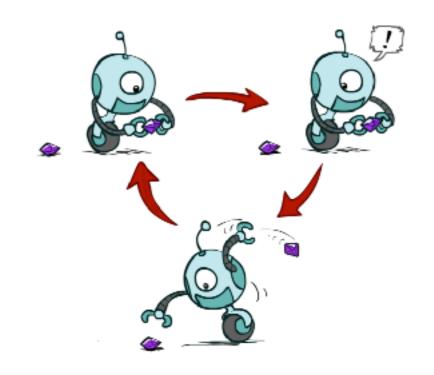


Rational Preferences

We want some constraints on preferences before we call them rational, such as:

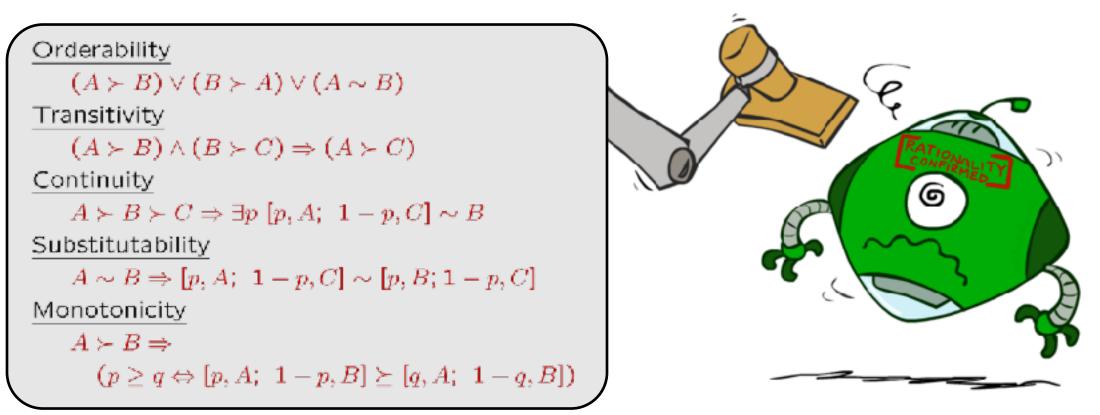
Axiom of Transitivity:
$$(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$$

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C



Rational Preferences

The Axioms of Rationality



Theorem: Rational preferences imply behavior describable as maximization of expected utility

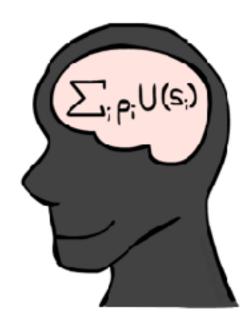
MEU Principle

- Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

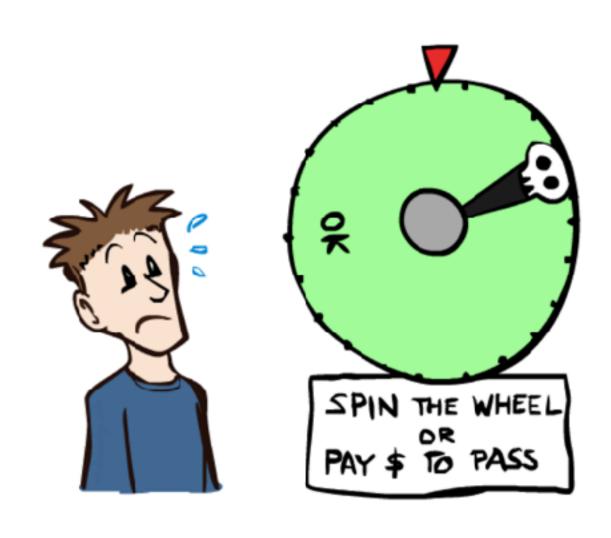
 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

■ I.e. values assigned by U preserve preferences of both prizes and lotteries!



- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

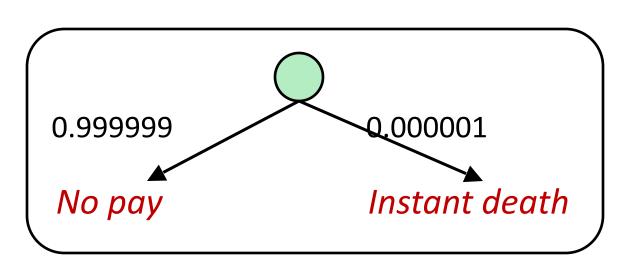
Human Utilities



Human Utilities

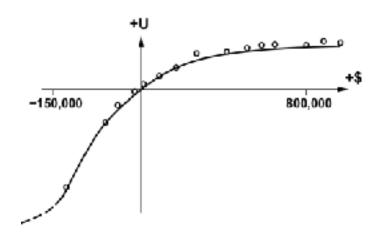
- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
 - Compare a prize A to a standard lottery L_p between
 - "best possible prize" u₊ with probability p
 - "worst possible catastrophe" u_ with probability 1-p
 - Adjust lottery probability p until indifference: A ~ L_p
 - Resulting p is a utility in [0,1]

Pay \$30



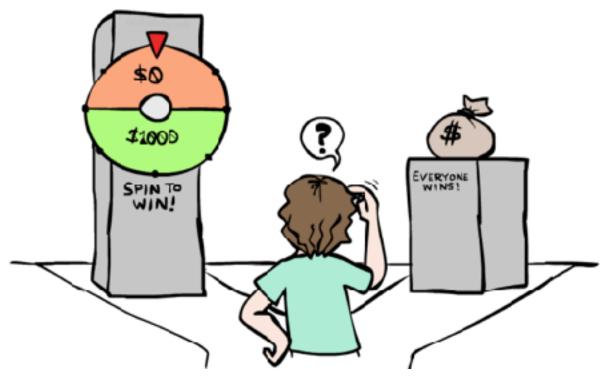
Money

- Money <u>does not</u> behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
 - The expected monetary value EMV(L) is p*X + (1-p)*Y
 - U(L) = p*U(\$X) + (1-p)*U(\$Y)
 - Typically, U(L) < U(EMV(L))</p>
 - In this sense, people are risk-averse
 - When deep in debt, people are risk-prone



Example: Insurance

- Consider the lottery [0.5, \$1000; 0.5, \$0]
 - What is its expected monetary value? (\$500)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
 - Difference of \$100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!
 - It's win-win: you'd rather have the \$400 and the insurance company would rather have the lottery (their utility curve is flat and they have many lotteries)



Example: Human Rationality?

Famous example of Allais (1953)

- A: [0.8, \$4k; 0.2, \$0]
- B: [1.0, \$3k; 0.0, \$0]
- C: [0.2, \$4k; 0.8, \$0]
- D: [0.25, \$3k; 0.75, \$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
 - $B > A \Rightarrow U(\$3k) > 0.8 U(\$4k)$
 - $C > D \Rightarrow 0.8 \text{ U($4k)} > \text{U($3k)}$ (mult both sides by 4 linear transforms are OK)

