CS 383: Artificial Intelligence

Constraint Satisfaction Problems

Prof. Scott Niekum

UMass Amherst

[These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

What is Search For?

= Assumptions about the world: a single agent, deterministic actions, fully observed state,
discrete state space

= Planning: sequences of actions

= The path to the goal is the important thing
= Paths have various costs, depths

= Heuristics give problem-specific guidance

= ldentification: assignments to variables
= The goalitself is important, not the path

= All paths at the same depth (for some formulations)
= CSPs are specialized for identification problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Standard search problems:
= Stateis a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a

domain D (sometimes D depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

-

les
=
\ -

I \

Tasm"a

Example: Map Coloring

= Variables: WA, NT, @Q, NSW, V, SA, T .
= Domains: D = {red, green, blue}

s Constraints: adjacent regions must have different colors

N ‘
Implicit: WA = NT i

Explicit: (WA, NT) ¢ {(red, green), (red, blue), ...}

= Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=qgreen,
V=red, SA=blue, T=green}

Example: N-Queens

» Formulation 1:
= Variables: Xi;
= Domains: {0, 1}
= Constraints

Ve, g, k (‘Yz'ja‘Yik> S {(an)a (0,1),(1,0)}

Ve, 7,k (X”, XLJ) < {(O.\ 0),(0,1), (1, O)} ZX“ = N
Vi, j, k (X5, Xigrj4+x) € 1(0,0),(0,1),(1,0)}]

Vi, g, k (Xi'.jv ~X'i—l—k,j—k:) = {(Oa O)a (Os 1): (13 O)}

Example: N-Queens

= Formulation 2:

@1
Qo
@3
Qa

= Variables: @,

= Domains: {1,2,3,...N}

s Constraints:

implicit: Vi,j non-threatening(Q;, Q;)

Explicit: (QI:QQ) S {(153)~(1*4)1}

Constraint Graphs

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables @
o

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Example: Cryptarithmetic

= Variables:

FTUWRO X Xo X3 +
= Domains: F

{0,1,2,3,4,5,6,7,8,9}

s Constraints:
alldiff(£, 7, U, W, R, O) % w) (R) 10

O+0=R+10-X4

Example: Sudoku

= Variables:

= Each (open) square

= Domains:

| 81 - {1,2,..,9}
/
8 |4 116 d = Constraints:
5 il
1 318 9 9-way alldiff for each column
6 8 4 3 9-way alldiff for each row
2 21° ! 9-way alldiff for each region
7 Z
7 (or can have a bunch of
718 216 pairwise inequality
2 3 / constraints)

Varieties of CSPs

s Discrete Variables
s Finite domains

= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

= Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

s Continuous variables

= E.g., start/end times for Hubble Telescope observations
= Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to reducing
domains), e.g.:

SA # green

= Binary constraints involve pairs of variables, e.g.:

SA %= WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (WEe'll ignore these until we get to Bayes’ nets)

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration

Transportation scheduling |

Th

Factory scheduling

Circuit layout

Fault diagnosis

... lots more! “50 ox | o

Many real-world problems involve real-valued variables...

s\H‘w

Solving CSPs

Standard Search Formulation

s Standard search formulation of CSPs

= States defined by the values assigned so
far (partial assignments)
= Initial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

Search Methods

= What would BFS do?

= What would DFS do?

Demo: DFS CSP

Search Methods

= What would BFS do?

= What would DFS do?

= What problems does naive search have?

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assighments are commutative, so fix ordering
= l.e., [WA=red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= l.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

S

— |
‘\—L:;- - €

4'1’#7
//\

=

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING(] }, 2sp)

function RECURSIVE- BACKTRACKING(assignment, vsp) returns soln /failure
if assignment s complete then return assigrnment
var — SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)
for each valuc in ORDER-DOMAIN-VALULS(var, assignment, czp) do
if value is consistent with assignment given CoxsTrAINTS[csp] then
add {var = valuc} to assignineni
result — RECURSIVE BACKTRACKING(assignment, csp)
if result # failore then return resuli
remove {var = value} from assignment
return foilure

= Backtracking = DFS + variable-ordering + fail-on-violation

Demo: Backtracking

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?

= In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options

= Forward checking: Cross off values that violate a constraint when added to the existing
assignment

WA NT |Q

SW

WA NT Q NSW \' SA

Demo: Backtracking with Forward Checking

Filtering: Constraint Propagation

s Forward checking propagates information from assigned to unassigned variables, but doesn't
provide early detection for all failures:

&

h

WA NT Q NSW Vv SA
I I I Ireire
| "EErEErEErE] O.
I | B[[m E[mrn] O

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
s Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

NT TG WA NT Q NSW Y SA
‘\TL B _PEErEErEErE[EEE
1 W

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

\'}

\l\;—LQ WA NT Q NSW
‘ o J I | H] m _[_

= Important: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking

= Can be run as a preprocessor or after each assignment

= What’s the downside of enforcing arc consistency?

17 Y

Remember: Delete
from the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, pessibly with reduced comains
inputs: csp, a binary CSP with variables | Xy, X;. ... X}
local variahles: qurie, a quaue of ares initially zll the arcs in csp

while queue is nct empty do
(X;. X,)— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X,, ;) then
for each X in NEICHBORS X] do
add (.1\./\ \’: to que

function REnOVE-INCONSISTENT-VALUES] X, X) returns true iff succeeds
removed — false
for each » in DomaIN[Y,] do
if no value iy 'n DOMAIN[Y] allows (7, 1) to satisfy the constrzint X; — X
then delete = from DOMAIN[X]; removed — true

return reimoved

= Runtime: O(n2d3), can be reduced to O(n2d2)
= ... but detecting all possible future problems is NP-hard — why?

Demo: Arc consistency

Limitations of Arc Consistency

. . OK. Multiple
= After enforcing arc consistency: solutions

= Can have one solution left ‘

= Can have multiple solutions left

= Can have no solutions left (and

not know it) @
= Arc consistency still runs inside @ ¢’

a backtracking search! What went

wrong here?

Ordering

Ordering: Minimum Remaining Values

= Variable Ordering: Minimum remaining values (MRV):

= Choose the variable with the fewest legal left values in its domain

I

l -
H

= Why min rather than max?

s Also called “most constrained variable”
= “Fail-fast” ordering

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value

= Given a choice of variable, choose the least ‘
constraining value

= |.e., the one that rules out the fewest values in the ‘\-—LL‘_.,<
remaining variables N ‘
= Note that it may take some computation to determine

this! (E.g., rerunning filtering)

= Why least rather than most?

» Combining these ordering ideas makes
1000 queens feasible

Demo: Backtracking + Forward Checking + Ordering

