CS 383: Artificial Intelligence

Constraint Satisfaction Problems

UMass Amherst

[These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Standard search problems:

- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Allows useful general-purpose algorithms with more power than standard search algorithms

CSP Examples

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D = {red, green, blue}
- Constraints: adjacent regions must have different colors

Implicit: WA \neq NT

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

Example: N-Queens

Formulation 1:

- Variables: X_{ij}
- Domains: {0,1}

Constraints

 $\begin{aligned} &\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\ &\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\ &\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \\ &\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \end{aligned}$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \dots N\}$
 - Constraints:
 - Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

Variables:

 $F T U W R O X_1 X_2 X_3$

- Domains:
 - $\{0,1,2,3,4,5,6,7,8,9\}$
- Constraints:

 $\operatorname{alldiff}(F, T, U, W, R, O)$

$$O + O = R + 10 \cdot X_1$$

. . .

Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - **•** {1,2,...,9}
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)

Varieties of CSPs

Discrete Variables

- Finite domains
 - Size *d* means O(*d*^{*n*}) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
- Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Continuous variables

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

Varieties of Constraints

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$SA \neq green$

Binary constraints involve pairs of variables, e.g.:

 $\mathsf{SA}\neq\mathsf{WA}$

- Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

What would BFS do?

What would DFS do?

Demo: DFS CSP

Search Methods

What would BFS do?
 What would DFS do?

What problems does naïve search have?

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time

- Variable assignments are commutative, so fix ordering
- I.e., [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go

- I.e. consider only values which do not conflict previous assignments
- Might have to do some computation to check the constraints
- "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for n ≈ 25

Backtracking Example

Backtracking Search

Backtracking = DFS + variable-ordering + fail-on-violation

Demo: Backtracking

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Demo: Backtracking with Forward Checking

Filtering: Constraint Propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

■ An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

• Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

Important: If X loses a value, neighbors of X need to be rechecked!

- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

Enforcing Arc Consistency in a CSP

```
function AC-3( csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X_1, X_2, ..., X_n}

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)

if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then

for each X_k in NEICHBORS[X_i] do

add (X_k, X_i) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
```

```
removed \leftarrow false
for each x in DOMAIN[X<sub>i</sub>] do
if no value y in DOMAIN[X<sub>j</sub>] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_j
then delete x from DOMAIN[X<sub>i</sub>]; removed \leftarrow true
return removed
```

- Runtime: O(n²d³), can be reduced to O(n²d²)
- ... but detecting all possible future problems is NP-hard why?

Demo: Arc consistency

Limitations of Arc Consistency

After enforcing arc consistency:

- Can have one solution left
- Can have multiple solutions left
- Can have no solutions left (and not know it)

 Arc consistency still runs inside a backtracking search!

What went wrong here?

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

Value Ordering: Least Constraining Value

- Given a choice of variable, choose the *least* constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Demo: Backtracking + Forward Checking + Ordering