
CS 383: Artificial Intelligence

Constraint Satisfaction Problems

Prof. Scott Niekum

UMass Amherst
[These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

What is Search For?

▪ Assumptions about the world: a single agent, deterministic actions, fully observed state,
discrete state space

▪ Planning: sequences of actions
▪ The path to the goal is the important thing
▪ Paths have various costs, depths
▪ Heuristics give problem-specific guidance

▪ Identification: assignments to variables
▪ The goal itself is important, not the path
▪ All paths at the same depth (for some formulations)
▪ CSPs are specialized for identification problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

▪ Standard search problems:
▪ State is a “black box”: arbitrary data structure
▪ Goal test can be any function over states
▪ Successor function can also be anything

▪ Constraint satisfaction problems (CSPs):
▪ A special subset of search problems
▪ State is defined by variables Xi with values from a

domain D (sometimes D depends on i)

▪ Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

▪ Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

Example: Map Coloring

▪ Variables:

▪ Domains:

▪ Constraints: adjacent regions must have different colors

▪ Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:

Example: N-Queens

▪ Formulation 1:

▪ Variables:

▪ Domains:

▪ Constraints

Example: N-Queens

▪ Formulation 2:

▪ Variables:

▪ Domains:

▪ Constraints:

Implicit:

Explicit:

Constraint Graphs

Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two
variables

▪ Binary constraint graph: nodes are variables, arcs
show constraints

▪ General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Example: Cryptarithmetic

▪ Variables:

▪ Domains:

▪ Constraints:

Example: Sudoku

▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

Varieties of CSPs

▪ Discrete Variables
▪ Finite domains

▪ Size d means O(dn) complete assignments
▪ E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete)
▪ Infinite domains (integers, strings, etc.)

▪ E.g., job scheduling, variables are start/end times for each job
▪ Linear constraints solvable, nonlinear undecidable

▪ Continuous variables
▪ E.g., start/end times for Hubble Telescope observations
▪ Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to reducing

domains), e.g.:

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

▪ Assignment problems: e.g., who teaches what class

▪ Timetabling problems: e.g., which class is offered when and where?

▪ Hardware configuration

▪ Transportation scheduling

▪ Factory scheduling

▪ Circuit layout

▪ Fault diagnosis

▪ … lots more!

▪ Many real-world problems involve real-valued variables…

Solving CSPs

Standard Search Formulation

▪ Standard search formulation of CSPs

▪ States defined by the values assigned so
far (partial assignments)
▪ Initial state: the empty assignment, {}
▪ Successor function: assign a value to an

unassigned variable
▪ Goal test: the current assignment is

complete and satisfies all constraints

▪ We’ll start with the straightforward,
naïve approach, then improve it

Search Methods

▪ What would BFS do?

▪ What would DFS do?

Demo: DFS CSP

Search Methods

▪ What would BFS do?

▪ What would DFS do?

▪ What problems does naïve search have?

Backtracking Search

Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ I.e. consider only values which do not conflict previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
 is called backtracking search (not the best name)

▪ Can solve n-queens for n ≈ 25

Backtracking Example

Backtracking Search

▪ Backtracking = DFS + variable-ordering + fail-on-violation

Demo: Backtracking

Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:
▪ Which variable should be assigned next?
▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?

▪ Filtering: Keep track of domains for unassigned variables and cross off bad options

▪ Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW
V

Demo: Backtracking with Forward Checking

Filtering: Constraint Propagation

▪ Forward checking propagates information from assigned to unassigned variables, but doesn't
provide early detection for all failures:

▪ NT and SA cannot both be blue!
▪ Why didn’t we detect this yet?
▪ Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment
▪ What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

▪ Runtime: O(n2d3), can be reduced to O(n2d2)
▪ … but detecting all possible future problems is NP-hard – why?

Demo: Arc consistency

Limitations of Arc Consistency

▪ After enforcing arc consistency:

▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and
not know it)

▪ Arc consistency still runs inside
a backtracking search! What went

wrong here?

OK. Multiple
solutions

Ordering

Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV):
▪ Choose the variable with the fewest legal left values in its domain

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering

Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least

constraining value
▪ I.e., the one that rules out the fewest values in the

remaining variables
▪ Note that it may take some computation to determine

this! (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
 1000 queens feasible

Demo: Backtracking + Forward Checking + Ordering

