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What is Search For?

▪ Assumptions about the world: a single agent, deterministic actions, fully observed state, 
discrete state space 

▪ Planning: sequences of actions 
▪ The path to the goal is the important thing 
▪ Paths have various costs, depths 
▪ Heuristics give problem-specific guidance 

▪ Identification: assignments to variables 
▪ The goal itself is important, not the path 
▪ All paths at the same depth (for some formulations) 
▪ CSPs are specialized for identification problems



Constraint Satisfaction Problems



Constraint Satisfaction Problems

▪ Standard search problems: 
▪ State is a “black box”: arbitrary data structure 
▪ Goal test can be any function over states 
▪ Successor function can also be anything 

▪ Constraint satisfaction problems (CSPs): 
▪ A special subset of search problems 
▪ State is defined by variables Xi  with values from a 

domain D (sometimes D depends on i) 

▪ Goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables 

▪ Allows useful general-purpose algorithms with more 
power than standard search algorithms



CSP Examples



Example: Map Coloring

▪ Variables: 

▪ Domains: 

▪ Constraints: adjacent regions must have different colors 

▪ Solutions are assignments satisfying all constraints, e.g.: 

 

Implicit:

Explicit:



Example: N-Queens

▪ Formulation 1: 

▪ Variables: 

▪ Domains: 

▪ Constraints



Example: N-Queens

▪ Formulation 2: 

▪ Variables: 

▪ Domains: 

▪ Constraints:

Implicit:

Explicit:



Constraint Graphs



Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two 
variables 

▪ Binary constraint graph: nodes are variables, arcs 
show constraints 

▪ General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!



Example: Cryptarithmetic

▪ Variables: 

▪ Domains: 

▪ Constraints:



Example: Sudoku

▪ Variables: 

▪ Each (open) square 

▪ Domains: 

▪ {1,2,…,9} 

▪ Constraints: 

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 
pairwise inequality 
constraints)



Varieties of CSPs

▪ Discrete Variables 
▪ Finite domains 

▪ Size d means O(dn) complete assignments 
▪ E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete) 
▪ Infinite domains (integers, strings, etc.) 

▪ E.g., job scheduling, variables are start/end times for each job 
▪ Linear constraints solvable, nonlinear undecidable 

▪ Continuous variables 
▪ E.g., start/end times for Hubble Telescope observations 
▪ Linear constraints solvable in polynomial time by LP methods



Varieties of Constraints

▪ Varieties of Constraints 
▪ Unary constraints involve a single variable (equivalent to reducing 

domains), e.g.: 
  

▪ Binary constraints involve pairs of variables, e.g.: 

▪ Higher-order constraints involve 3 or more variables: 
    e.g., cryptarithmetic column constraints 

▪ Preferences (soft constraints): 
▪ E.g., red is better than green 
▪ Often representable by a cost for each variable assignment 
▪ Gives constrained optimization problems 
▪ (We’ll ignore these until we get to Bayes’ nets) 

 



Real-World CSPs

▪ Assignment problems: e.g., who teaches what class 

▪ Timetabling problems: e.g., which class is offered when and where? 

▪ Hardware configuration 

▪ Transportation scheduling 

▪ Factory scheduling 

▪ Circuit layout 

▪ Fault diagnosis 

▪ … lots more! 

▪ Many real-world problems involve real-valued variables…



Solving CSPs



Standard Search Formulation

▪ Standard search formulation of CSPs 

▪ States defined by the values assigned so 
far (partial assignments) 
▪ Initial state: the empty assignment, {} 
▪ Successor function: assign a value to an 

unassigned variable 
▪ Goal test: the current assignment is 

complete and satisfies all constraints 

▪ We’ll start with the straightforward, 
naïve approach, then improve it



Search Methods

▪ What would BFS do? 

▪ What would DFS do?



Demo: DFS CSP



Search Methods

▪ What would BFS do? 

▪ What would DFS do? 

▪ What problems does naïve search have?



Backtracking Search



Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs 

▪ Idea 1: One variable at a time 
▪ Variable assignments are commutative, so fix ordering 
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red] 
▪ Only need to consider assignments to a single variable at each step 

▪ Idea 2: Check constraints as you go 
▪ I.e. consider only values which do not conflict previous assignments 
▪ Might have to do some computation to check the constraints 
▪ “Incremental goal test” 

▪ Depth-first search with these two improvements 
 is called backtracking search (not the best name) 

▪ Can solve n-queens for n ≈ 25



Backtracking Example



Backtracking Search

▪ Backtracking = DFS + variable-ordering + fail-on-violation



Demo: Backtracking



Improving Backtracking

▪ General-purpose ideas give huge gains in speed 

▪ Ordering: 
▪ Which variable should be assigned next? 
▪ In what order should its values be tried? 

▪ Filtering: Can we detect inevitable failure early? 

▪ Structure: Can we exploit the problem structure?



▪ Filtering: Keep track of domains for unassigned variables and cross off bad options 

▪ Forward checking: Cross off values that violate a constraint when added to the existing 
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW
V



Demo: Backtracking with Forward Checking



Filtering: Constraint Propagation

▪ Forward checking propagates information from assigned to unassigned variables, but doesn't 
provide early detection for all failures: 

▪ NT and SA cannot both be blue! 
▪ Why didn’t we detect this yet? 
▪ Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V



Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint 

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V



Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are consistent: 

▪ Important: If X loses a value, neighbors of X need to be rechecked! 
▪ Arc consistency detects failure earlier than forward checking 
▪ Can be run as a preprocessor or after each assignment  
▪ What’s the downside of enforcing arc consistency?

Remember: Delete 
from  the tail!

WA SA

NT Q

NSW

V



Enforcing Arc Consistency in a CSP

▪ Runtime: O(n2d3), can be reduced to O(n2d2) 
▪ … but detecting all possible future problems is NP-hard – why?



Demo: Arc consistency



Limitations of Arc Consistency

▪ After enforcing arc consistency: 

▪ Can have one solution left 

▪ Can have multiple solutions left 

▪ Can have no solutions left (and 
not know it) 

▪ Arc consistency still runs inside 
a backtracking search! What went 

wrong here?

OK. Multiple 
solutions



Ordering



Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV): 
▪ Choose the variable with the fewest legal left values in its domain 

▪ Why min rather than max? 

▪ Also called “most constrained variable” 

▪ “Fail-fast” ordering



Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value 
▪ Given a choice of variable, choose the least 

constraining value 
▪ I.e., the one that rules out the fewest values in the 

remaining variables 
▪ Note that it may take some computation to determine 

this!  (E.g., rerunning filtering) 

▪ Why least rather than most? 

▪ Combining these ordering ideas makes 
 1000 queens feasible



Demo: Backtracking + Forward Checking + Ordering


