Constraint Satisfaction Problems

Prof. Scott Niekum
UMass Amherst

[These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems
Constraint Satisfaction Problems
Constraint Satisfaction Problems

- Standard search problems:
 - State is a “black box”: arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map Coloring

- Variables: \(WA, NT, Q, NSW, V, SA, T \)

- Domains: \(D = \{ \text{red, green, blue} \} \)

- Constraints: adjacent regions must have different colors
 - Implicit: \(WA \neq NT \)
 - Explicit: \((WA, NT) \in \{(\text{red, green}), (\text{red, blue}), \ldots\} \)

- Solutions are assignments satisfying all constraints, e.g.:

\[
\{WA=\text{red}, NT=\text{green, } Q=\text{red, } NSW=\text{green, } V=\text{red, } SA=\text{blue, } T=\text{green}\}
\]
Example: N-Queens

Formulation 1:

- Variables: X_{ij}
- Domains: $\{0, 1\}$
- Constraints

\[
\begin{align*}
\forall i, j, k \ (X_{ij}, X_{ik}) &\in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{kj}) &\in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) &\in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) &\in \{(0, 0), (0, 1), (1, 0)\} \\
\sum_{i,j} X_{ij} &= N
\end{align*}
\]
Example: N-Queens

- **Formulation 2:**
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots N\}$
 - Constraints:
 - Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$
Constraint Graphs
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables

- Binary constraint graph: nodes are variables, arcs show constraints

- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Cryptarithmetic

- **Variables:**
 \[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]

- **Domains:**
 \[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

- **Constraints:**
 \[
 \text{alldiff}(F, T, U, W, R, O) \\
 O + O = R + 10 \cdot X_1 \\
 \ldots
 \]
Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - \{1,2,...,9\}
- Constraints:

 9-way alldiff for each column
 9-way alldiff for each row
 9-way alldiff for each region

(or can have a bunch of pairwise inequality constraints)
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:
 \[\text{SA} \neq \text{green} \]
 - Binary constraints involve pairs of variables, e.g.:
 \[\text{SA} \neq \text{WA} \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...
Solving CSPs
Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We’ll start with the straightforward, naïve approach, then improve it
Search Methods

- What would BFS do?
- What would DFS do?
Demo: DFS CSP
Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?
Backtracking Search
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs

- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step

- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”

- Depth-first search with these two improvements is called backtracking search (not the best name)

- Can solve n-queens for $n \approx 25$
Backtracking Example
Backtracking Search

function Backtracking-Search(csp) returns solution/failure
 return Recursive-Backtracking({}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
 if assignment is complete then return assignment
 var ← Select-Unassigned-Variable(VARIABLES[csp], assignment, csp)
 for each value in Order-Domain-Values(var, assignment, csp) do
 if value is consistent with assignment given CONSTRAINTS[csp] then
 add {var = value} to assignment
 result ← Recursive-Backtracking(assignment, csp)
 if result ≠ failure then return result
 remove {var = value} from assignment
 return failure

- Backtracking = DFS + variable-ordering + fail-on-violation
Demo: Backtracking
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?
Filtering: Keep track of domains for unassigned variables and cross off bad options

Forward checking: Cross off values that violate a constraint when added to the existing assignment
Demo: Backtracking with Forward Checking
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - *Constraint propagation*: reason from constraint to constraint
Consistency of A Single Arc

- An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

- Forward checking: Enforcing consistency of arcs pointing to each new assignment.
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
Enforcing Arc Consistency in a CSP

Function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 (X_i, X_j) ← REMOVE-FIRST(queue)
 if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
 for each X_k in NEIGHBORS[X_i] do
 add (X_k, X_i) to queue

Function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
removed ← false
for each x in DOMAIN[X_i] do
 if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraint X_i ← X_j
 then delete x from DOMAIN[X_i]; removed ← true
return removed

- Runtime: \(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\)
- ... but detecting all possible future problems is NP-hard – why?
Demo: Arc consistency
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

OK. Multiple solutions

What went wrong here?
Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain

Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the \textit{least constraining value}
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?

- Combining these ordering ideas makes 1000 queens feasible
Demo: Backtracking + Forward Checking + Ordering