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Properties of task environment

▪ Fully observable vs. partially observable 
▪ Single-agent vs. multi-agent 
▪ Deterministic vs. stochastic 
▪ Episodic vs. sequential 
▪ Static vs. dynamic 
▪ Discrete vs. continuous 
▪ Known vs. unknown



Single agent vs. multi-agent

▪ Not multi-agent if other agents can be considered 
part of the environment 

▪ Only considered to be multi-agent if the agents 
are maximizing a performance metric that 
depends on other agents’ behavior 

▪ Single agent example: Pacman with randomly 
moving ghosts 

▪ Multi-agent example: Pacman with ghosts that 
use a planner to follow him
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Deterministic vs. stochastic

▪ Deterministic: next state of environment is 
completely determined by the current state and 
the action executed by the agent 

▪ Stochastic: actions have probabilistic outcomes 
▪ Strongly related to partial observability — most 

apparent stochasticity results from partial 
observation of a deterministic system 

▪ Example: Coin flip
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Fully observable vs. partially observable

▪ Fully observable: agent’s sensors give it access 
to complete state of the environment at all times 

▪ Can be partially observable due to noisy and 
inaccurate sensors, or because parts of the 
state are simply missing from the sensor data 

▪ Example: Perfect GPS vs noisy pose estimation 
▪ Example: IKEA assembly while blindfolded

Almost everything in the real world is partially observable
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Known vs. unknown

▪ Agent’s state of knowledge about the “rules of the game” / 
“laws of physics” 

▪ Known environment: the outcomes for all actions are given 
▪ Unknown: agent has to learn how it works to make good 

decisions 
▪ Possible to be partially observable but known (solitaire) 
▪ Possible to be fully observable but unknown (video game)
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Robotic Helicopters



Hover

[Ng et al, 2004]



Autonomous Helicopter Flight

▪ Key challenges: 

▪ Track helicopter position and orientation during flight 

▪ Decide on control inputs to send to helicopter



Autonomous Helicopter Setup

On-board inertial 
measurement unit (IMU)

Send out controls to 
helicopter

Position



HMM for Tracking the Helicopter

▪ State: 

▪ Measurements: [observation update] 
▪ 3-D coordinates from vision, 3-axis magnetometer, 3-axis gyro, 3-axis accelerometer 

▪ Transitions (dynamics): [time elapse update] 

▪ st+1 = f (st, at) + wt                 f: encodes helicopter dynamics, w: noise 
  
  



Helicopter MDP

▪ State: 

▪ Actions (control inputs): 
▪ alon :  Main rotor longitudinal cyclic pitch control (affects pitch rate) 
▪ alat :  Main rotor latitudinal cyclic pitch control (affects roll rate) 
▪ acoll : Main rotor collective pitch (affects main rotor thrust) 
▪ arud : Tail rotor collective pitch (affects tail rotor thrust) 

▪ Transitions (dynamics): 

▪ st+1 = f (st, at) + wt 
[f encodes helicopter dynamics] 
[w is a probabilistic noise model] 
  

▪ Can we solve the MDP yet? 



Problem: What’s the Reward?

▪ Reward for hovering:



Problem: What’s the Reward?

▪ Rewards for “Flip”?  

▪ Problem: what’s the target trajectory? 

▪ Just write it down by hand? 

▪ Penalize for deviation from trajectory



Flips (?)



Helicopter Apprenticeship?
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Learning task objectives: Inverse reinforcement learning

Reinforcement learning basics:

MDP: (S,A, T, �, D,R)

⇡(s, a) ! [0, 1]Policy:

Value function: V ⇡(s0) =
1X

t=0

�tR(st)

states actions transition dynamics

discount rate start state
distribution

reward function

What if we have an MDP/R?



Learning task objectives: Inverse reinforcement learning

2. Explain expert demos by finding      such that:R⇤

1. Collect user demonstration (s0, a0), (s1, a1), . . . , (sn, an)

⇡Eand assume it is sampled from the expert’s policy, 

E[
P1

t=0 �
tR⇤(st)|⇡E ] E[

P1
t=0 �

tR⇤(st)|⇡]

8⇡Es0⇠D[V ⇡E

(s0)] Es0⇠D[V ⇡(s0)]

8⇡�

�

How can search be made tractable?

[Abbeel and Ng 2004]



Learning task objectives: Inverse reinforcement learning

Define R⇤ as a linear combination of features:

R⇤(s) = wT�(s) , where � : S ! Rn

Then, 

E[
P1

t=0 �
tR⇤(st)|⇡] = E[

P1
t=0 �

twT�(st)|⇡]

= wTE[
P1

t=0 �
t�(st)|⇡]

= wTµ(⇡)

Thus, the expected value of a policy can be expressed as  
a weighted sum of the expected features µ(⇡)

[Abbeel and Ng 2004]



Learning task objectives: Inverse reinforcement learning

Originally - 

E[
P1

t=0 �
tR⇤(st)|⇡E ] E[

P1
t=0 �

tR⇤(st)|⇡] 8⇡

Restated - find      such that:

Explain expert demos by finding      such that:R⇤

w⇤

w⇤µ(⇡E) w⇤µ(⇡)

�

�

Use expected features:

8⇡

E[
P1

t=0 �
tR⇤(st)|⇡] = wTµ(⇡)

[Abbeel and Ng 2004]



Learning task objectives: Inverse reinforcement learning

Find      such that:w⇤ 8⇡

2. Find      s.t. expert maximally outperforms all previously  

1. Initialize      to any policy⇡0

Iterate for i =1, 2, … :

⇡i

examined policies :⇡0...i�1

w⇤µ(⇡E) � w⇤µ(⇡j) + ✏s.t.

w⇤µ(⇡E) w⇤µ(⇡)�

3. Use RL to calc. optimal policy      associated with  

max
✏,w⇤:kw⇤k21

✏

w⇤

4. Stop if ✏  threshold

Goal: 

w⇤

[Abbeel and Ng 2004]
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SVM 
solver



Quadruped

▪ Low-level control problem: moving a foot into a new location  
search with successor function ~ moving the motors 

▪ High-level control problem: where should we place the feet?  

▪ Reward function R(x) = w . f(s)    [25 features]

[Kolter, Abbeel & Ng, 2008]



▪ Demonstrate path across the “training terrain” 

▪ Run apprenticeship to learn the reward function 

▪ Receive “testing terrain”---height map.  

▪ Find the optimal policy with respect to the learned reward function for 
crossing the testing terrain.

Experimental setup

[Kolter, Abbeel & Ng, 2008]



Without learning



With learned reward function



Problems with standard inverse reinforcement learning

Cannot outperform demonstrator

Argh!

Policy learning in inner loop

IRL Loop

Reward update

Policy learning



T-REX: Trajectory-ranked Reward Extrapolation

D.S. Brown, W. Goo, P. Nagarajan, and S. Niekum. 
Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations.
International Conference on Machine Learning (ICML), June 2019.

• Fully supervised — no policy learning
• Works on high-dim (e.g. Atari) with ~10 demos

D. Brown, W. Goo, and S. Niekum. 
Ranking-Based Reward Extrapolation without Rankings
Conference on Robot Learning (CoRL), October 2019. 

• Auto-generated rankings:



Ranked demonstrations: HalfCheetah

12.52 44.98 88.97



Results: HalfCheetah 

Best demo (88.97) T-REX (143.40)



Results: Atari 

Best demo (600) T-REX (1495)



Frame stacks: best vs. worst reward

Best

Worst



D-REX: Auto-generated rankings

Unranked
Demonstrations

“Ranked”
Trajectories

⇡BC
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Behavioral
Cloning

Noise-modified
Rollouts

Increasing
Noise

D. Brown, W. Goo, and S. Niekum. 
Ranking-Based Reward Extrapolation without Rankings
Conference on Robot Learning (CoRL), October 2019. 



Multimodal data sources: Human Gaze



Tobii 2 Glasses Image-based gaze tracking

A. Saran, S. Majumdar, E.S. Short, A.L. Thomaz, and S. Niekum. 
Human Gaze Following for Human-Robot Interaction. 
International Conference on Intelligent Robots and Systems (IROS), October 2018. 

Collecting gaze data during demonstrations

https://www.cs.utexas.edu/users/sniekum/pubs/SaranIROS2018.pdf


Human gaze during ambiguous task demonstrations

Gaze fixations during kinesthetic demonstration

A. Saran, E.S. Short, A.L. Thomaz, and S. Niekum. 
Understanding Teacher Gaze Patterns for Robot Learning.
Conference on Robot Learning (CoRL), October 2019. 

https://arxiv.org/abs/1907.07202


CGL: Coverage-based Gaze Loss

A. Saran, R. Zhang, E.S. Short, and S. Niekum. 
Efficiently Guiding Imitation Learning Algorithms with Human Gaze.
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2021. 

https://arxiv.org/abs/2002.12500


Multimodal data sources: Facial Reactions

Implicit human feedback:
• Occurs naturally
• Is not necessarily intended to influence behavior
• Can be used with no additional burden on user 



EMPATHIC: Learning from implicit feedback — training

Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox. 
The EMPATHIC Framework for Task Learning from Implicit Human Feedback.
Conference on Robot Learning (CoRL), November 2020. 

https://arxiv.org/abs/2009.13649


EMPATHIC: Learning from implicit feedback — deployment

Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox. 
The EMPATHIC Framework for Task Learning from Implicit Human Feedback.
Conference on Robot Learning (CoRL), November 2020. 

https://arxiv.org/abs/2009.13649


Even more multimodal data sources

(put butter) (crack egg) (fry egg) (put egg2plate)

+

Auxiliary video alignment Audio and prosody

“Rotate the red handle 
downward”

Natural language

W. Goo and S. Niekum.
One Shot Learning of Multi-Step Tasks from Observation
via Activity Localization in Auxiliary Video
International Conference on Robotics and Automation, May 2019.

A. Saran and S. Niekum
Analyzing Audio Patterns During Demonstration
In Submission. 

Argh!

P. Goyal, S. Niekum, and R. Mooney. 
PixL2R: Guiding Reinforcement Learning Using Natural Language 
by Mapping Pixels to Rewards.
Conference on Robot Learning (CoRL), November 2020. 



Demonstration

[RSS 2013, IJRR 2015]



High-level task modeling

?

Unsegmented demonstrations
of multi-step tasks

Finite-state task
representation

• How many skills?
• Parameters of skills / controllers?
• How to sequence intelligently?

• Superior generalization of skills
• Handle contingencies
• Adaptively sequence skills

Why?

Questions



System overview

[IROS 2012]
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y1 y2 y3 y4 y5 y6 y7 y8

Segmenting demonstrations

x1 x2 x3 x4 x5 x6 x7 x8Motion
categories

Observations

Standard Hidden Markov Model

[IROS 2012]



y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8

Observations

Autoregressive Hidden Markov Model

[IROS 2012]

Segmenting demonstrations
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rX
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t�j + e(i)t (z(i)t )

Motion
categories
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Autoregressive Hidden Markov Model

6 6 3 1 1 3 11 10

y1 y2 y3 y4 y5 y6 y7 y8Observations

unknown 
number!

Beta Process

[IROS 2012]

Segmenting demonstrations

y(i)
t =

rX

j=1

A
j,z(i)

t
y(i)
t�j + e(i)t (z(i)t )

(Fox et al. 2011)

Motion
categories
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Learning a task plan: Finite state automata

[RSS 2013, IJRR 2015]



Learning a task plan: Finite state automata

Controller built from motion category examples

Classifier built from robot percepts

[RSS 2013, IJRR 2015]



Interactive corrections

[RSS 2013, IJRR 2015]



Replay with corrections:  missed grasp

[RSS 2013, IJRR 2015]



Replay with corrections:  too far away

[RSS 2013, IJRR 2015]



Replay with corrections:  full run

[RSS 2013, IJRR 2015]


