CS 383: ARTIFICIAL INTELLIGENCE

Conclusion and Advanced Applications

Prof. Scott Niekum — UMass Amherst

Overview of AI Topics

Search / Planning

Uninformed Search Minimax A* Search Expectimax CSPs MDPs Local Search

Machine Learning

Reinforcement Learning Probability Theory Bayes Nets HMMs Particle Filters Decision Diagrams

Naive Bayes Perceptrons Neural Networks Kernels Clustering VPI

Overview of Machine Learning

Unsupervised Learning Reinforcement Learning **K-Means Clustering MDPs** Supporting Ideas Value Iteration Policy Iteration Q Learning Probability Theory VPI Particle Filters Kernels

Maximize Your Expected Utility

Properties of task environment

- Fully observable vs. partially observable Single-agent vs. multi-agent Deterministic vs. stochastic Episodic vs. sequential Static vs. dynamic Discrete vs. continuous
- Known vs. unknown

Single agent vs. multi-agent

- Not multi-agent if other agents can be considered part of the environment
- Only considered to be multi-agent if the agents are maximizing a performance metric that depends on other agents' behavior
- Single agent example: Pacman with randomly moving ghosts
- Multi-agent example: Pacman with ghosts that use a planner to follow him

Single

Uninformed Search A* Search Local Search CSPs

Single / Multi Agent

Multi

Minimax

Expectimax

MDPs

Reinforcement Learning

Deterministic vs. stochastic

- Deterministic: next state of environment is completely determined by the current state and the action executed by the agent
- Stochastic: actions have probabilistic outcomes
- Strongly related to partial observability most apparent stochasticity results from partial observation of a deterministic system
- Example: Coin flip

Deterministic

Uninformed Search A* Search Local Search CSPs

Minimax

Determinism

Stochastic

Expectimax

MDPs

Reinforcement Learning

Decision Diagrams

- Fully observable: agent's sensors give it access to complete state of the environment at all times
- Can be partially observable due to noisy and inaccurate sensors, or because parts of the state are simply missing from the sensor data
- Example: Perfect GPS vs noisy pose estimation
- Example: IKEA assembly while blindfolded

Almost everything in the real world is partially observable

Fully Observable

Minimax Uninformed Search Expectimax A* Search Local Search MDPs CSPs Reinforcement Learning

Observability

Partially Observable

POMDPs Bayes Nets HMMs Decision Diagrams

- Agent's state of knowledge about the "rules of the game" / "laws of physics"
- Known environment: the outcomes for all actions are given Unknown: agent has to learn how it works to make good
- decisions
- Possible to be partially observable but known (solitaire) Possible to be fully observable but unknown (video game)

Model of the World

Known

Uninformed Search

A* Search

Local Search

CSPs

Minimax

Expectimax

MDPs

Value Iteration

Decision Diagrams

Unknown

Q Learning Learning parameters of Bayes Net

Robotic Helicopters

Hover

[Ng et al, 2004]

Autonomous Helicopter Flight

Key challenges:

- Decide on control inputs to send to helicopter

Track helicopter position and orientation during flight

Autonomous Helicopter Setup

Send out controls to helicopter

HMM for Tracking the Helicopter

- State: $s = (x, y, z, \phi, \theta, \psi, \psi, \psi)$
- Measurements: [observation update]
 - 3-D coordinates from vision, 3-axis magnetometer, 3-axis gyro, 3-axis accelerometer
- Transitions (dynamics): [time elapse update]
 - $S_{t+1} = f(S_t, a_t) + W_t$

$$\dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{ heta}, \dot{\psi})$$

f: encodes helicopter dynamics, w: noise

Helicopter MDP

• State:
$$s=(x,y,z,\phi, heta,\psi,\dot{x})$$

- Actions (control inputs):
 - **a**_{lon} : Main rotor longitudinal cyclic pitch control (affects pitch rate)
 - a_{lat}: Main rotor latitudinal cyclic pitch control (affects roll rate)
 - a_{coll}: Main rotor collective pitch (affects main rotor thrust)
 - a_{rud}: Tail rotor collective pitch (affects tail rotor thrust)

Transitions (dynamics):

• $S_{t+1} = f(S_t, a_t) + W_t$

[f encodes helicopter dynamics] [w is a probabilistic noise model]

Can we solve the MDP yet?

 $\dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi})$

Problem: What's the Reward?

Reward for hovering:

R(s) = -

$$-\alpha_x (x - x^*)^2$$

$$-\alpha_y (y - y^*)^2$$

$$-\alpha_z (z - z^*)^2$$

$$-\alpha_{\dot{x}} \dot{x}^2$$

$$-\alpha_{\dot{x}} \dot{x}^2$$

$$-\alpha_{\dot{z}} \dot{z}^2$$

Problem: What's the Reward?

- Rewards for "Flip"?
 - Problem: what's the target trajectory?
 - Just write it down by hand?
 - Penalize for deviation from trajectory

Flips (?)

Helicopter Apprenticeship?

Reinforcement learning basics:

Policy: $\pi(s, a) \rightarrow [0, 1]$

What if we have an MDP/R?

distribution

discount rate start state reward function

Value function: $V^{\pi}(s_0) = \sum_{t=1}^{\infty} \gamma^t R(s_t)$ t=0

I. Collect user demonstration and assume it is sampled from

2. Explain expert demos by finding R^* such that: $E[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^E]$ $E_{s_0 \sim D}[V^{\pi^E}(s_0)] \geq E_{s_0 \sim D}[V^{\pi}(s_0)]$

How can search be made tractable?

$$(s_0,a_0),(s_1,a_1),\ldots,(s_n,a_n)$$

m the expert's policy, π^E

$$\geq E\left[\sum_{t=0}^{\infty} \gamma^{t} R^{*}(s_{t}) | \pi\right] \quad \forall \pi$$
$$\geq E_{s_{0} \sim D}\left[V^{\pi}(s_{0})\right] \quad \forall \pi$$

Define R^* as a linear combination of features: $R^*(s) = w^T \phi(s)$, where $\phi: S \to \mathbb{R}^n$

Then,

 $E\left[\sum_{t=0}^{\infty} \gamma^{t} R^{*}(s_{t}) | \pi\right] = E$

= u

= u

Thus, the expected value of a policy can be expressed as a weighted sum of the expected features $\mu(\pi)$

$$E\left[\sum_{t=0}^{\infty} \gamma^{t} w^{T} \phi(s_{t}) | \pi\right]$$
$$w^{T} E\left[\sum_{t=0}^{\infty} \gamma^{t} \phi(s_{t}) | \pi\right]$$
$$w^{T} \mu(\pi)$$

Originally - Explain expert $E[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^E]$

Use expected features: $E[\sum_{t=0}^{\infty}\gamma^t R^*]$

Restated - find w^* such that: $w^*\mu(\pi^E) \ge$

Originally - Explain expert demos by finding R^* such that:

 $E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^E\right] \geq E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi\right] \quad \forall \pi$

$E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi\right] = w^T \mu(\pi)$

 $w^*\mu(\pi^E) \geq w^*\mu(\pi) \quad \forall \pi$

I. Initialize π_0 to any policy

Iterate for $i = 1, 2, \ldots$

examined policies $\pi_{0...i-1}$:

3. Use RL to calc. optimal policy π_i associated with w^*

4. Stop if $\epsilon \leq$ threshold

Goal: Find w^* such that: $w^*\mu(\pi^E) \geq w^*\mu(\pi) \ \forall \pi$

2. Find w^* s.t. expert maximally outperforms all previously

 $\max_{\epsilon, w^*: \|w^*\|_2 \le 1} \epsilon \quad \text{s.t.} \quad w^* \mu(\pi^E) \ge w^* \mu(\pi_j) + \epsilon$

I. Initialize π_0 to any policy

Iterate for $i = 1, 2, \ldots$

examined policies $\pi_{0...i-1}$:

3. Use RL to calc. optimal policy π_i associated with w^*

4. Stop if $\epsilon \leq$ threshold

Goal: Find w^* such that: $w^*\mu(\pi^E) \geq w^*\mu(\pi) \ \forall \pi$

2. Find w^* s.t. expert maximally outperforms all previously $\max_{\epsilon, w^*: \|w^*\|_2 \le 1} \epsilon \quad \text{s.t.} \quad w^* \mu(\pi^E) \ge w^* \mu(\pi_j) + \epsilon$

[Abbeel and Ng 2004]

SVM

solver

- Low-level control problem: moving a foot into a new location \rightarrow search with successor function ~ moving the motors
- High-level control problem: where should we place the feet?
 - Reward function R(x) = w . f(s) [25 features]

Quadruped

Experimental setup

Demonstrate path across the "training terrain"

- Run apprenticeship to learn the reward function
- Receive "testing terrain"---height map.

crossing the testing terrain.

Find the optimal policy with respect to the *learned reward function* for

[Kolter, Abbeel & Ng, 2008]

Without learning

With learned reward function

Problems with standard inverse reinforcement learning

Policy learning in inner loop

Cannot outperform demonstrator

T-REX: Trajectory-ranked Reward Extrapolation

- Fully supervised no policy learning
- Auto-generated rankings:

D.S. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations. International Conference on Machine Learning (ICML), June 2019.

$$\mathbf{P}(\hat{J}_{\theta}(\tau_i) < \hat{J}_{\theta}(\tau_j)) \approx \frac{\exp\sum_{s \in \tau_j} \hat{r}_{\theta}(s)}{\exp\sum_{s \in \tau_i} \hat{r}_{\theta}(s) + \exp\sum_{s \in \tau_j} \hat{r}_{\theta}(s)}$$

$$\mathcal{L}(\theta) = \mathbf{E}_{\tau_i, \tau_j \sim \Pi} \Big[\xi \Big(\mathbf{P} \big(\hat{J}_{\theta}(\tau_i) < \hat{J}_{\theta}(\tau_j) \big), \tau_i \prec \tau_j \Big) \Big]$$

• Works on high-dim (e.g. Atari) with ~ 10 demos

D. Brown, W. Goo, and S. Niekum. Ranking-Based Reward Extrapolation without Rankings Conference on Robot Learning (CoRL), October 2019.

Ranked demonstrations: HalfCheetah

12.52

44.98

88.97

Best demo (88.97)

Results: HalfCheetah

T-REX (143.40)

Results: Atari

Best demo (600)

T-REX (1495)

Frame stacks: best vs. worst reward

Unranked Demonstrations

D. Brown, W. Goo, and S. Niekum. Ranking-Based Reward Extrapolation without Rankings Conference on Robot Learning (CoRL), October 2019.

"Ranked" Trajectories

Multimodal data sources: Human Gaze

Collecting gaze data during demonstrations

Tobii 2 Glasses

Image-based gaze tracking

A. Saran, S. Majumdar, E.S. Short, A.L. Thomaz, and S. Niekum. <u>Human Gaze Following for Human-Robot Interaction</u>. International Conference on Intelligent Robots and Systems (IROS), October 2018.

Human gaze during ambiguous task demonstrations

A. Saran, E.S. Short, A.L. Thomaz, and S. Niekum. Understanding Teacher Gaze Patterns for Robot Learning. Conference on Robot Learning (CoRL), October 2019.

Gaze fixations during kinesthetic demonstration

CGL: Coverage-based Gaze Loss

(a) Input image (b) Human

A. Saran, R. Zhang, E.S. Short, and S. Niekum. <u>Efficiently Guiding Imitation Learning Algorithms with Human Gaze</u>. International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2021.

(c) T-REX (d) T-REX+CGL

Multimodal data sources: Facial Reactions

Implicit human feedback:

- Occurs naturally

• Is not necessarily intended to influence behavior • Can be used with no additional burden on user

EMPATHIC: Learning from implicit feedback — training

Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox. <u>The EMPATHIC Framework for Task Learning from Implicit Human Feedback</u>. Conference on Robot Learning (CoRL), November 2020.

EMPATHIC: Learning from implicit feedback — deployment

Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox. <u>The EMPATHIC Framework for Task Learning from Implicit Human Feedback</u>. Conference on Robot Learning (CoRL), November 2020.

Even more multimodal data sources

Auxiliary video alignment

W. Goo and S. Niekum. One Shot Learning of Multi-Step Tasks from Observation via Activity Localization in Auxiliary Video International Conference on Robotics and Automation, May 2019. P. Goyal, S. Niekum, and R. Mooney. PixL2R: Guiding Reinforcement Learning Using Natural Language by Mapping Pixels to Rewards. Conference on Robot Learning (CoRL), November 2020.

Natural language

Audio and prosody

A. Saran and S. Niekum Analyzing Audio Patterns During Demonstration In Submission.

Demonstration

High-level task modeling

Unsegmented demonstrations of multi-step tasks

Finite-state task representation

Why?

- Superior generalization of skills
- Handle contingencies
- Adaptively sequence skills

Questions

- How many skills?
- Parameters of skills / controllers?
- How to sequence intelligently?

Segmenting demonstrations

Standard Hidden Markov Model

Motion categories

Observations

Autoregressive Hidden Markov Model

Segmenting demonstrations

Motion categories

Observations

Autoregressive Hidden Markov Model

Segmenting demonstrations

Motion categories

Observations

Autoregressive Hidden Markov Model

Segmenting demonstrations

Beta Process Autoregressive Hidden Markov Model (Fox et al. 2011)

Segmenting demonstrations

Learning a task plan: Finite state automata

Learning a task plan: Finite state automata

Interactive corrections

Replay with corrections: missed grasp

Replay with corrections: too far away

Replay with corrections: full run

