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Review: Linear Classifiers
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Some (Simplified) Biology

▪ Very loose inspiration: human neurons



Linear Classifiers

▪ Inputs are feature values 

▪ Each feature has a weight 

▪ Sum is the activation 

▪ If the activation is: 
▪ Positive, output +1 
▪ Negative, output -1
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Non-Linearity



Non-Linear Separators

▪ Data that is linearly separable works out great for linear decision rules: 

▪ But what are we going to do if the dataset is just too hard?  

▪ How about… mapping data to a higher-dimensional space:
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This and next slide adapted from Ray Mooney, UT



Non-Linear Separators

▪ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ:  x → φ(x)



Computer Vision



Object Detection



Manual Feature Design



Features and Generalization

[Dalal and Triggs, 2005]



Features and Generalization

Image HoG



Manual Feature Design Deep Learning

▪ Manual feature design requires: 

▪ Domain-specific expertise 

▪ Domain-specific effort 

▪ What if we could learn the features, too? 

▪ Deep Learning



Perceptron

Σ
f1

f2

f3

w1

w2

w3

>0?



Two-Layer Perceptron Network
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N-Layer Perceptron Network
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Performance

graph credit Matt 
Zeiler, Clarifai
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AlexNet
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Speech Recognition

graph credit Matt Zeiler, Clarifai



N-Layer Perceptron Network
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Local Search

▪ Simple, general idea: 
▪ Start wherever 
▪ Repeat: move to the best neighboring state 
▪ If no neighbors better than current, quit 
▪ Neighbors = small perturbations of w 

▪ Properties 
▪ Plateaus and local optima 

How to escape plateaus and find a good local optimum? 
How to deal with very large parameter vectors?  E.g., 



Perceptron
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▪ Objective: Classification Accuracy  

▪ Issue: many plateaus  how to measure incremental progress toward a correct label?



Soft-Max

▪ Score for y=1:    Score for y=-1:  

▪ Probability of label: 

▪ Objective:  

▪ Log: 



Two-Layer Neural Network
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N-Layer Neural Network
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Our Status

▪ Our objective      

▪ Changes smoothly with changes in w 

▪ Doesn’t suffer from the same plateaus as the perceptron network 

▪ Challenge: how to find a good w ? 

▪ Equivalently:



1-d optimization

▪ Could evaluate    and 

▪ Then step in best direction 

▪ Or, evaluate derivative: 

▪ Tells which direction to step in



2-D Optimization

Source: Thomas Jungblut’s Blog



▪ Idea:  

▪ Start somewhere 
▪ Repeat:  Take a step in the steepest descent direction

Steepest Descent

Figure source: Mathworks



What is the Steepest Descent Direction?



What is the Steepest Descent Direction?

▪ Steepest Direction = direction of the gradient



Optimization Procedure 1: Gradient Descent

▪ Init:  

▪ For i = 1, 2, …

▪     : learning rate --- tweaking parameter that needs to be 
chosen carefully 

▪ How? Try multiple choices 

▪ Crude rule of thumb: update changes       about 0.1 – 1 % 



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201638

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with Gradient Descent?
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with Gradient Descent? very slow 
progress along flat direction, jitter along steep one



Optimization Procedure 2: Momentum

▪ Init:  

▪ For i = 1, 2, …

▪ Gradient Descent 

▪ Init:  

▪ For i = 1, 2, … 

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient). 
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

▪ Momentum 
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with Momentum?



How do we actually compute gradient w.r.t. weights?

Backpropagation!
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Backpropagation Learning

15-486/782: Artificial Neural Networks
David S. Touretzky

Fall 2006



2

LMS / Widrow-Hoff Rule

Works fine for a single layer of trainable weights.

What about multi-layer networks?

S

wi

xi

y

wi = −y−dxi
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With Linear Units, Multiple Layers 
Don't Add Anything





U : 2×3  matrix

V : 3×4  matrix

x

Linear operators are closed under composition.
Equivalent to a single layer of weights W=U×V

But with non-linear units, extra layers add
computational power.

y

y = U×V x = U×V 
2×4

x
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What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of
trainable 
weights

separating hyperplane
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2 layers of
trainable 
weights

convex polygon region
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3 layers of
trainable 
weights

composition of polygons:
convex regionsnon
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How Do We Train A
Multi-Layer Network?

Error = d-yy

Error = ???

Can't use perceptron training algorithm because
we don't know the 'correct' outputs for hidden units.
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How Do We Train A
Multi-Layer Network?

y

Define sum-squared error:

E =
1

2
∑
p

dp−yp2

Use gradient descent error minimization:

wij = −
∂E

∂wij

Works if the nonlinear transfer function is differentiable.
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Deriving the LMS or “Delta” Rule
As Gradient Descent Learning

y = ∑
i

wi xi

E = 1

2
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dp−y
p2 dE

d y
= y−d

∂E

∂wi

=
dE

d y
⋅
∂ y

∂wi

= y−dxi

wi = −
∂E

∂wi

= −y−dxixi

wi

y

How do we extend this to two layers?
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Switch to Smooth Nonlinear Units

net j = ∑
i

wij yi

y j = gnet j

Common choices for g:

g x =
1

1e
−x

g 'x = gx⋅1−gx

g x=tanhx

g 'x=1 /cosh
2x

g must be differentiable
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Gradient Descent with Nonlinear Units

               y=g net=tanh ∑i wi xi
dE

dy
=y−d,      

dy

dnet
=1/cosh

2net ,      
∂net

∂wi

=xi

∂E

∂wi

=
dE

dy
⋅
dy

dnet
⋅
∂net

∂wi

= y−d/cosh
2

∑i wi xi⋅xi

tanh(Sw
i
x

i
)xi

wi
y
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Now We Can Use The Chain Rule
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Weight Updates

∂E

∂wjk

=
∂E

∂netk
⋅
∂netk
∂wjk

= k⋅y j

∂E

∂wij

=
∂E

∂net j
⋅
∂net j
∂wij

=  j⋅yi

wjk = −⋅
∂E

∂wjk

wij = −⋅
∂E

∂wij
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Deep learning is everywhere

[Krizhevsky 2012]

Classification Retrieval
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[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]

Deep learning is everywhere
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NVIDIA Tegra X1

self-driving cars

Deep learning is everywhere
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[Toshev, Szegedy 2014]

[Mnih 2013]

Deep learning is everywhere
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[Ciresan et al. 2013] [Sermanet et al. 2011] 
[Ciresan et al.]

Deep learning is everywhere



[Vinyals et al., 2015]

Image 
Captioning


