CS 383: Artificial Intelligence Perceptrons

Prof. Scott Niekum — UMass Amherst
[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Error-Driven Classification

Errors, and What to Do

- Examples of errors

```
Dear GlobalSCAPE Customer,
GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .
```

```
. . . To receive your $30 Amazon.com promotional certificate,
click through to
    http://www.amazon.com/apparel
and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click . . .
```


What to Do About Errors

- Problem: there's still spam in your inbox
- Need more features - words aren't enough!
- Have you emailed the sender before?
- Have 1M other people just gotten the same email?
- Is the sending information consistent?
- Is the email in ALL CAPS?
- Do inline URLs point where they say they point?
- Does the email address you by (your) name?
- Naïve Bayes models can incorporate a variety of features, but tend to do best when homogeneous (e.g. all features are word occurrences) and/or roughly independent

Linear Classifiers

Feature Vectors

$$
\begin{array}{lll}
x & f(x) & y
\end{array}
$$

Some (Simplified) Biology

- Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$
\operatorname{activation}_{w}(x)=\sum_{i} w_{i} \cdot f_{i}(x)=w \cdot f(x)
$$

- If the activation is:
- Positive, output +1
- Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

- In the space of feature vectors
- Examples are points
- Any weight vector is a hyperplane
- One side corresponds to $Y=+1$

- Other corresponds to $Y=-1$

$$
w
$$

BIAS	$:$	-3
free	$:$	4
money	$:$	2
\cdots		

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
- Classify with current weights

- If correct (i.e., $\mathrm{y}=\mathrm{y}^{*}$), no change!

- If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
- Classify with current weights

$$
y= \begin{cases}+1 & \text { if } w \cdot f(x) \geq 0 \\ -1 & \text { if } w \cdot f(x)<0\end{cases}
$$

- If correct (i.e., $\mathrm{y}=\mathrm{y}^{*}$), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y^{*} is -1 .

$$
w=w+y^{*} \cdot f
$$

Examples: Perceptron

- Separable Case

Multiclass Decision Rule

- If we have multiple classes:
- A weight vector for each class:

$$
w_{y}
$$

- Score (activation) of a class y:

$$
w_{y} \cdot f(x)
$$

- Prediction highest score wins

$$
y=\arg \max _{y} w_{y} \cdot f(x)
$$

Learning: Multiclass Perceptron

- Start with all weights $=0$
- Pick up training examples one by one
- Predict with current weights

$$
y=\arg \max _{y} w_{y} \cdot f(x)
$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$
\begin{aligned}
& w_{y}=w_{y}-f(x) \\
& w_{y^{*}}=w_{y^{*}}+f(x)
\end{aligned}
$$

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$
\text { mistakes }<\frac{k}{\delta^{2}}
$$

Separable

Non-Separable

Examples: Perceptron

- Non-Separable Case

Improving the Perceptron

Problems with the Perceptron

- Noise: if the data isn’t separable, weights will thrash
- Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
- Overtraining is a kind of overfitting

iterations

Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

$$
\begin{gathered}
\min _{w} \frac{1}{2} \sum_{y}\left\|w_{y}-w_{y}^{\prime}\right\|^{2} \\
w_{y^{*}} \cdot f(x) \geq w_{y} \cdot f(x)+1
\end{gathered}
$$

- The +1 helps to generalize
* Margin Infused Relaxed Algorithm

Guessed y instead of y^{*} on example x with features $f(x)$

$$
\begin{aligned}
w_{y} & =w_{y}^{\prime}-\tau f(x) \\
w_{y^{*}} & =w_{y^{*}}^{\prime}+\tau f(x)
\end{aligned}
$$

Minimum Correcting Update

$$
\begin{gathered}
\min _{w} \frac{1}{2} \sum_{y}\left\|w_{y}-w_{y}^{\prime}\right\|^{2} \\
w_{y^{*}} \cdot f \geq w_{y} \cdot f+1 \\
\checkmark \\
\min _{\tau}\|\tau f\|^{2} \\
w_{y^{*}} \cdot f \geq w_{y} \cdot f+1
\end{gathered}
$$

$$
\begin{gathered}
\left(w_{y^{*}}^{\prime}+\tau f\right) \cdot f=\left(w_{y}^{\prime}-\tau f\right) \cdot f+1 \\
\tau=\frac{\left(w_{y}^{\prime}-w_{y^{*}}^{\prime}\right) \cdot f+1}{2 f \cdot f}
\end{gathered}
$$

$$
\begin{gathered}
w_{y}=w_{y}^{\prime}-\tau f(x) \\
w_{y^{*}}=w_{y^{*}}^{\prime}+\tau f(x)
\end{gathered}
$$

\min not $\boldsymbol{\tau}=0$, or would not have made an error, so min will be where equality holds

Maximum Step Size

- In practice, it's also bad to make updates that are too large
- Example may be labeled incorrectly
- You may not have enough features
- Solution: cap the maximum possible value of τ with some constant C

$$
\tau^{*}=\min \left(\frac{\left(w_{y}^{\prime}-w_{y^{*}}^{\prime}\right) \cdot f+1}{2 f \cdot f}, C\right)
$$

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron

- Usually better, especially on noisy data

Linear Separators

- Which of these linear separators is optimal?

Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Only support vectors matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with max margin
- Basically, SVMs are MIRA where you optimize over all examples at once

Classification: Comparison

- Naïve Bayes
- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)
- Perceptrons / MIRA:
- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate

Apprenticeship

Pacman Apprenticeship!

- Examples are states s

- Candidates are pairs (s, a)
- "Correct" actions: those taken by expert

- Features defined over (s, a) pairs: f(s,a)
- Score of a q-state (s, a) given by:

$$
w \cdot f(s, a)
$$

$$
\begin{aligned}
& \forall a \neq a^{*} \\
& w \cdot f\left(a^{*}\right)>w \cdot f(a)
\end{aligned}
$$

- How is this VERY different from reinforcement learning?

Video of Pacman Apprentice

