CS 383: Artificial Intelligence

Perceptrons

Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Error-Driven Classification
Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* - the regular list price is $499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate, click through to http://www.amazon.com/apparel and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .
What to Do About Errors

- Problem: there’s still spam in your inbox

- Need more features – words aren’t enough!
 - Have you emailed the sender before?
 - Have 1M other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Naïve Bayes models can incorporate a variety of features, but tend to do best when homogeneous (e.g. all features are word occurrences) and/or roughly independent
Linear Classifiers
Feature Vectors

\[x \rightarrow f(x) \rightarrow y \]

Hello,
Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

SPAM or

&

“2”
Some (Simplified) Biology

- Very loose inspiration: human neurons
Linear Classifiers

- Inputs are **feature values**
- Each feature has a **weight**
- Sum is the **activation**

\[
\text{activation}_w(x) = \sum_{i} w_i \cdot f_i(x) = w \cdot f(x)
\]

- If the activation is:
 - Positive, output +1
 - Negative, output -1
Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

\[w \cdot f \] positive means the positive class
Decision Rules
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to $Y=+1$
 - Other corresponds to $Y=-1$

$$w$$

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS</td>
<td>-3</td>
</tr>
<tr>
<td>free</td>
<td>4</td>
</tr>
<tr>
<td>money</td>
<td>2</td>
</tr>
</tbody>
</table>

...
Weight Updates
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 - If correct (i.e., $y = y^*$), no change!
 - If wrong: adjust the weight vector
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 \[y = \begin{cases}
 +1 & \text{if } w \cdot f(x) \geq 0 \\
 -1 & \text{if } w \cdot f(x) < 0
 \end{cases} \]
 - If correct (i.e., \(y = y^* \)), no change!
 - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if \(y^* \) is -1.
 \[w = w + y^* \cdot f \]
Examples: Perceptron

- Separable Case
If we have multiple classes:

- A weight vector for each class:

\[w_y \]

- Score (activation) of a class \(y \):

\[w_y \cdot f(x) \]

- Prediction highest score wins

\[y = \arg \max_y w_y \cdot f(x) \]
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights
 \[y = \arg \max_y w_y \cdot f(x) \]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer
 \[w_y = w_y - f(x) \]
 \[w_{y^*} = w_{y^*} + f(x) \]
Properties of Perceptrons

- **Separability**: true if some parameters get the training set perfectly correct

- **Convergence**: if the training is separable, perceptron will eventually converge (binary case)

- **Mistake Bound**: the maximum number of mistakes (binary case) related to the *margin* or degree of separability

\[\text{mistakes} < \frac{k}{\delta^2} \]
Examples: Perceptron

- Non-Separable Case
Improving the Perceptron
Problems with the Perceptron

- Noise: if the data isn’t separable, weights will thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- Mediocre generalization: finds a “barely” separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting
Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

$$\min_w \frac{1}{2} \sum_y ||w_y - w'_y||^2$$

$$w_{y^*} \cdot f(x) \geq w_y \cdot f(x) + 1$$

- The +1 helps to generalize

* Margin Infused Relaxed Algorithm

\[w_y = w'_y - \tau f(x) \]
\[w_{y^*} = w'_{y^*} + \tau f(x) \]
Minimum Correcting Update

\[\min_{w} \frac{1}{2} \sum_{y} ||w_{y} - w'_{y}||^2 \]

\[w_{y}^* \cdot f \geq w_{y} \cdot f + 1 \]

\[\min_{\tau} ||\tau f||^2 \]

\[w_{y}^* \cdot f \geq w_{y} \cdot f + 1 \]

\[(w'_{y} + \tau f) \cdot f = (w'_{y} - \tau f) \cdot f + 1 \]

\[\tau = \frac{(w'_{y} - w'_{y}^*) \cdot f + 1}{2f \cdot f} \]

\[w_{y} = w'_{y} - \tau f(x) \]

\[w_{y}^* = w'_{y}^* + \tau f(x) \]

\[\tau = 0 \]

\[\min \text{ not } \tau = 0, \text{ or would not have made an error, so min will be where equality holds} \]
In practice, it’s also bad to make updates that are too large
- Example may be labeled incorrectly
- You may not have enough features
- Solution: cap the maximum possible value of τ with some constant C

$$\tau^* = \min \left(\frac{(w'_y - w'_{y^*}) \cdot f + 1}{2f \cdot f}, C \right)$$

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron
- Usually better, especially on noisy data
Which of these linear separators is optimal?
Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Only support vectors matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with max margin
- Basically, SVMs are MIRA where you optimize over all examples at once
Classification: Comparison

- **Naïve Bayes**
 - Builds a model training data
 - Gives prediction probabilities
 - Strong assumptions about feature independence
 - One pass through data (counting)

- **Perceptrons / MIRA:**
 - Makes less assumptions about data
 - Mistake-driven learning
 - Multiple passes through data (prediction)
 - Often more accurate
Pacman Apprenticeship!

- Examples are states \(s \)
- Candidates are pairs \((s,a)\)
- "Correct" actions: those taken by expert
- Features defined over \((s,a)\) pairs: \(f(s,a)\)
- Score of a q-state \((s,a)\) given by:
 \[
 w \cdot f(s, a)
 \]
- How is this VERY different from reinforcement learning?

\[\forall a \neq a^*, \quad w \cdot f(a^*) > w \cdot f(a) \]
Video of Pacman Apprentice