CS 383: Artificial Intelligence

Perceptrons

Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Error-Driven Classification

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors

- Problem: there's still spam in your inbox
- Need more features words aren't enough!
 - Have you emailed the sender before?
 - Have 1M other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Naïve Bayes models can incorporate a variety of features, but tend to do best when homogeneous (e.g. all features are word occurrences) and/or roughly independent

Linear Classifiers

Feature Vectors

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS	:	-3
free	:	4
money	:	2
• • •		

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Examples: Perceptron

Separable Case

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

 w_y

Score (activation) of a class y:

 $w_y \cdot f(x)$

Prediction highest score wins

$$y = \arg \max_{y} w_{y} \cdot f(x)$$

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg \max_y w_y \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

mistakes
$$< \frac{k}{\delta^2}$$

Non-Separable

Examples: Perceptron

Non-Separable Case

Improving the Perceptron

Problems with the Perceptron

- Noise: if the data isn't separable, weights will thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

iterations

Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

$$\min_{w} \frac{1}{2} \sum_{y} ||w_y - w'_y||^2$$
$$w_{y^*} \cdot f(x) \ge w_y \cdot f(x) + 1$$

• The +1 helps to generalize

* Margin Infused Relaxed Algorithm

Guessed y instead of y^* on example x with features f(x)

$$w_y = w'_y - \tau f(x)$$
$$w_{y^*} = w'_{y^*} + \tau f(x)$$

Minimum Correcting Update

$$w_y = w'_y - \tau f(x)$$
$$w_{y^*} = w'_{y^*} + \tau f(x)$$

min not τ =0, or would not have made an error, so min will be where equality holds

Maximum Step Size

- In practice, it's also bad to make updates that are too large
 - Example may be labeled incorrectly
 - You may not have enough features
 - Solution: cap the maximum possible value of $\boldsymbol{\tau}$ with some constant C

$$\tau^* = \min\left(\frac{(w'_y - w'_{y^*}) \cdot f + 1}{2f \cdot f}, C\right)$$

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron
- Usually better, especially on noisy data

Linear Separators

Which of these linear separators is optimal?

Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Only support vectors matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with max margin
- Basically, SVMs are MIRA where you optimize over all examples at once

$$\min_{w} \frac{1}{2} ||w - w'||^2$$
$$w_{y^*} \cdot f(x_i) \ge w_y \cdot f(x_i) + 1$$

SVM

$$\min_{w} \frac{1}{2} ||w||^2$$

$$\forall i, y \ w_{y^*} \cdot f(x_i) \ge w_y \cdot f(x_i) + 1$$

Classification: Comparison

Naïve Bayes

- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)

Perceptrons / MIRA:

- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate

Apprenticeship

Pacman Apprenticeship!

Examples are states s

- Candidates are pairs (s,a)
- "Correct" actions: those taken by expert
- Features defined over (s,a) pairs: f(s,a)
- Score of a q-state (s,a) given by:

 $w \cdot f(s, a)$

How is this VERY different from reinforcement learning?

 $w \cdot f(a^*) > w \cdot f(a)$

Video of Pacman Apprentice

