CS 383: Artificial Intelligence

Hidden Markov Models

Prof. Scott Niekum — UMass Amherst

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

- Value of X at a given time is called the state

$$
\begin{aligned}
X_{1} & \rightarrow X_{2} \\
P\left(X_{1}\right) & P\left(X_{4} \mid X_{t-1}\right)
\end{aligned}
$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model

$$
\begin{array}{r}
X_{1} \rightarrow\left(X_{2}\right) \rightarrow\left(X_{4}\right) \\
P\left(X_{1}\right) \\
P\left(X_{t} \mid X_{t-1}\right)
\end{array}
$$

- Joint distribution:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

- More generally:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{T}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
& =P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

Implied Conditional Independencies

- We assumed: $\quad X_{3} \Perp X_{1} \mid X_{2} \quad$ and $\quad X_{4} \Perp X_{1}, X_{2} \mid X_{3}$
- Do we also have $\quad X_{1} \Perp X_{3}, X_{4} \mid X_{2}$
- Yes! D-Separation
- Or, Proof: $\quad P\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right)=\frac{P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)}{P\left(X_{2}, X_{3}, X_{4}\right)}$

$$
\begin{aligned}
& =\frac{P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)}{\sum_{x_{1}} P\left(x_{1}\right) P\left(X_{2} \mid x_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)} \\
& =\frac{P\left(X_{1}, X_{2}\right)}{P\left(X_{2}\right)} \\
& =P\left(X_{1} \mid X_{2}\right)
\end{aligned}
$$

Conditional Independence

- Basic conditional independence:
- Past and future independent given the present
- Each time step only depends on the previous
- This is the (first order) Markov property (remember MDPs?)
- Note that the chain is just a (growable) BN
- We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Example Markov Chain: Weather

- States: $\mathrm{X}=\{$ rain, sun $\}$
- Initial distribution: 1.0 sun

- CPT P($\left.X_{t} \mid X_{t-1}\right)$:

Two new ways of representing the same CPT

\mathbf{X}_{t-1}	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{\mathbf{t}-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Example Markov Chain: Weather

- Initial distribution: 0.6 sun / 0.4 rain

- What is the probability distribution after one step?

$$
\begin{array}{r}
P\left(X_{2}=\text { sun }\right)=\quad P\left(X_{2}=\operatorname{sun} \mid X_{1}=\operatorname{sun}\right) P\left(X_{1}=\text { sun }\right)+ \\
P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right) \\
=0.9 * 0.6+0.3^{*} 0.4=0.66
\end{array}
$$

Mini-Forward Algorithm

- Question: What's $\mathrm{P}(\mathrm{X})$ on some day t ?

$$
P\left(x_{1}\right)=\text { known }
$$

$$
\begin{aligned}
P\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
& =\sum_{x_{t-1}} P(x_{t} \underbrace{\left.\mid x_{t-1}\right) P\left(x_{t-1}\right)}_{\text {Forward simulation }} \text { Recursion }
\end{aligned}
$$

Example Run of Mini-Forward Algorithm

- From initial observation of sun

- From initial observation of rain

- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:

Stationary Distributions

- For most chains:
- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Example: Stationary Distributions

- Question: What's $\mathrm{P}(\mathrm{X})$ at time $\mathrm{t}=$ infinity?

Remember:

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Also: $P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$

$$
P_{\infty}(\text { sun })=P(\text { sun } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { sun } \mid \text { rain }) P_{\infty}(\text { rain })
$$

$$
P_{\infty}(\text { rain })=P(\text { rain } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { rain } \mid \text { rain }) P_{\infty}(\text { rain })
$$

$$
P_{\infty}(\text { sun })=0.9 P_{\infty}(\text { sun })+0.3 P_{\infty}(\text { rain })
$$

$$
P_{\infty}(\text { rain })=0.1 P_{\infty}(\text { sun })+0.7 P_{\infty}(\text { rain })
$$

$$
P_{\infty}(\text { sun })=3 P_{\infty}(\text { rain })
$$

$$
P_{\infty}(\text { rain })=1 / 3 P_{\infty}(\text { sun })
$$

Also: $P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$

$$
\square \quad \begin{aligned}
P_{\infty}(\text { sun }) & =3 / 4 \\
P_{\infty}(\text { rain }) & =1 / 4
\end{aligned}
$$

\mathbf{X}_{t-1}	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{\mathbf{t}-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
- Each web page is a state
- Initial distribution: uniform over pages
- Transitions:
- With prob. c, uniform jump to a random page (dotted lines, not all shown)
- With prob. 1-c, follow a random
outlink (solid lines)

- Stationary distribution
- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page
- Somewhat robust to link spam (Why?)
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)

Application of Stationary Distributions: Gibbs Sampling*

- Each joint instantiation over all hidden and query variables is a state: $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}=\mathrm{H} \cup \mathrm{Q}$
- Transitions:
- With probability $1 / n$ resample variable X_{j} according to

$$
P\left(X_{j} \mid x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}, e_{1}, \ldots, e_{m}\right)
$$

- Stationary distribution:
- Conditional distribution $P\left(X_{1}, X_{2}, \ldots, X_{n} \mid e_{1}, \ldots, e_{m}\right)$
- Means that when running Gibbs sampling long enough we get a sample from the desired distribution

- Requires some proof to show this is true!

Pacman - Sonar (no beliefs)

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Example: Weather HMM

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:

$$
P\left(X_{t} \mid X_{t-1}\right)
$$

- Emissions:

$$
P\left(E_{t} \mid X_{t}\right)
$$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Example: Ghostbusters HMM

- $\mathrm{P}\left(\mathrm{X}_{1}\right)=$ uniform
- $P\left(X \mid X^{\prime}\right)=$ usually move clockwise, but sometimes move in a random direction or stay in place
- $P\left(R_{i j} \mid X\right)=$ same sensor model as before: red means close, green means far away.

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$P\left(X_{1}\right)$		

$1 / 6$	$1 / 6$	$1 / 2$
0	$1 / 6$	0
0	0	0

$P\left(X \mid X^{\prime}=<1,2>\right)$

Ghostbusters - Circular Dynamics (HMM)

Joint Distribution of an HMM

- Joint distribution:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)$
- More generally:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$

Implied Conditional Independencies

- Many implied conditional independencies, e.g.,

$$
E_{1} \Perp X_{2}, E_{2}, X_{3}, E_{3} \mid X_{1}
$$

- To prove them
- Approach 1: follow similar (algebraic) approach to what we did for Markov models
- Approach 2: D-Separation

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (the belief state) over time
- We start with $B_{1}(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example: Robot Localization

Example from
Michael Pfeiffer

Prob

Sensor model: can read in which directions there is a wall, never more than 1
mistake
Motion model: may not execute action with small prob.

Example: Robot Localization

Prob

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Example: Robot Localization

Prob $\begin{array}{ll}\square 0 & \\ & \\ & \\ & \end{array}$

Example: Robot Localization

Prob

$t=3$

Example: Robot Localization

Prob

$t=4$

Example: Robot Localization

Prob

$t=5$
-

$$
P\left(X_{1} \mid e_{1}\right)
$$

$$
\begin{aligned}
P\left(x_{1} \mid e_{1}\right) & =P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
& \propto X_{1} P\left(x_{1}, e_{1}\right) \\
& =P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(X_{2}\right) \\
& P\left(x_{2}\right)=\sum_{x_{1}} P\left(x_{1}, x_{2}\right) \\
&=\sum_{x_{1}} P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)
\end{aligned}
$$

Passage of Time

- Assume we have current belief $P(X \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: i}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs gext "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

<0.01	<0.01	<0.01	<0.02	<0.01	<0.01
<0.01	<0.01	<0.01	<0.02	<0.01	<0.01
<0.01	<0.01	1.00	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
T					
$T=1$					

(Transition model: ghosts usually go clockwise)

Observation

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence):

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Or, compactly:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Putting it All Together: The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

We can normalize as we go if we want to have $P(x \mid e)$ at each time step, or just once at the end...

Online Belief Updates

- Every time step, we start with current $P(X \mid$ evidence $)$
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

- The forward algorithm does both at once (and doesn't normalize)

Pacman - Sonar (P4)

Video of Demo Pacman - Sonar (with beliefs)

