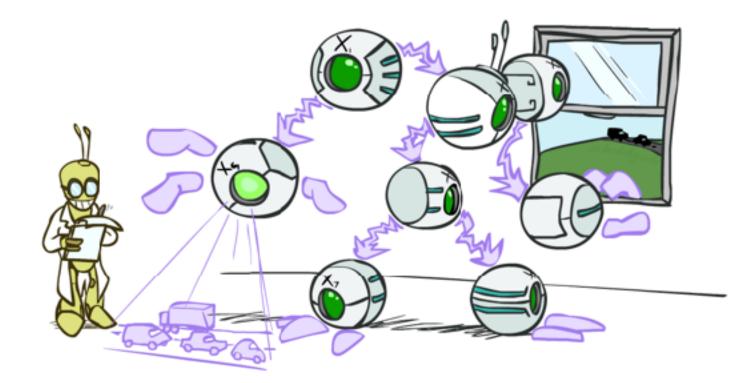
CS 383: Artificial Intelligence

Bayes Nets: Inference



Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

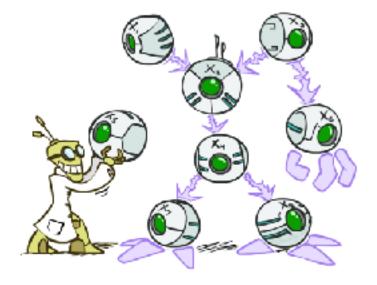
Bayes Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

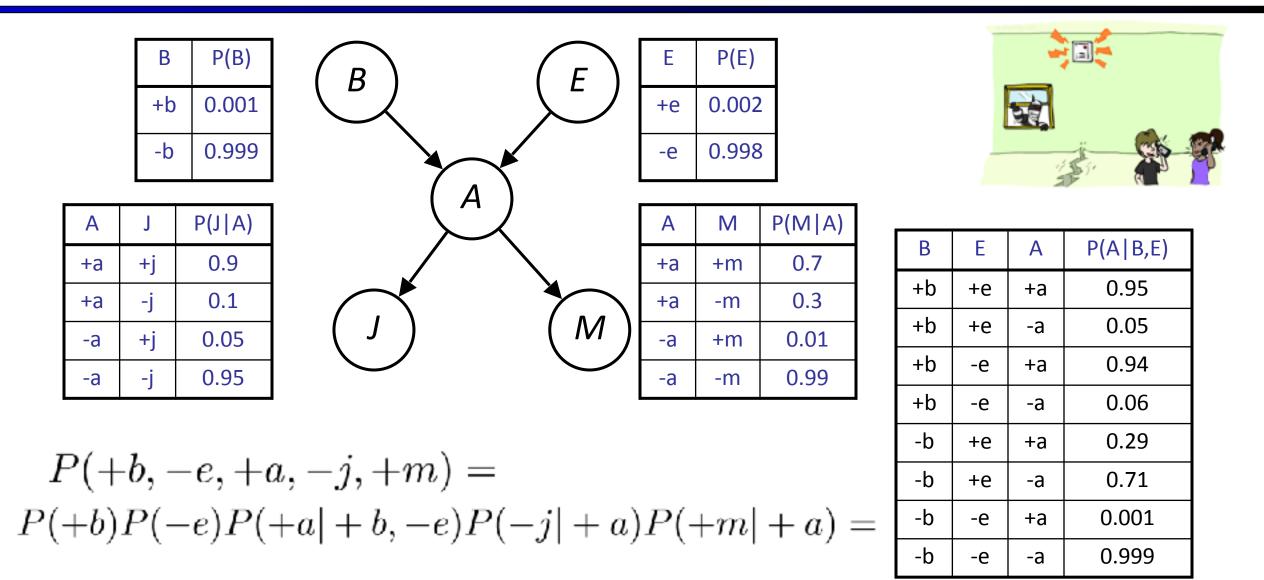
 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

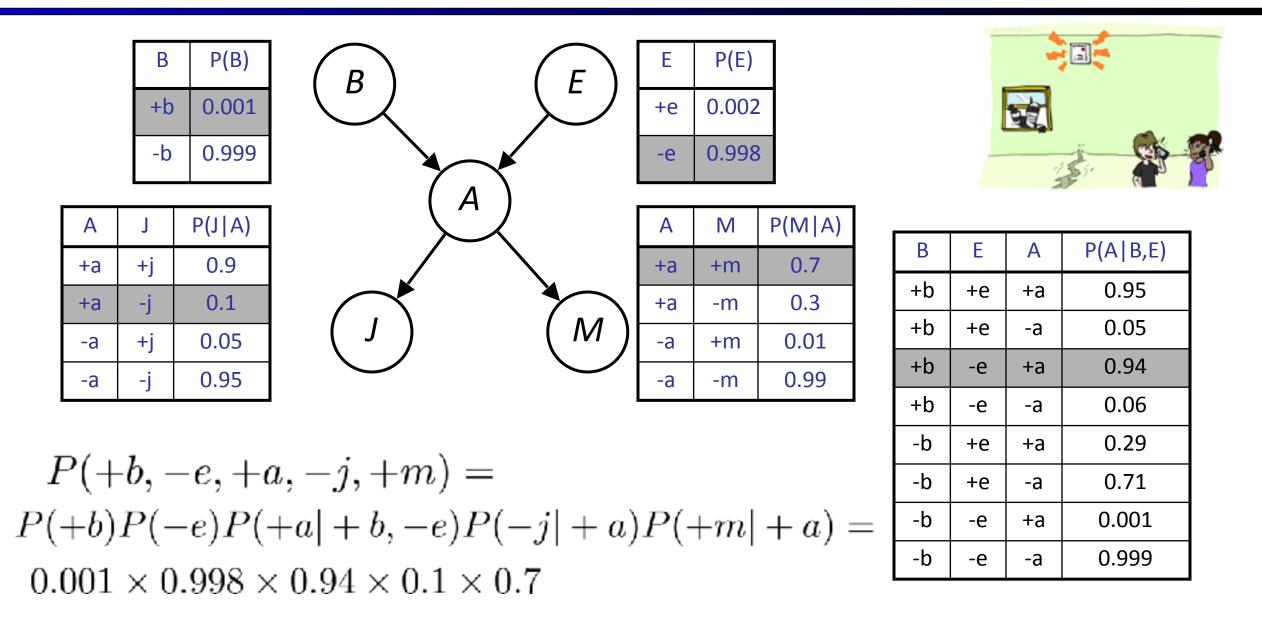
$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



Example: Alarm Network



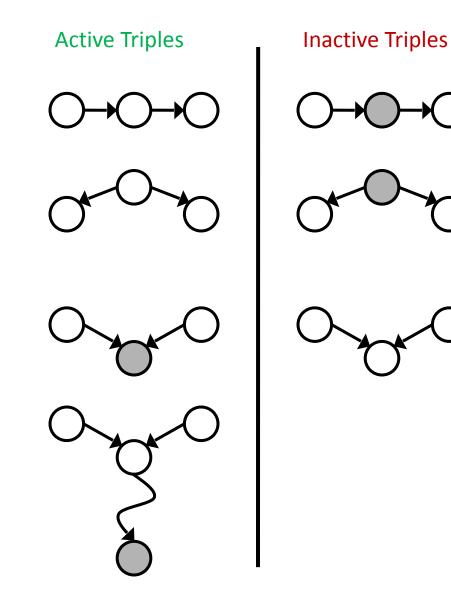
Example: Alarm Network



D-Separation

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!

- A path is active if each triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)
 - $A \rightarrow B \leftarrow C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment



Bayes Nets

Conditional Independences

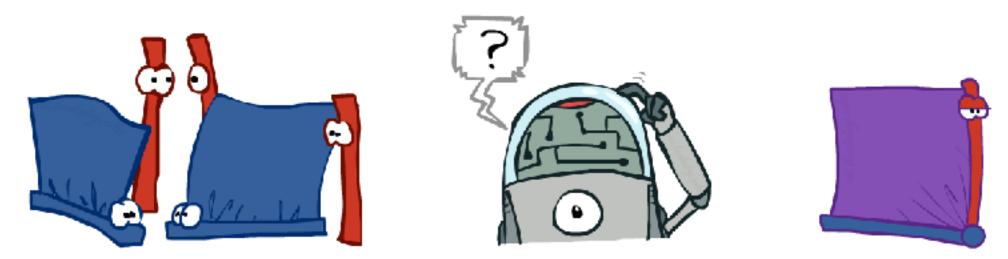
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes Nets from Data

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability

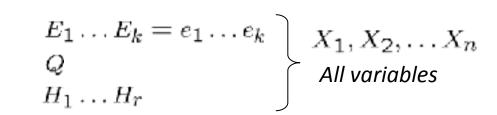
 $P(Q|E_1 = e_1, \dots E_k = e_k)$

• Most likely explanation: $\operatorname{argmax}_{q} P(Q = q | E_1 = e_1 \dots)$



Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
 - Step 1: Select the entries consistent with the evidence



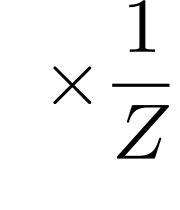
 Step 2: Sum out H to get joint of Query and evidence

We want:

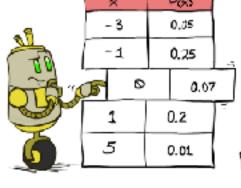
* Works fine with multiple query variables, too

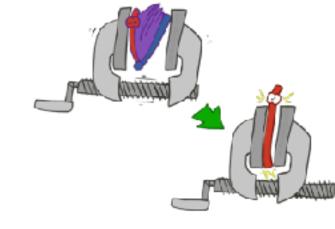
$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize



 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = rac{1}{Z} P(Q, e_1 \cdots e_k)$





 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$ $X_1 . X_2 X_r$

Inference by Enumeration in Bayes Net

В

Ε

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

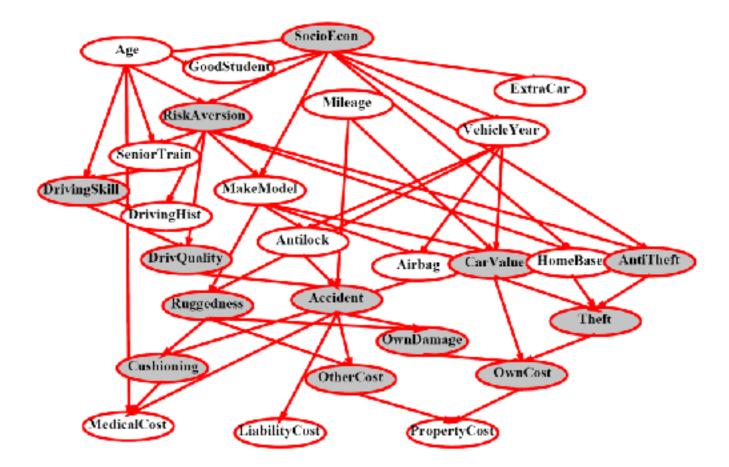
$$P(B \mid +j,+m) \propto P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$
M

=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)

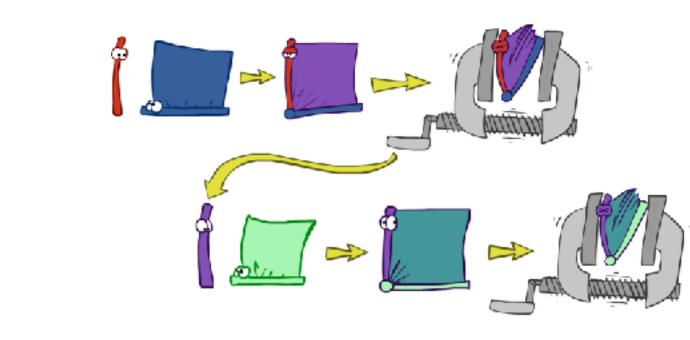
Inference by Enumeration?



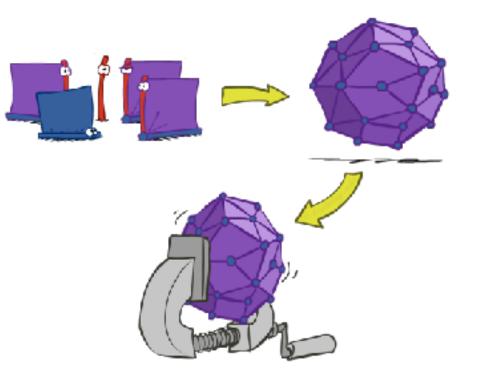
P(Antilock|observed variables) = ?

Inference by Enumeration vs. Variable Elimination

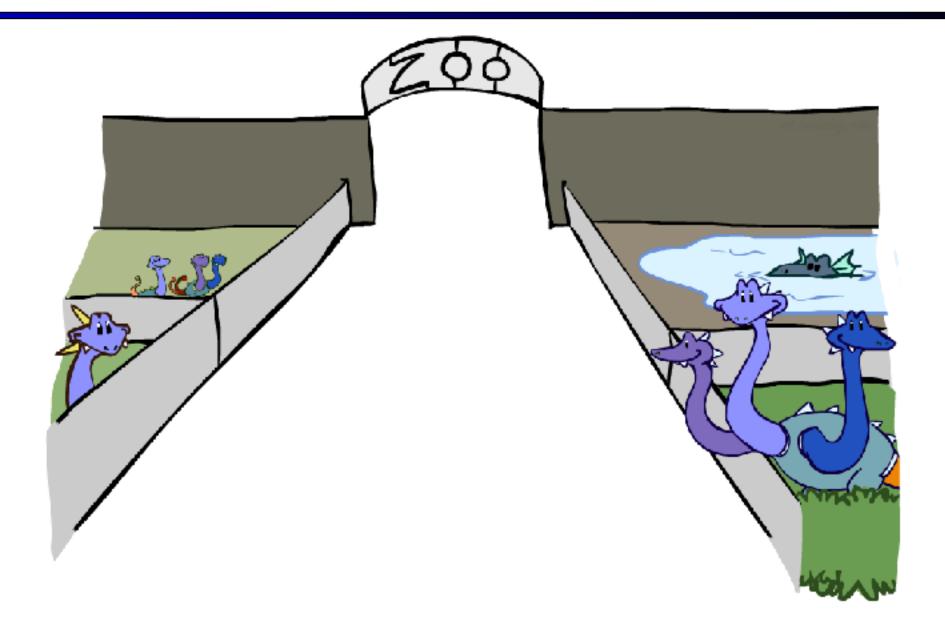
- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration



First we'll need some new notation: factors



Factor Zoo



Factor Zoo I

Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- Sums to 1

Selected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for fixed x, all y
- Sums to P(x)
- Number of capitals = dimensionality of the table

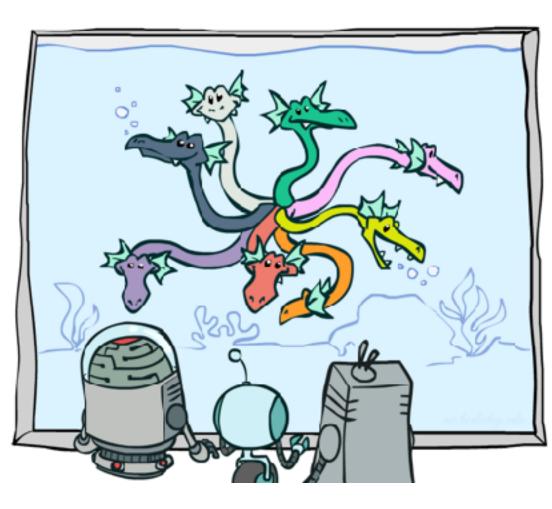
Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		
P(cold, W)				
Т	W	Р		
cold	sun	0.2		

rain

0.3

cold

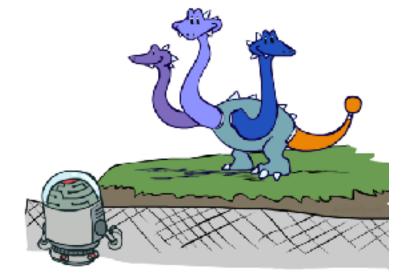
P(T,W)



Factor Zoo II

Single conditional: P(Y | x)

- Entries P(y | x) for fixed x, all y
- Sums to 1

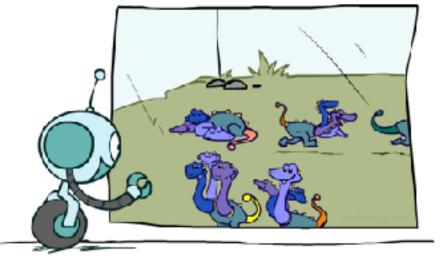


P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Family of conditionals: $P(Y \mid X)$

- Multiple conditionals
- Entries P(y | x) for all x, y
- Sums to |X|



P(W T)				
Т	W	Р		
hot	sun	0.8		
hot	rain	0.2		
cold	sun	0.4		
cold	rain	0.6		

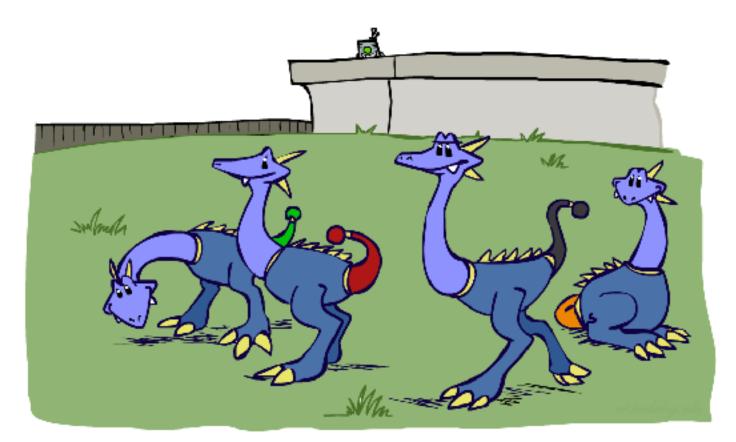
P(W|hot)P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

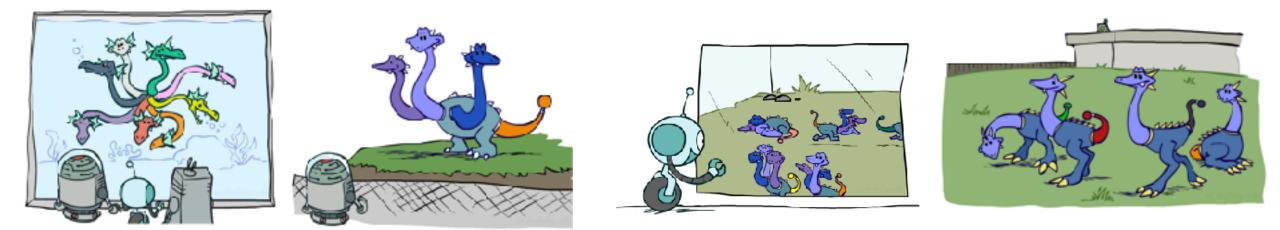
P(rain	T)

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	P(rain cold)



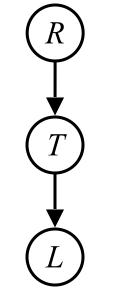
Factor Zoo Summary

- In general, when we write $P(Y_1 \dots Y_N | X_1 \dots X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 \dots y_N | x_1 \dots x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array



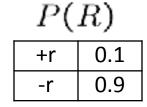
Example: Traffic Domain

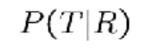
- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!



$$P(L) = ?$$

= $\sum_{r,t} P(r,t,L)$
= $\sum_{r,t} P(r)P(t|r)P(L|t)$



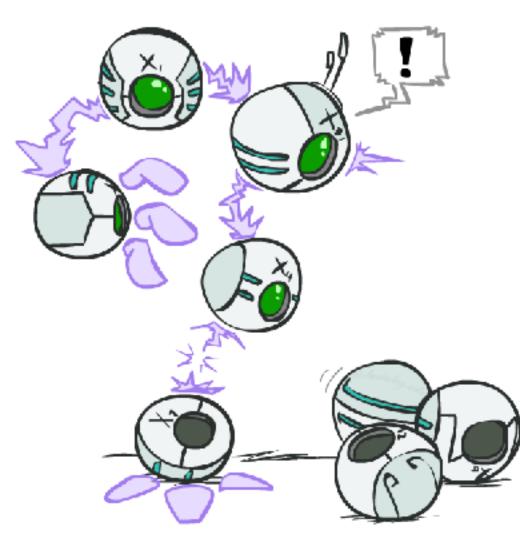


+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9



+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

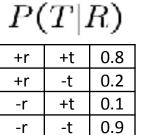
Variable Elimination (VE)



Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)					
+r	0.1				
-r 0.9					
· · · · · · · · · · · · · · · · · · ·					



P(L T)			
	+t	+	0.3
	+t	-	0.7
	-t	+	0.1
	-t	-	0.9

0.3

0.1

 $\nabla (\mathbf{r} \mid \mathbf{m})$

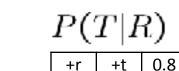
Any known values are selected

0.9

• E.g. if we know $L = +\ell$ then the initial factors are:

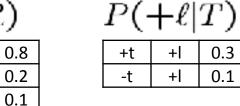
+t

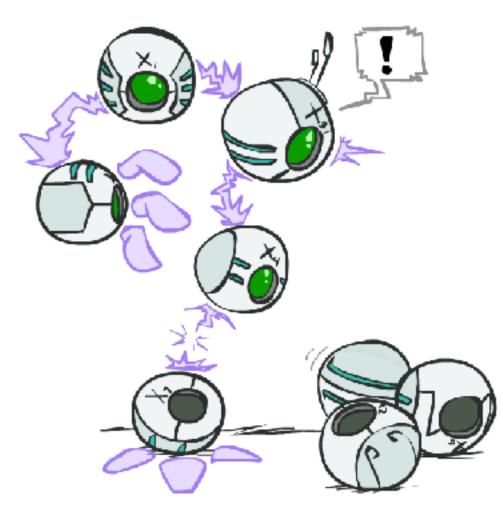
P(I	?)
+r	0.1



+r

-r



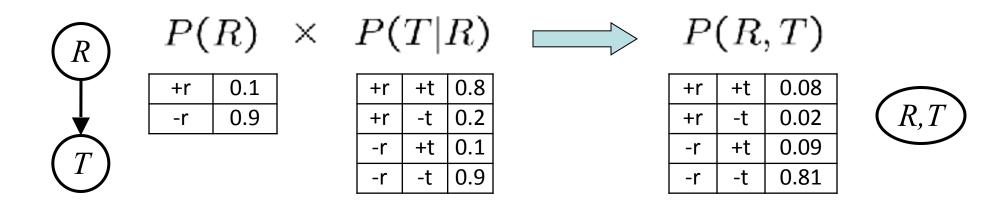


Procedure: Join all factors, then eliminate all hidden variables

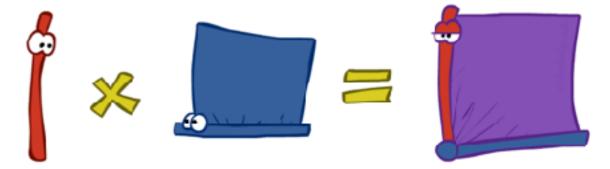
0.9

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

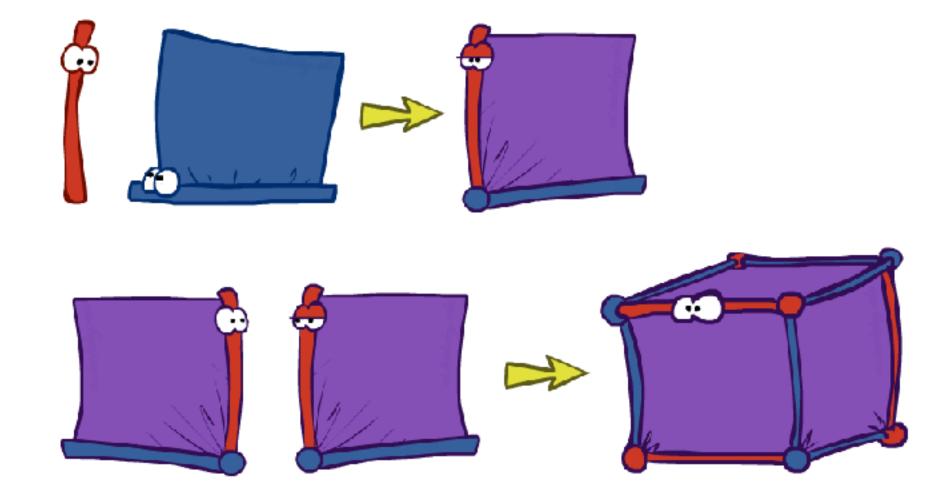


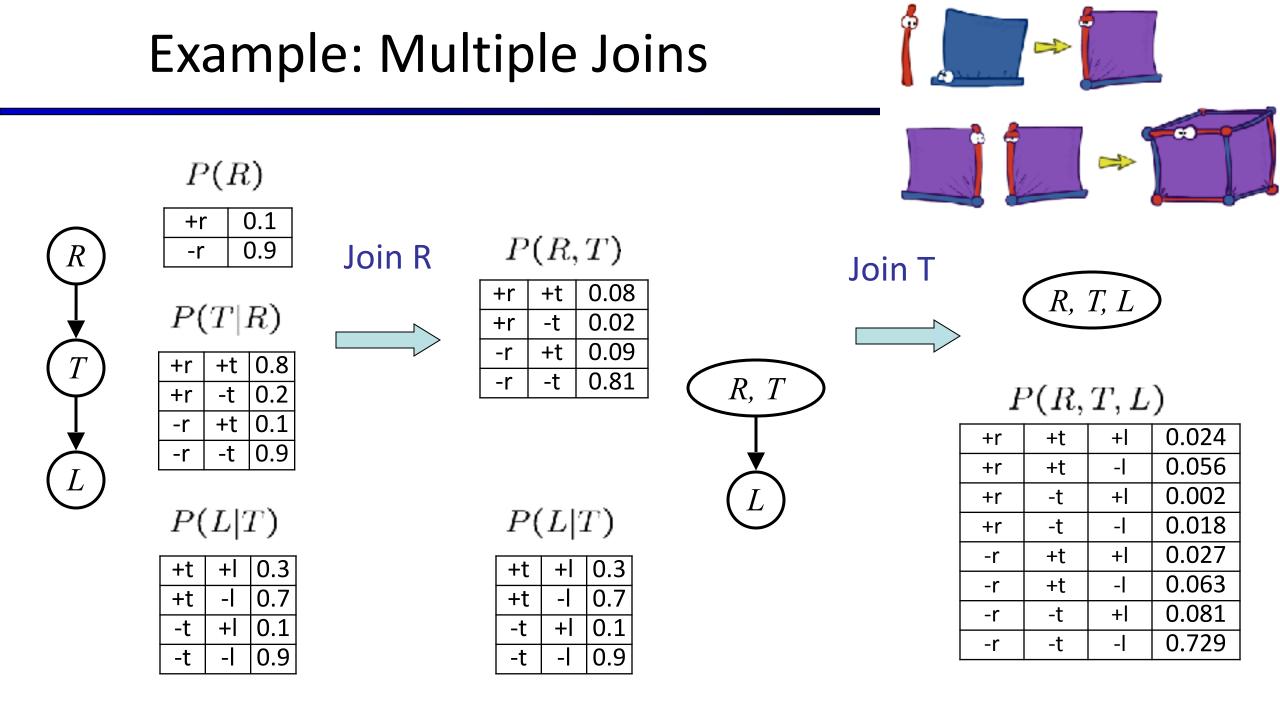
Computation for each entry: pointwise products



$$\forall r, t : P(r, t) = P(r) \cdot P(t|r)$$

Example: Multiple Joins





Operation 2: Eliminate

+t

-t

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation

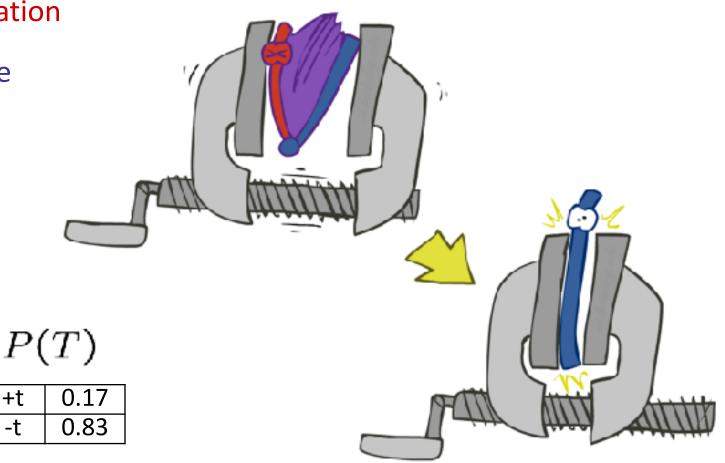
0.81

-t

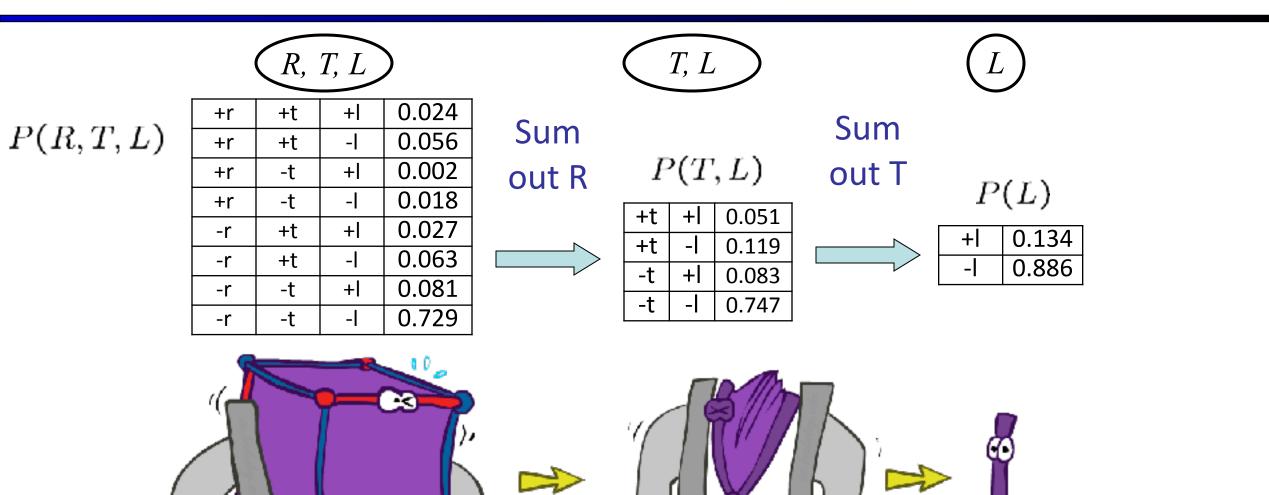
-r

Example:

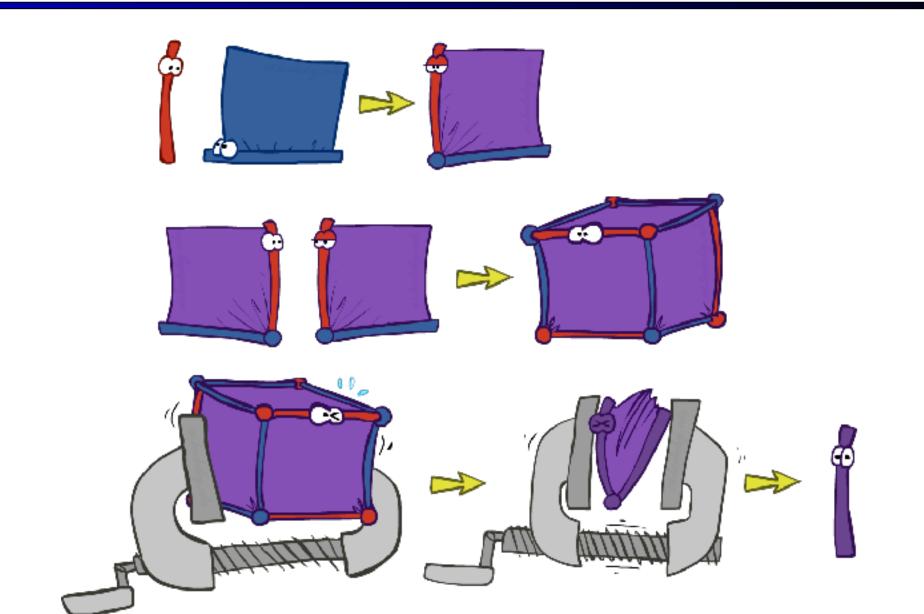
P(R,T)			sum R
+r	+t	0.08	
+r	-t	0.02	
-r	+t	0.09	



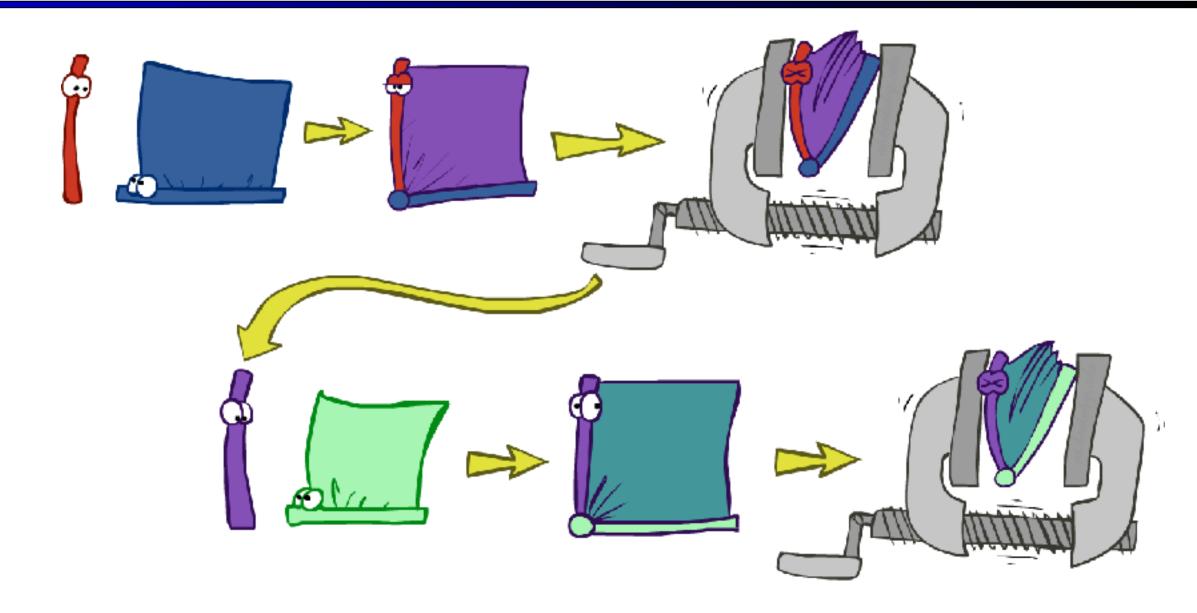
Multiple Elimination



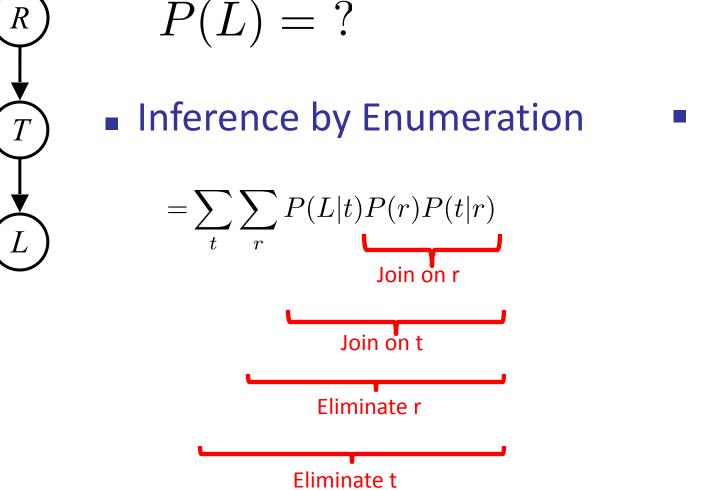
Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



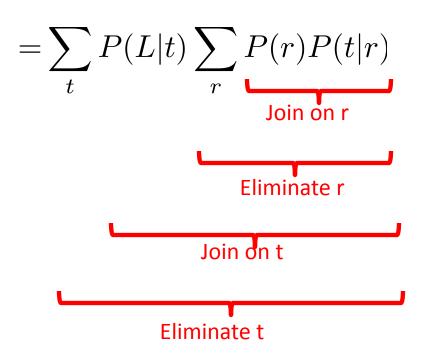
Marginalizing Early (= Variable Elimination)



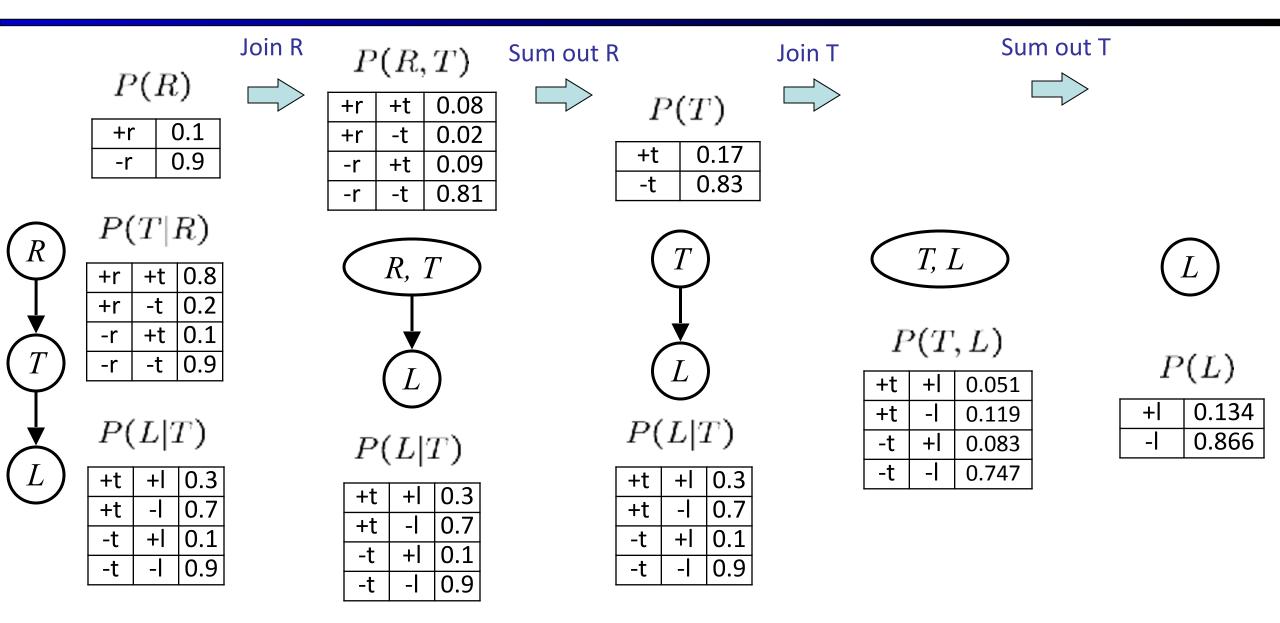
Traffic Domain



Variable Elimination

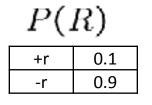


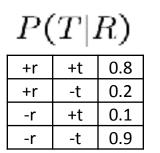
Marginalizing Early! (aka VE)



Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:





P(L T)			
+t	+	0.3	
+t	-	0.7	
-t	+	0.1	

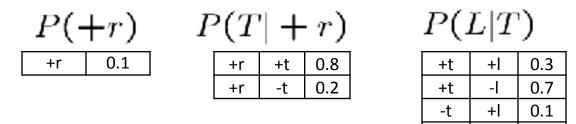
-t

-t

0.9

0.9

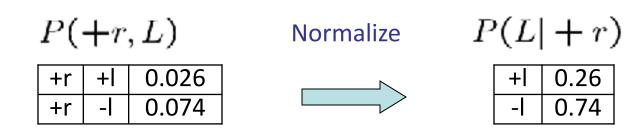
• Computing P(L|+r), the initial factors become:



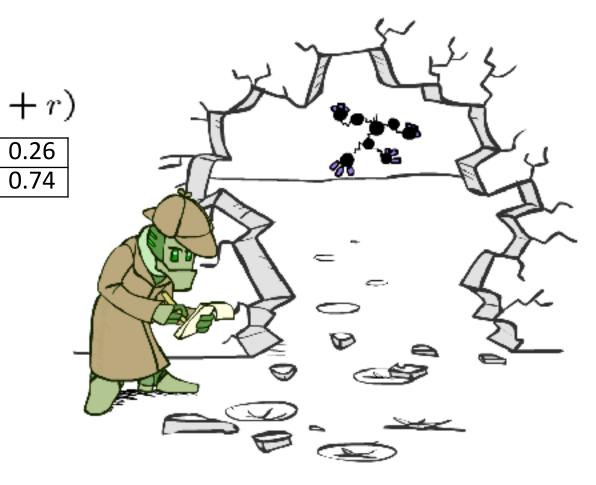
We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:



- To get our answer, just normalize this!
- That 's it!

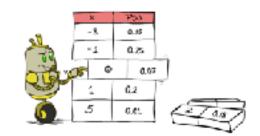


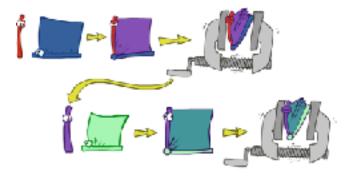
General Variable Elimination

• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

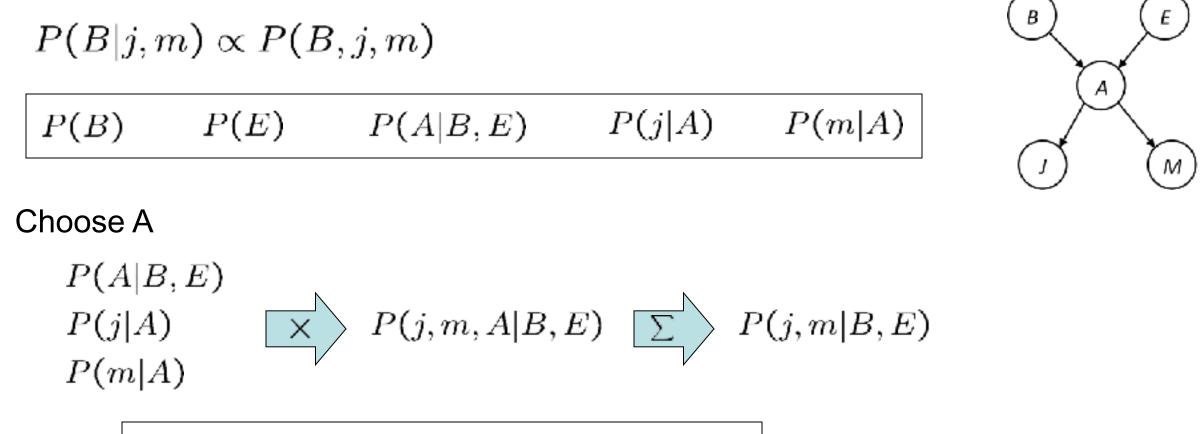
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H

Join all remaining factors and normalize



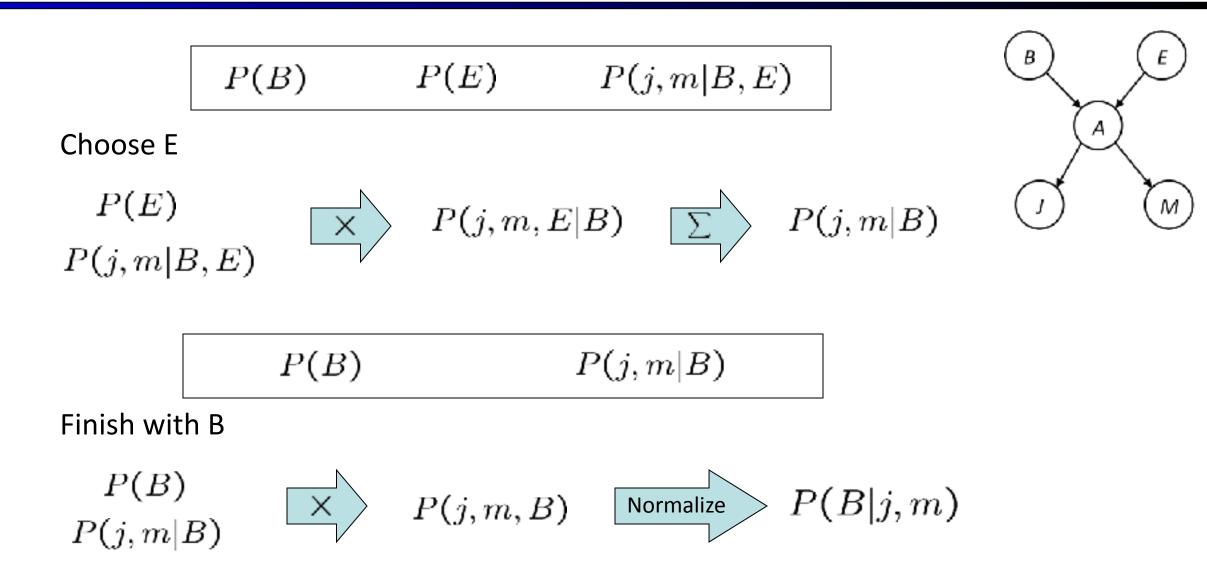


Example



$P(B) \qquad P(E)$	P(j,m B,E)
--------------------	------------

Example



Same Example in Equations

 $P(B|j,m) \propto P(B,j,m)$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

 $P(B|j,m) \propto P(B,j,m)$

- $=\sum_{e,a}P(B,j,m,e,a)$
- $= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$

marginal can be obtained from joint by summing out

use Bayes' net joint distribution expression

 $= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$

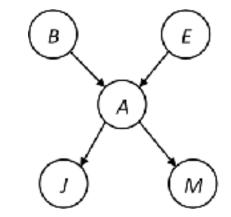
- $= \sum_{e} P(B)P(e)f_1(B, e, j, m)$
- $= P(B) \sum_{e} P(e) f_1(B, e, j, m)$
- $= P(B)f_2(B, j, m)$

use $x^*(y+z) = xy + xz$

joining on a, and then summing out gives ${\rm f_1}$

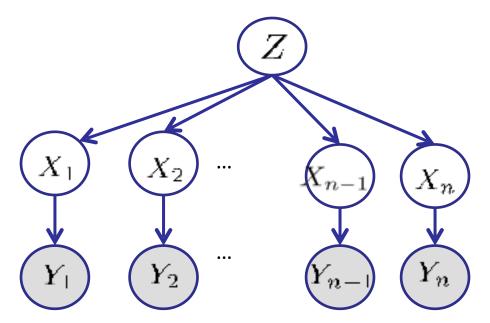
```
use x^*(y+z) = xy + xz
```

joining on e, and then summing out gives $\rm f_2$



Variable Elimination Ordering

For the query P(X_n | y₁,...,y_n) work through the following two different orderings: Z, X₁, ..., X_{n-1} and X₁, ..., X_{n-1}, Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

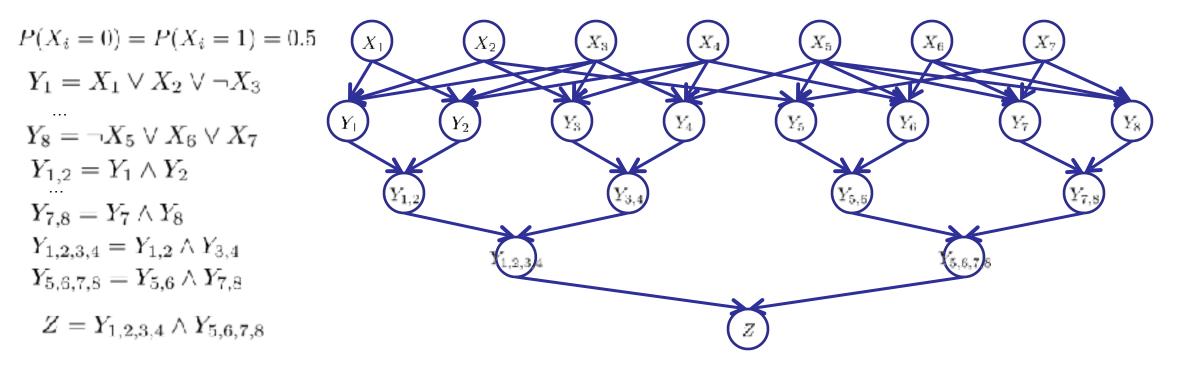
VE: Computational and Space Complexity

- All we are doing is changing the ordering of the variables that are eliminated...
- ...but it can (sometimes) reduce storage and complexity to linear w.r.t. number of variables!
- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor x_6 \lor x_7) \land (\neg x$



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
 - Very similar to tree-structured CSP algorithm
- Cut-set conditioning for Bayes net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes Nets

Representation

Conditional Independences

Probabilistic Inference

Enumeration (exact, exponential complexity)

Variable elimination (exact, worst-case exponential complexity, often better)

✓Inference is NP-complete

Sampling (approximate)

Learning Bayes Nets from Data