CS 383: Artificial Intelligence

Probability

Today

- Probability
- Random Variables
- Joint and Marginal Distributions
- Conditional Distributions
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the nex few weeks, so make sure you go over it
 now!

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Noisy sensor readings tell how close a square is to the ghost. Most likely observations:
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

- Sensors are noisy, but we know P(Color | Distance)

$P($ red \| 3)	$P($ orange \| 3)	P (yellow \| 3)	$P($ green \| 3)
0.05	0.15	0.5	0.3

Ghostbusters, no probabilities

Uncertainty

- General situation:
- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)

- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables

- Probabilistic reasoning gives us a framework for

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $\mathrm{R}=\mathrm{Is}$ it raining?
- T = Is it hot or cold?
- $D=$ How long will it take to drive to work?
- $\mathrm{L}=$ Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
- R in $\{$ true, false $\}$ (often write as $\{+r,-r\}$)
- T in \{hot, cold\}

- D in $[0, \infty)$
- L in possible locations, maybe $\{(0,0),(0,1), \ldots\}$

Probability Distributions

- Associate a probability with each value
- Temperature:

- Weather:

$P(T)$	
T	P
hot	0.5
cold	0.5

Probability Distributions

- Unobserved random variables have distributions
$P(T)$

T	P
hot	0.5
cold	0.5

$P(W)$	
W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A discrete distribution is a table of probabilities of values

Shorthand notation:

$$
\begin{aligned}
P(\text { hot }) & =P(T=\text { hot }) \\
P(\text { cold }) & =P(T=\text { cold }) \\
P(\text { rain }) & =P(W=\text { rain })
\end{aligned}
$$

OK if all domain entries are unique

- A probability (lower case value) is a single number

$$
P(W=\text { rain })=0.1
$$

- Must have: $\forall x \quad P(X=x) \geq 0$

$$
\text { and } \sum_{x} P(X=x)=1
$$

Joint Distributions

- A joint distribution over a set of random variables: specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Must obey:

$$
\begin{aligned}
P\left(x_{1}, x_{2}, \ldots x_{n}\right) & \geq 0 \\
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right) & =1
\end{aligned}
$$

$$
X_{1}, X_{2}, \ldots X_{n}
$$

- Size of distribution if n variables with domain sizes d ?
- For all but the smallest distributions, impractical to write out!

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0
- Ideally: only certain variables directly interact
- Constraint satisfaction problems:
- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

T	W	P
hot	sun	T
hot	rain	F
cold	sun	F
cold	rain	T

Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\left(x_{1} \ldots x_{n}\right) \in E} P\left(x_{1} \ldots x_{n}\right)
$$

- From a joint distribution, we can calculate the probability of any event

$$
P(T, W)
$$

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?
- Typically, the events we care about are partial

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

- $P(+x,+y)$?
- $P(+x)$?

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

- $P(-y O R+x)$?

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$
P(T)
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
P(t)=\sum_{s} P(t, s)
$$

T	P
hot	0.5
cold	0.5

$$
P(W)
$$

$$
\overrightarrow{P(s)=\sum_{t} P(t, s)}
$$

W	P
sun	0.6
rain	0.4

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Quiz: Marginal Distributions

$P(X, Y)$		
X	Y	P
+x	+y	0.1
+x	-y	0.5
-x	+y	0.2
-x	-y	0.2

X	P	
+x		
-x		
$P(Y)$		

Y	P
$+y$	
$-y$	

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{gathered}
P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
\\
=P(W=s, T=c)+P(W=r, T=c) \\
\end{gathered}
$$

Quiz: Conditional Probabilities

- $P(+x \mid+y)$?
$P(X, Y)$

X	y	P
+x	+y	0.2
+x	-y	0.3
-x	+y	0.4
-x	-y	0.1

- $P(-x \mid+y)$?
- $P(-y \mid+x)$?

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions
Joint Distribution

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$$
P(T, W)
$$

$$
\begin{aligned}
P(W=s \mid T=c) & =\frac{P(W=s, T=c)}{P(T=c)} \\
& =\frac{P(W=s, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.2}{0.2+0.3}=0.4 \\
P(W=r \mid T=c) & =\frac{P(W=r, T=c)}{P(T=c)} \\
& =\frac{P(W \mid T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.3}{0.2+0.3}=0.6
\end{aligned} \quad \begin{array}{|c|c|}
\hline W & P \\
\hline \text { sun } & 0.4 \\
\hline \text { rain } & 0.6 \\
\hline
\end{array}
$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$$
\begin{aligned}
P(W=s \mid T=c) & =\frac{P(W=s, T=c)}{P(T=c)} \\
& =\frac{P(W=s, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.2}{0.2+0.3}=0.4
\end{aligned}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

$P(c, W)$		
T	W	P
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection (make it sum to one)

$$
P(W \mid T=c)
$$

W	P
sun	0.4
rain	0.6

$$
\begin{aligned}
P(W=r \mid T=c) & =\frac{P(W=r, T=c)}{P(T=c)} \\
& =\frac{P(W=r, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.3}{0.2+0.3}=0.6
\end{aligned}
$$

Normalization Trick

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

NORMALIZE the
selection
(make it sum to one)

T	W	P		
cold	sun	0.2		
cold	rain	0.3		$P(W \mid T=c)$
:---:				
W	\quad	sun	0.4	
:---:	:---:			
rain	0.6			

- Why does this work?

$$
P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{1}, x_{2}\right)}{P\left(x_{2}\right)}=\frac{P\left(x_{1}, x_{2}\right)}{\sum_{x_{1}} P\left(x_{1}, x_{2}\right)}
$$

Quiz: Normalization Trick

- $P(X \mid Y=-y)$?

$P(X, Y)$	
X Y P $+x$ $+y$ 0.3 $+x$ $-y$ 0.1 $-x$ $+y$ 0.5 $-x$ $-y$ 0.1	

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

To Normalize

- (Dictionary) To bring or restore to a normal condition

- Procedure:
- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z
- Example 1

W	P	Normalize	W	P
sun	0.2		sun	0.4
rain	0.3	$\mathrm{Z}=0.5$	rain	0.6

- Example 2

T	W	P
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15

Normalize

Normalize						
	T	W		hot	sun	0.4
:---:	:---:	:---:				
hot	rain	0.1				
cold	sun	0.2				
cold	rain	0.3				

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
- $\mathrm{P}($ on time | no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P(on time | no accidents, 5 a.m.) $=0.95$
- P (on time | no accidents, 5 a.m., raining) $=0.80$

- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables: $H_{1} \ldots H_{r}$
- We want:
* Works fine with multiple query
variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, c_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

- Step 3: Normalize

$$
\begin{gathered}
\times \frac{1}{\boldsymbol{Z}} \\
Z=\sum_{q} P\left(Q, e_{1} \cdots \epsilon_{k}\right) \\
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{gathered}
$$

Inference by Enumeration

- $P(W)$?
$p(W=$ sun $)=0.3+0.1+0.1+0.15=0.65$
$p(W=$ rain $)=0.05+0.05+0.05+0.2=0.35$
- $\mathrm{P}(\mathrm{W} \mid$ winter $)$?
$p(W=$ sun , winter $)=0.1+0.15=0.25$
$p(W=$ rain, winter $)=0.05+0.2=0.25$
$p(\mathrm{~W}=$ sun \mid winter $)=0.25 / 0.25+0.25=0.5$
$p(W=$ rain | winter $)=0.25 / 0.25+0.25=0.5$
- P(W | winter, hot)?
$\mathrm{p}(\mathrm{W}=$ sun, winter, hot $)=0.1$
$p(W=$ rain , winter, hot $)=0.05$
$\mathrm{p}(\mathrm{W}=$ sun \mid winter, hot $)=0.1 / 0.1+0.05=2 / 3$
$p(W=$ rain | winter, hot $)=0.05 / 0.1+0.05=1 / 3$

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- Obvious problems:
- Worst-case time complexity $\mathrm{O}\left(\mathrm{d}^{\mathrm{n}}\right)$
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution
- What about continuous distributions?

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \quad \Longleftrightarrow \quad P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

The Product Rule

$P(y) P(x \mid y)=P(x, y)$

- Example:

$P(W)$		$P(D \mid W)$				$P(D, W)$		
		D	W	P		D	W	P
R	P	wet	sun	0.1		wet	sun	
sun	0.8	dry	sun	0.9		dry	sun	
rain	0.2	wet	rain	0.7		wet	rain	
		dry	rain	0.3		dry	rain	- -

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

- Why is this always true?

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we get:

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later

- In the running for most important Al equation!

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

- Example:
- M: meningitis, S: stiff neck

$$
\left.\begin{array}{l}
P(+m)=0.0001 \\
P(+s \mid+m)=0.8 \\
P(+s \mid-m)=0.01
\end{array}\right\} \begin{aligned}
& \text { Example } \\
& \text { givens }
\end{aligned}
$$

$P(+m \mid+s)=\frac{P(+s \mid+m) P(+m)}{P(+s)}=\frac{P(+s \mid+m) P(+m)}{P(+s \mid+m) P(+m)+P(+s \mid-m) P(-m)}=\frac{0.8 \times 0.0001}{0.8 \times 0.0001+0.01 \times 0.999}$

- Note: posterior probability of meningitis still very small
$=0.0008$
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

- Given:

$P(W)$	
R	P
sun	0.8
rain	0.2

$P(D \mid W)$

D	W	P
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

- What is $P(W \mid d r y)$?
$p($ sun \mid dry $)=p($ dry \mid sun $) p($ sun $) / p(d r y)=0.9 * 0.8 / Z=.72 / Z$
$p($ rain \mid dry $)=p($ dry \mid rain $) p($ rain $) / p($ dry $)=0.3^{*} 0.2 / Z=0.06 / Z$
$Z=.72+.06=.78$

Ghostbusters, Revisited

- Let's say we have two distributions:

- We can calculate the posterior distribution $P(G \mid r)$ over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

Ghostbusters with Probability

Ghosthusters, Revisited

0.04	0.04	0.04	<0.01	<0.01	<0.01	0.04	0.04	0.04	0.04
0.04	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	0.04	0.04
0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	0.04
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.04
0.04	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	0.04
0.04	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	0.04	0.04

NRS64 ITRS: x-nant at. (3, 4) \|GRKTX]
SUST
TMME + 1

