

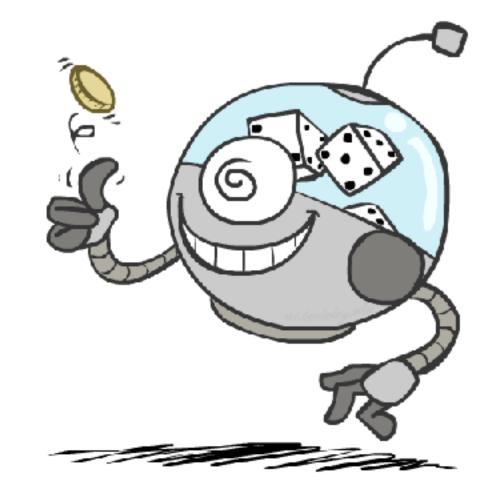
Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

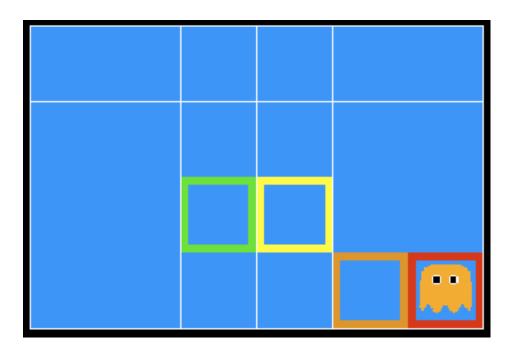
Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distributions
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the nex⁻ few weeks, so make sure you go over it now!



Inference in Ghostbusters

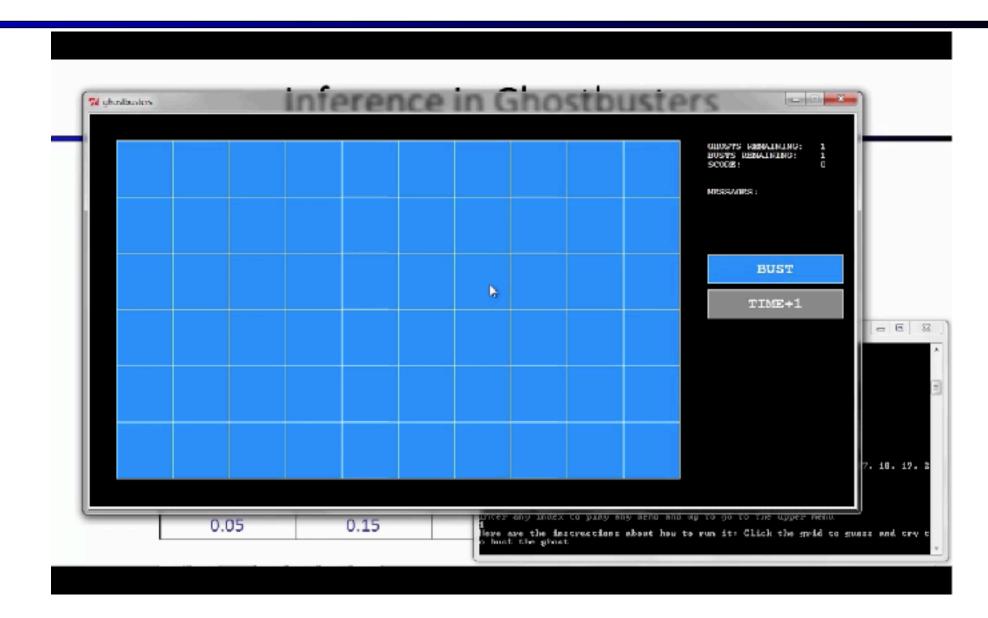
- A ghost is in the grid somewhere
- Noisy sensor readings tell how close a square is to the ghost. Most likely observations:
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green



Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

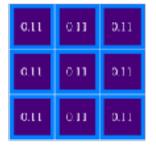
Ghostbusters, no probabilities



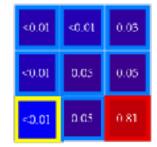
Uncertainty

General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for using beliefs and knowledge to perform *inference*

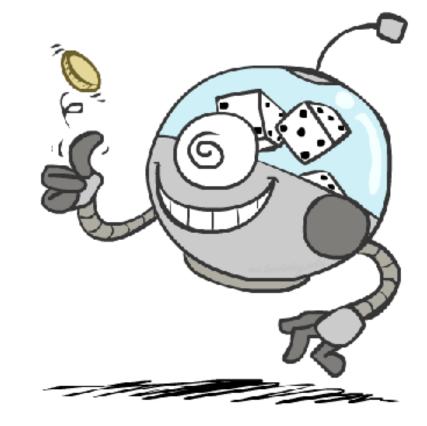






Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - ∎ D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

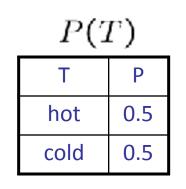


Probability Distributions

- Associate a probability with each value
 - Temperature:

Weather:



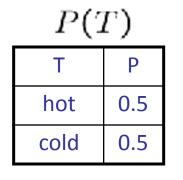


P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions



P(W)		
W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

- A discrete distribution is a table of probabilities of values
- A probability (lower case value) is a single number

P(W = rain) = 0.1

• Must have:
$$\forall x \ P(X = x) \ge 0$$
 and $\sum_{x} P(X = x) = 1$

Shorthand notation: P(hot) = P(T = hot), P(cold) = P(T = cold), P(rain) = P(W = rain),...

OK *if* all domain entries are unique

Joint Distributions

 $\rangle > 0$

 A joint distribution over a set of random variables: specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

Must obey:

$$P(x_1, x_2, \dots, x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$$

Size of distribution if n variables with domain sizes d?

D'

• For all but the smallest distributions, impractical to write out!

$$X_1, X_2, \ldots X_n$$

Probabilistic Models

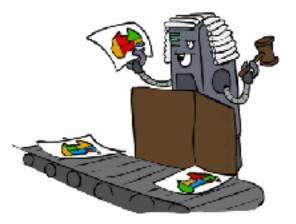
- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Distribution over T,W

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

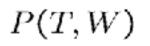


Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are *partial* assignments, like P(T=hot)



Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

P(+x, +y) ?

P(X,Y)

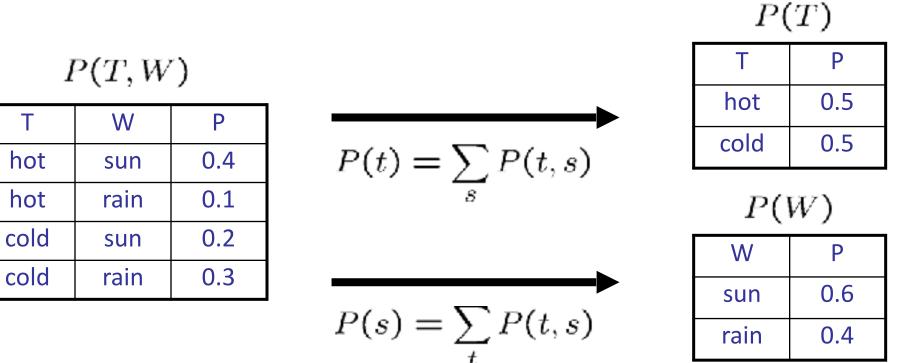
Х	Υ	Р
+X	+y	0.2
+x	-у	0.3
-X	+у	0.4
-X	-у	0.1

■ P(+x) ?

P(-y OR +x) ?

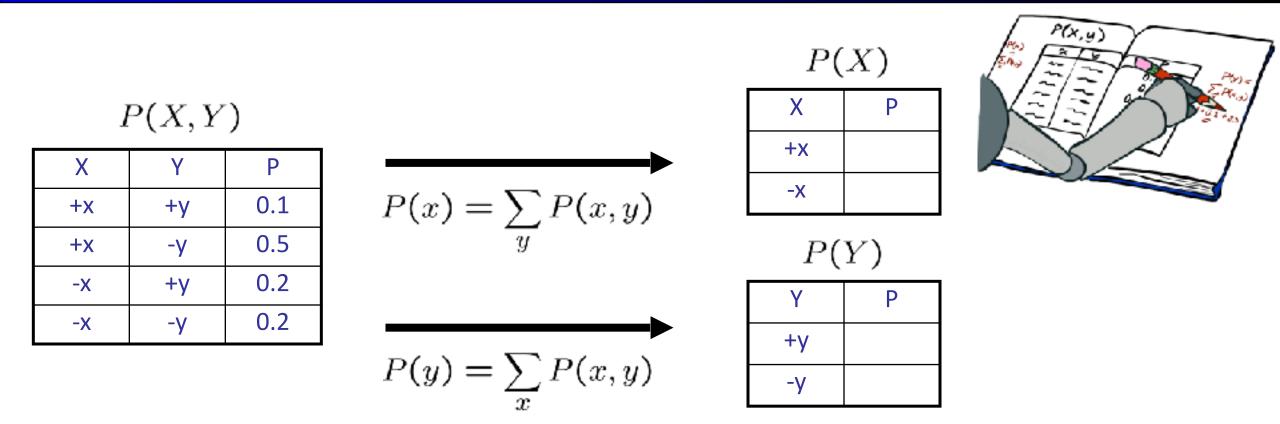
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding



$P(X_1$	$= x_1) =$	$\sum P(X_1$	$= x_1, X$	$x_2 = x_2$)
		x_2		

Quiz: Marginal Distributions



Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

$$P(T,W)$$

$$\frac{T \quad W \quad P}{hot \quad sun \quad 0.4} \\ hot \quad rain \quad 0.1 \\ \hline cold \quad sun \quad 0.2 \\ \hline cold \quad rain \quad 0.3 \\ \hline \end{array}$$

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c) \\ = 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

■ P(+x | +y) ?



Х	Y	Р
+x	+у	0.2
+x	- y	0.3
-X	+у	0.4
-X	- y	0.1

■ P(-x | +y) ?

■ P(-y | +x) ?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

F	P(W T = hot)				
	W	Р			
	sun	0.8			
	rain	0.2			
P	P(W T = cold)				
	W	Р			
	vv				
	sun	0.4			

P(W|T)

Joint Distribution

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

P(T,W)

W

sun

rain

sun

rain

Т

hot

hot

cold

cold

Ρ

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W|T = c)$$

$$\frac{W \quad P}{sun \quad 0.4}$$

$$rain \quad 0.6$$

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

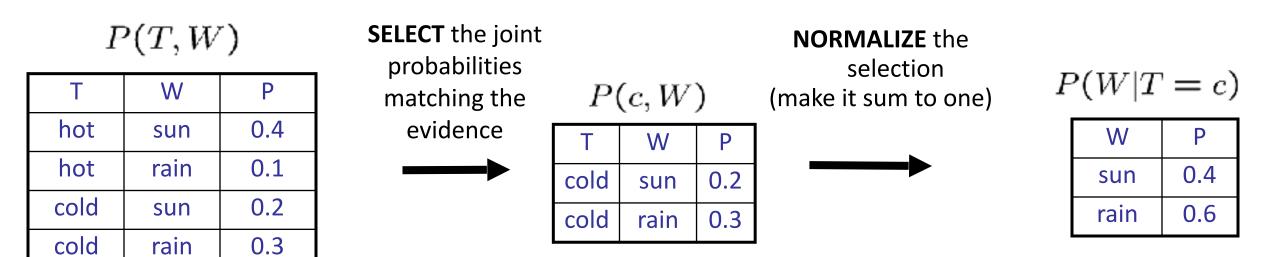
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

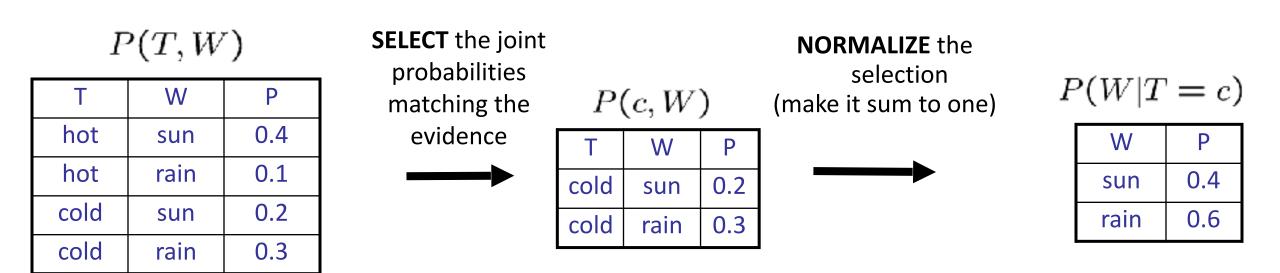
=
$$\frac{0.2}{0.2 + 0.3} = 0.4$$



$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

= $\frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$
= $\frac{0.3}{0.2 + 0.3} = 0.6$

Normalization Trick



Why does this work?

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

P(X,Y)

Х	Y	Р
+x	+у	0.3
+x	-y	0.1
-X	+у	0.5
-X	-у	0.1

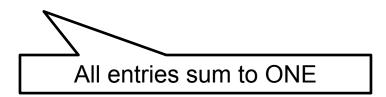
SELECT the joint probabilities matching the evidence

NORMALIZE the

selection (make it sum to one)

To Normalize

(Dictionary) To bring or restore to a normal condition

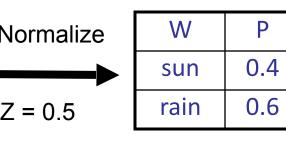


Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

Example 1

W	Р	N
sun	0.2	
rain	0.3	Z



Example 2

т	W	Р	
hot	sun	20	Normali
hot	rain	5	7 50
cold	sun	10	Z = 50
cold	rain	15	

	Т	W	Р
lize	hot	sun	0.4
	hot	rain	0.1
	cold	sun	0.2
	cold	rain	0.3

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix}$ $X_1, X_2, \dots X_n$ All variables

* Works fine with multiple query variables, too

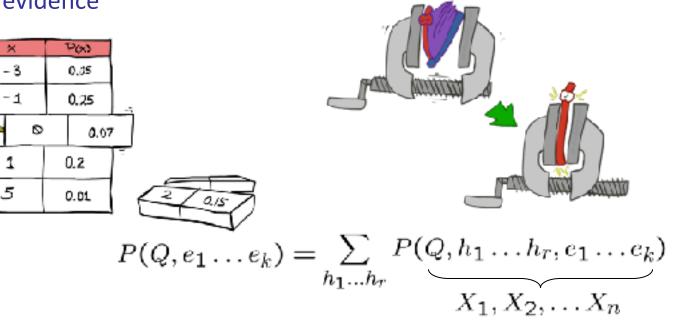
$$P(Q|e_1 \dots e_k)$$

 Step 1: Select the entries consistent with the evidence

Step 3: Normalize

 $\times \frac{1}{Z}$

 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$



Inference by Enumeration

P(W)?

p(W=sun) = 0.3 + 0.1 + 0.1 + 0.15 = 0.65p(W=rain) = 0.05 + 0.05 + 0.05 + 0.2 = 0.35

P(W | winter)?

p(W=sun , winter)	=	0.1 + 0.15 = 0.25
p(W=rain , winter)	=	0.05 + 0.2 = 0.25
p(W=sun winter)	=	0.25 / 0.25 + 0.25 = 0.5
p(W=rain winter)	=	0.25 / 0.25 + 0.25 = 0.5

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

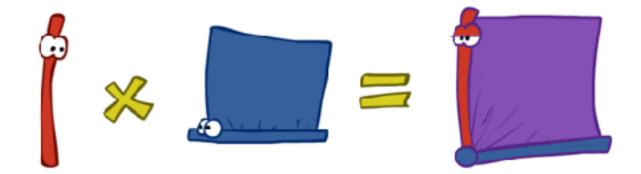
Obvious problems:

- Worst-case time complexity O(dⁿ)
- Space complexity O(dⁿ) to store the joint distribution
- What about continuous distributions?

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 $(x|y) = \frac{P(x,y)}{P(y)}$



The Product Rule

$$P(y)P(x|y) = P(x,y)$$

• Example:

P(W)

Ρ

0.8

0.2

R

sun

rain

P(D W)				
D	W	Р		
wet	sun	0.1		
dry	sun	0.9		
wet	rain	0.7		
dry	rain	0.3		

 $- \sqrt{-1} \times \sqrt{-1}$

P(D,W)

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	~ ~ ~ ~

The Chain Rule

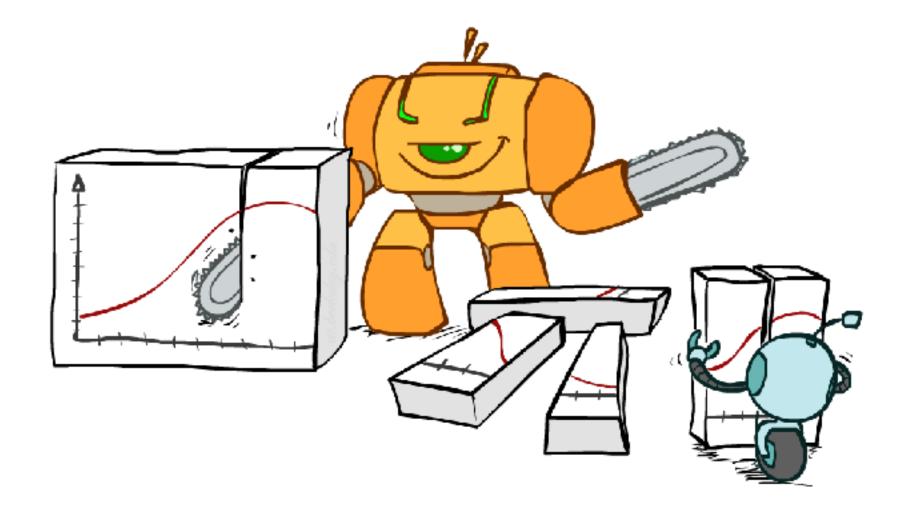
 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \ldots x_n) = \prod_i P(x_i | x_1 \ldots x_{i-1})$$

• Why is this always true?

Bayes Rule



Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$
 prior

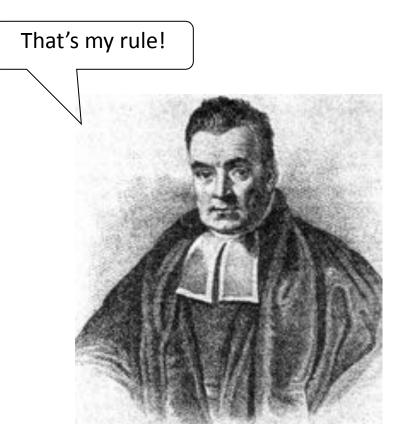
likelihood

Why is this at all helpful?

normalization

- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later

In the running for most important AI equation!



Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \begin{array}{c} \mbox{Example} \\ \mbox{givens} \end{array}$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

=0.0008

Quiz: Bayes' Rule

Given:

P(W)			
R	Р		
sun	0.8		
rain 0.2			

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D|W)

What is P(W | dry) ?

p(sun | dry) = p(dry | sun) p(sun) / p(dry) = 0.9 * 0.8 / Z = .72 / Z p(rain | dry) = p(dry | rain) p(rain) / p(dry) = 0.3 * 0.2 / Z = 0.06 / ZZ = .72 + .06 = .78

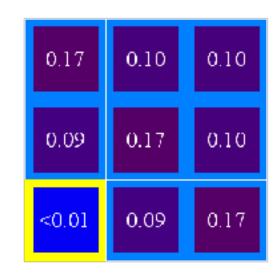
Ghostbusters, Revisited

Let's say we have two distributions:

- Prior distribution over ghost location: P(G)
 - Let's say this is uniform
- Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution
 P(G|r) over ghost locations given a reading using Bayes' rule:

 $P(g|r) \propto P(r|g)P(g)$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11



Ghostbusters with Probability

