
CS 383: Artificial Intelligence 
Reinforcement Learning II

Prof. Scott Niekum, UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

▪ We still assume an MDP:

▪ A set of states s ∈ S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy π(s)

▪ New twist: don’t know T or R, so must try out actions

▪ Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal	 	 	 	 Technique

Compute V*, Q*, π*	 	 Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal	 	 	 Technique

Compute V*, Q*, π*	 VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Goal	 	 	 Technique

Compute V*, Q*, π*	 Q-learning

Evaluate a fixed policy π Value Learning

Model-Free Learning

▪ Model-free (temporal difference) learning

▪ Experience world through episodes

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates

r

a

s

s, a

s’

a’

s’, a’

s’’

Q-Learning

▪ We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

▪ Instead, compute average as we go

▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a) since transitions are stochastic

▪ So keep a running average

Is this really a good idea?

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

	 small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?

How to Explore?

▪ Several schemes for forcing exploration

▪ Simplest: random actions (ε-greedy)

▪ Every time step, flip a coin

▪With (small) probability ε, act randomly

▪With (large) probability 1-ε, act on current policy

▪ Problems with random actions?

▪ You do eventually explore the space, but keep

thrashing around once learning is done

▪ One solution: lower ε over time

▪ Another solution: exploration functions

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not

	 (yet) established, eventually stop exploring

▪ Exploration function

▪ Takes a value estimate u and a visit count n, and

	 returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

	 	 	 	

Modified Q-Update:

Regular Q-Update:

Exploration Function – Crawler

Softmax Exploration

▪ Base exploration on estimated action goodness

▪ A “soft” version of ε-greedy

▪ Choose better actions exponentially more often

▪ Temperature parameter controls preference strength

▪ Can decrease temperature over time for greedier selection

▪ Good initialization / outcome ordering still affects
efficiency, but can’t permanently ruin exploration

p(a|s) = eQ(s,a)/⌧

Pn
i=0 e

Q(s,ai)/⌧

Regret

▪ Even if you learn the optimal policy, you
still make mistakes along the way!

▪ Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

▪ Minimizing regret goes beyond learning to
be optimal – it requires optimally learning
to be optimal

▪ Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret (usually)

Approximate Q-Learning

Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values

▪ In realistic situations, we cannot possibly learn about
every single state!

▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

▪ States may even be continuous, not discrete

▪ Instead, we want to generalize:

▪ Learn about some small number of training states from

experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and we’ll see

it over and over again

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

No generalization

2000 episodes later…

Harder maze, no generalization

Feature-Based Representations

▪ Solution: describe a state using a vector of features
(properties)

▪ Features are functions from states to real numbers (often

0/1) that capture important properties of the state

▪ Example features:

▪ Distance to closest ghost

▪ Distance to closest dot

▪ Number of ghosts

▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)

▪ …… etc.

▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:

▪ Adjust weights of active features

▪ E.g., if something unexpectedly bad happens, blame the features that were activated:

lower the value of all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Approximate Q-Learning

Q-Learning and Least Squares

0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V / Q best

▪ E.g. your evaluation functions from project 2 were probably horrible estimates of future rewards, but

they still produced good decisions

▪ Q-learning’s priority: get Q-values close (modeling)

▪ Action selection priority: get ordering or “shape” of Q-values right (prediction)

▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies that maximize rewards, not the values that predict them

▪ Policy search: start with an ok solution then fine-tune by hill climbing on feature weights

Policy Search

▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function

▪ Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:

▪ How do we tell the policy got better?

▪ Need to run many sample episodes!

▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change multiple
parameters…

