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Reinforcement Learning

▪ We still assume an MDP:


▪ A set of states s ∈ S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)


▪ Still looking for a policy π(s)


▪ New twist: don’t know T or R, so must try out actions


▪ Big idea: Compute all averages over T using sample outcomes



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal	 	 	 	 Technique


Compute V*, Q*, π*	 	 Value / policy iteration


Evaluate a fixed policy π Policy evaluation


Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal	 	 	 Technique


Compute V*, Q*, π*	 VI/PI on approx. MDP


Evaluate a fixed policy π PE on approx. MDP


Goal	 	 	 Technique


Compute V*, Q*, π*	 Q-learning


Evaluate a fixed policy π Value Learning




Model-Free Learning

▪ Model-free (temporal difference) learning


▪ Experience world through episodes


▪ Update estimates each transition


▪ Over time, updates will mimic Bellman updates
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Q-Learning

▪ We’d like to do Q-value updates to each Q-state:


▪ But can’t compute this update without knowing T, R


▪ Instead, compute average as we go

▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests


▪ But we want to average over results from (s,a) since transitions are stochastic

▪ So keep a running average



Is this really a good idea?



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even if 
you’re acting suboptimally!


▪ This is called off-policy learning


▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

	 small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)



Video of Demo Q-Learning Auto Cliff Grid



Exploration vs. Exploitation



How to Explore?



How to Explore?

▪ Several schemes for forcing exploration

▪ Simplest: random actions (ε-greedy)

▪ Every time step, flip a coin


▪With (small) probability ε, act randomly


▪With (large) probability 1-ε, act on current policy


▪ Problems with random actions?

▪ You do eventually explore the space, but keep 

thrashing around once learning is done


▪ One solution: lower ε over time


▪ Another solution: exploration functions



Video of Demo Q-learning – Epsilon-Greedy – Crawler 



Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not

	 (yet) established, eventually stop exploring


▪ Exploration function

▪ Takes a value estimate u and a visit count n, and

	 returns an optimistic utility, e.g.


▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

	 	 	 	

Modified Q-Update:

Regular Q-Update:



Exploration Function – Crawler 



Softmax Exploration

▪ Base exploration on estimated action goodness

▪ A “soft” version of ε-greedy


▪ Choose better actions exponentially more often


▪ Temperature parameter controls preference strength


▪ Can decrease temperature over time for greedier selection


▪ Good initialization / outcome ordering still affects 
efficiency, but can’t permanently ruin exploration

p(a|s) = eQ(s,a)/⌧

Pn
i=0 e

Q(s,ai)/⌧



Regret

▪ Even if you learn the optimal policy, you 
still make mistakes along the way!


▪ Regret is a measure of your total mistake 
cost: the difference between your 
(expected) rewards, including youthful 
suboptimality, and optimal (expected) 
rewards


▪ Minimizing regret goes beyond learning to 
be optimal – it requires optimally learning 
to be optimal


▪ Example: random exploration and 
exploration functions both end up 
optimal, but random exploration has 
higher regret (usually)



Approximate Q-Learning



Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values


▪ In realistic situations, we cannot possibly learn about 
every single state!

▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory


▪ States may even be continuous, not discrete


▪ Instead, we want to generalize:

▪ Learn about some small number of training states from 

experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and we’ll see 

it over and over again



Example: Pacman

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



No generalization



2000 episodes later…



Harder maze, no generalization



Feature-Based Representations

▪ Solution: describe a state using a vector of features 
(properties)

▪ Features are functions from states to real numbers (often 

0/1) that capture important properties of the state

▪ Example features:


▪ Distance to closest ghost

▪ Distance to closest dot

▪ Number of ghosts

▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)

▪ …… etc.

▪ Is it the exact state on this slide?


▪ Can also describe a q-state (s, a) with features (e.g. action 
moves closer to food)



Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any 
state using a few weights:


▪ Advantage: our experience is summed up in a few powerful numbers


▪ Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

▪ Q-learning with linear Q-functions:


▪ Intuitive interpretation:

▪ Adjust weights of active features

▪ E.g., if something unexpectedly bad happens, blame the features that were activated: 

lower the value of all states with that state’s features


▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman



Approximate Q-Learning



Q-Learning and Least Squares
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Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation



Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
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Policy Search



Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize utilities) 
aren’t the ones that approximate V / Q best

▪ E.g. your evaluation functions from project 2 were probably horrible estimates of future rewards, but 

they still produced good decisions

▪ Q-learning’s priority: get Q-values close (modeling)

▪ Action selection priority: get ordering or “shape” of Q-values right (prediction)

▪ We’ll see this distinction between modeling and prediction again later in the course


▪ Solution: learn policies that maximize rewards, not the values that predict them


▪ Policy search: start with an ok solution then fine-tune by hill climbing on feature weights



Policy Search

▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function

▪ Nudge each feature weight up and down and see if your policy is better than before


▪ Problems:

▪ How do we tell the policy got better?

▪ Need to run many sample episodes!

▪ If there are a lot of features, this can be impractical


▪ Better methods exploit lookahead structure, sample wisely, change multiple 
parameters…


