CS 383: Artificial Intelligence Markov Decision Processes II

Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step

- Small "living" reward each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

Recap: MDPs

- Markov decision processes:
- States S
- Actions A
- Transitions P(s'|s,a) (or T(s,a, s'))
- Rewards R(s,a, $\left.s^{\prime}\right)$ (and discount γ)
- Start state s_{0}

- Quantities:
- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q -Values = expected future utility from a q-state (chance node)

Optimal Quantities

- The value (utility) of a state s:
$\mathrm{V}^{*}(\mathrm{~s})=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
$Q^{*}(\mathrm{~s}, \mathrm{a})=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
$\pi^{*}(s)=$ optimal action from state s

Gridworld Values V*

0.64	0.74	0.85	1.00
\bullet		-	
0.57		0.57	-1.00
*		-	
0.49	40.43	0.48	40.28

VALUES AFTER 100 ITFRATIONS

Gridworld: Q*

Q-VALUES AFTER 100 ITERATIONS

The Bellman Equations

The Bellman Equations

- Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$
\begin{aligned}
V^{*}(s) & =\max _{a} Q^{*}(s, a) \\
Q^{*}(s, a) & =\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
V^{*}(s) & =\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

- Bellman equations characterize the optimal values:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Value iteration computes them:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Value iteration is just a fixed point solution method

- ... though the V_{k} vectors are also interpretable as time-limited values

Example: Value Iteration

Overheated

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

$Q_{2}($ cool, slow $)=1.0(1+2)=3$
$Q_{2}($ cool, fast $)=0.5(2+2)+0.5(2+1)=3.5$
$V_{2}(\operatorname{cool})=\max (3,3.5)=3.5$

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler - only one action per state
- ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π :
$\mathrm{V} \pi(\mathrm{s})=$ expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$
V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$
\begin{aligned}
& V_{0}^{\pi}(s)=0 \\
& V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Efficiency: $O\left(S^{2}\right)$ per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
- Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values $\mathrm{V}^{*}(\mathrm{~s})$
- How should we act?
- It's not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^{*}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
- Completely trivial to decide!

- Important lesson: actions are easier to select from q-values than values!
- In fact, you don't even need a model!

Policy Iteration

Problems with Value Iteration

- Value iteration repeats the Bellman updates:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Problem 1: It's slow - O(S2A) per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values
$\mathrm{k}=0$

Cridworid Display

VALUES AFHER O IMERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=1$

Gridivorld Display

4	4		\square
0.00	0.00	0.00	1.00
0.00	40.00	-1.00	
4	$\boxed{ }$		
0.00	0.00	0.00	0.00

VALUES AFTER 1 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

$\mathrm{k}=2$

Critworld Display

0.00	0.00	0.72	1.00
*		-	
0.00		0.00	-1.00
-	*	*	
0.00	0.00	0.00	0.00
			\checkmark

VALUES AFTER 2 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0
$k=3$

Cirldwarld Display

VALUES AFTER 3 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0
$\mathrm{k}=4$

Cridvoorld Display

VALUES AFTER 4 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=5$

Gridworld Display

0.51	0.72	0.84	1.00
-		*	
0.27		0.55	-1.00
-		*	
0.00	0.22	0.37	40.13

VALUES AFTHER 5 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

VALUES AFTER 6 IMERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 7 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 8 ITYRATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$
$\mathrm{k}=9$

Gricworld Display

0.64,	0.74,	0.85	1.00
4			
0.55	0.57	-1.00	
0.46	0.40	0.47	10.27
4			

VALUES AFTER 9 ITERATIONS
Noise $=0.2$
Discount $=0.9$
Living reward = 0
$\mathrm{k}=10$

VALUES AFTER 10 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0
$\mathrm{k}=11$

Gridworld Display

0.64	0.74	0.85	1.00
*		-	
0.56		0.57	-1.00
4		-	
0.48	10.42	0.47	10.27

VALUES AFTER 11 ITERATIONS
Noise $=0.2$
Discount $=0.9$
Living reward $=0$
$k=12$

Cridworld Display

0.64,	0.74,	0.85	1.00
4		4	$\boxed{1.57}$
0.57		0.57	-1.00
0.49	0.42	0.47	40.28

VALUES AFTER 12 ITERATIONS
Noise $=0.2$
Discount $=0.9$
Living reward = 0
$k=100$

Cridworld Display

VALUES arter 100 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward = 0

Policy Iteration

- Alternative approach for optimal values:
- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges
- This is policy iteration
- It's still optimal!
- Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π, find values with policy evaluation:
- Iterate until values converge:

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right)\left[R\left(s, \pi_{i}(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- Improvement: For fixed values, get a better policy using policy extraction
. One-step look-ahead:

$$
\pi_{i+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
- They basically are - they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

- Actions: Blue, Red
- States: Win, Lose

Offline Planning

- Solving MDPs is offline planning
- You determine all quantities through computation

No discount
100 time steps
Both states have
the same value

- You do not actually play the game!

Online Planning

- Rules changed! Red's win chance is different.

\$0 \$0 \$0 \$2 \$0
\$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
- Specifically, reinforcement learning
- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

