CS383: Artificial Intelligence

Introduction

Prof. Scott Niekum University of Massachusetts Amherst

[Based in part on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

All original materials available at http://ai.berkeley.edu.]

A bit about me

Al Safety

SCALAR LAB

Safe, Confident, and Aligned Learning + Robotics

Reinforcement learning

LLMs and alignment

Robotics and imitation learning

Course Information

Communication:

- Announcements on Canvas/Piazza
- Grades on Gradescope
- Piazza for discussion

Assignments:

- Gradescope for interactive homework (unlimited submissions!)
- Autograded programming projects (submit via Gradescope)
- Make sure you have access to a system where you can run Python

Class website:

https://people.cs.umass.edu/~sniekum/classes/383-F25/desc.php

(Link available on class Canvas page)

TAs:

Sankaran Vaidyanathan (sankaranv@cs.umass.edu) Fareya Ikram (fikram@umass.edu)

TA Office Hours:

Tuesdays 1-3pm in CS207 Fridays 3-5pm in CS207

And by appointment, when needed

Workload

- There will be a lot of math (and programming)
- Reading assignments
- 8 homework assignments:
 - ~2 weeks for each, but sometimes overlapping
 - Online, autograded, solve and submit alone
 - Can be turned in up to 5 days late for -20%
- 5 programming projects
 - Python, groups of 1 or 2 (except Project 0)
 - ~2 weeks for each, non-overlapping
 - Can be turned late until last day of classes for -20%
- One midterm, one final

Textbook

Russell & Norvig, Al: A Modern Approach, 3rd Ed.

• I'll also post class slides

Warning: Not a course textbook, so our presentation does not necessarily follow the presentation in the book.

Homework Exercises

- Online on Gradescope
- Autograded text boxes / multiple choice
- Try as many times as you want!
- Goal: self-assess and prepare for tests
- Can discuss at high-level, but work alone
- No spoilers on Piazza discussions!

Programming Assignments

Pacman domain

Projects include:

- path planning and search
- multi-agent game trees
- reinforcement learning
- state estimation

Highly suggested: Pair programming (switch "driver" and "observer" roles often)

Midterm and Final

- Midterm will cover roughly half the class material
- Final will be comprehensive
- Midterm in-class, Final during finals week
- Very similar to Gradescope homework questions

Attendance

- We will use Qwickly to take attendance bring a device such as a smartphone that can read QR codes.
- You get 3 free skips, but save them for necessities, as no other absences will be excused, aside from truly exceptional circumstances.

Grading

Plus/minus grading:

93-100: A

90-93: A-

87-90: B+

83-87: B

80-83: B-

77-80: C+

73-77: C

70-73: C-

67-70: D+

63-67: D

60-63: D-

<60: F

Grades will be weighted as follows:

- Attendance (10%)
- Gradescope Exercises (25%)
- Programming Assignments (35%)
- Midterm (15%)
- Final (15%)

Academic Honesty

READ THE STATEMENT IN THE SYLLABUS

- Discuss concepts, but don't share solutions or written work with other students
- Don't look for answers / code online or elsewhere
- No use of Al tools, such as ChatGPT for homework or programming assignments
- Automated tools will be used to discover cheating
- If unsure, check university guidelines or ask ignorance is not an excuse
- We will pursue the harshest penalties available, so please don't cheat!
- To be clear: you will fail the class automatically and be reported to the university

Important This Week

- Important this week:
 - Make sure that you can get into Gradescope create an account and use the course code that you were emailed (and which is also posted on Piazza).
 - Be sure that you have a computer where you can run Python
 - P0: Python tutorial is out (due 9/8 at 11:59 pm via Gradescope)
- Also important:
 - If you are wait-listed, you might or might not get in depending on how many students drop. Be patient if possible many students often drop early in the course.
 - Office Hours begin Friday

A definition for Al

A definition for Al

"Artificial Intelligence (AI) is a science and a set of computational technologies that are inspired by — but typically operate quite differently from — the ways people use their nervous systems and bodies to sense, learn, reason, and take action."

This is not a deep learning course!

...but it is highly relevant to understanding current deep learning research and broader AI systems

- Al is bigger than just deep learning
- Foundational AI techniques are still used in modern research and practice
- These topics are also critical for understanding deep learning
- ...and are often combined with deep learning

Example: Search methods

- Modern path planning still widely employs traditional search methods, such as A*
- Top-k sampling and beam search are used for LLM text generation and are variants of greedy search and UCS
- Game trees + search are the foundation of MCTS, which powers systems such as AlphaGo (alongside a deep learning component)

Example: Constraint satisfaction

- Large-scale logistics problems often modeled as CSPs
- Interesting connections to Bayes nets
- Combinatorially hard problems can be solved approximately by gradient descent!
- Recent neural trajectory planners use CSPs to find collision-free, safe plans
 - e.g. https://arxiv.org/html/2503.19466v1

Example: Reinforcement learning

- LLMs are "aligned" via RLHF
- AlphaGo also used techniques from RL
- Robot manipulation, parkour, soccer
- Most modern RL methods use neural network policies and/or value functions

Example: Particle filters / HMMs

- Particle filters still widely used for robot localization
- Hidden Markov Models are sequence models that preceded LMMs and were often used for part-of-speech tagging and language generation
- HMMs also closely related to POMDPs, which are now often solved by RNNs and Transformers

Example: Value of information

Active learning

Example: Perceptrons and kernel methods

- Perceptrons are a highly simplified model of a single neuron. Building block of neural networks.
- Kernel methods closely related to the attention mechanism in transformers
- Neural tangent kernel helps researchers understand the training dynamics of neural networks

Philosophical questions

Al is one of the great intellectual adventures of the 20th and 21st centuries.

- What is intelligence?
- What is a mind?
- What is consciousness?
- Can a computer have these?
- Can we build these? And how?

The science of making machines that:

The science of making machines that:

Think like people

Thinking Like Humans?

- The cognitive science approach:
 - 1960s ``cognitive revolution'': information-processing psychology replaced prevailing orthodoxy of behaviorism (reflexive behaviors, classical conditioning, etc.)
- Scientific theories of internal activities of the brain
 - What level of abstraction? "Knowledge" or "circuits"?
 - Cognitive science: Predicting and testing behavior of human subjects (top-down)
 - Cognitive neuroscience: Direct identification from neurological data (bottom-up)
 - Both approaches now distinct from Al
 - The available theories do not yet come close to explaining human intelligence and thinking

Images from Oxford fMRI center

The science of making machines that:

Think like people

The science of making machines that:

Think like people

Act like people

Acting Like Humans?

- Turing (1950) "Computing machinery and intelligence"
 - "Can machines think?" → "Can machines behave intelligently?"
 - Operational test for intelligent behavior: the Imitation Game

- Predicted by 2000, a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against Al in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning
- Problem: Does the Turing test really measure what we want?

The science of making machines that:

Think like people

Act like people

The science of making machines that:

Think like people

Think rationally

Act like people

Thinking Rationally?

- The "Laws of Thought" approach
 What does it mean to "think rationally"?
 Normative / prescriptive rather than descriptive
- Logicist tradition:
 - Logic: notation and rules of derivation for thoughts

 - Aristotle: what are correct arguments/thought processes?
 Direct line through mathematics, philosophy, to modern Al

Problems:

- Not all intelligent behavior is mediated by logical deliberation
 What is the purpose of thinking? What thoughts should I (bother to) have?
 Logical systems tend to do the wrong thing in the presence of uncertainty
 Why should we care about thought at all, when action is what matters?

The science of making machines that:

Think like people

Think rationally

Act like people

The science of making machines that:

Think like people

Act like people

Think rationally

Act rationally

Acting Rationally

- Rational behavior: doing the "right thing"
 - The right thing: that which is expected to maximize goal achievement, given the available information
 - Doesn't necessarily involve thinking, e.g., blinking
 - Thinking can be in the service of rational action
 - Entirely dependent on goals!
 - Irrational ≠ insane, irrationality is sub-optimal action
 - Rational ≠ successful
- Our focus here: rational agents
 - Systems which make the best possible decisions given goals, evidence, and constraints
 - In the real world, usually lots of uncertainty
 - ... and lots of complexity
 - Usually, we're just approximating rationality

Rational Decisions

We'll use the term rational in a very specific, technical way:

- Rational: maximally achieving pre-defined goals
- Rationality only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be:

Computational Rationality

Maximize Your Expected Utility

Course Topics

- Part I: Making Decisions
 - Fast search / planning
 - Constraint satisfaction
 - Adversarial and uncertain search
 - MDPs and Reinforcement learning
- Part II: Reasoning under Uncertainty
 - Bayes nets
 - Decision theory and value of information
 - Statistical Machine learning

■ Throughout: Applications, Ethics, and Societal impacts

A (Short) History of Al

■ 1940-1950: Early days

- 1943: McCulloch & Pitts: Boolean circuit model of brain
- 1950: Turing's "Computing Machinery and Intelligence"

■ 1950—70: Excitement: Look, Ma, no hands!

- 1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956: Dartmouth meeting: "Artificial Intelligence" adopted
- 1965: Robinson's complete algorithm for logical reasoning

■ 1970—90: Knowledge-based approaches

- 1969—79: Early development of knowledge-based systems
- 1980—88: Expert systems industry booms
- 1988—93: Expert systems industry busts: "Al Winter"

■ 1990—: Statistical approaches

- Resurgence of probability, focus on uncertainty
- General increase in technical depth
- Agents and learning systems... "Al Spring"?
- 2000—: Where are we now?

Designing Rational Agents

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its (expected) utility.
- Characteristics of the performance measure,
 environment, actions, and sensing dictate techniques
 for selecting rational actions
- By then end of the course you should understand:
 - General AI techniques for a variety of problem types
 - How to recognize when and how a new problem can be solved with an existing technique

