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Research Statement

I am a computer scientist specializing in computer vision (CV) and machine learning (ML). My research aims to
make fundamental contributions towards developing AI systems with rich visual reasoning capabilities. My re-
search is driven by the vast applications of computer vision and the potential for visual data analysis to provide
insights into social, cultural, and natural factors that impact our lives. For instance, data collected from personal
devices, citizen science platforms, social media, autonomous platforms, and medical devices can support innova-
tive applications in e-commerce, robotics, manufacturing, and healthcare. Similarly, data from satellites, weather
radars, and telescopes, and other sensor networks offer unprecedented opportunities to understand planet-scale
phenomena, such as the effects of climate change, and to shed light on processes that govern the physical world.

While recent advances in AI have the potential to dramatically change how we interact with the world, make de-
cisions, and design solutions for these applications, significant challenges remain. Current AI systems lack the
ability to perceive details, handle multiple modalities, interact with humans to solve complex tasks, tackle novel
tasks with limited supervision, and do not have the precision that scientists desire.

In addition to my core AI research which addresses these computational challenges, I engage in interdisciplinary
collaborations to solve problems of societal interest and to advance science. I collaborate with ecologists to ana-
lyze bird migration [8, 28, 43], with astronomers to uncover scientific insights from images of galaxies [23, 29, 41],
with chemists to develop representations of 3D materials [30], among others. Moreover, I am deeply involved in
community building. I have been a long-term organizer of the Fine-Grained Visual Categorization workshops and
recently organized the CV4Science workshop, which aim to foster collaborations between researchers in CS, hu-
manities, natural sciences, and industry. I also mentor projects in collaboration with non-profits though the Data
Science for Common Good initiative at the University.

Application areas My research is focused on the following areas:

• Fine-grained recognition. My earlier research developed state-of-the-art models for fine-grained categorization
tasks such species indentification (e.g., [26, 27]), texture and material recognition (e.g., [12, 13]), attribute recog-
nition of people and general objects (e.g., [3, 4, 35]). My recent research has focused on utilizing foundation
models such as CLIP, GPT4, and self-supervised learning to enable part and attribute recognition with unla-
beled and coarsely labeled data [11, 44–46, 55, 61, 62], and zero/few-shot learning [5, 54, 56]. With collaborators,
we have developed techniques for utilizing multi-modal data such as geographic location, textual description,
images and audio from iNaturalist and Wikipedia to enable better species indentification and range estimation.

• 3D shape understanding. My earlier research contributed to architectures for 3D shape classification and seg-
mentation tasks (e.g., [52, 53]), estimating 3D shapes from images (e.g., [18, 20, 32]), and methods for easier edit-
ing and manipulation of 3D shapes. My recent research extends these techniques with modern ingredients such
as NeRFs and self-supervised learning for learning dense 3D representations [6,7,17,19,22,47–50]. These meth-
ods can enable applications in graphics and robotics where 3D understanding is necessary.

• Applications. A significant component of my recent research involves collaborations with domain experts. I lead
the computer vision efforts for the “dark ecology” project, where we have developed techniques [8, 28, 43] to
study bird migration using radar imagery. This has enabled us to extract patterns of bird migration across the
entire United States and over three decades by analyzing archived weather radar data. The work has resulted
in novel scientific findings [2, 16] and high-impact publications [24], as well as coverage in popular media. I
also collaborate with astronomers to analyze high-resolution images of galaxies to uncover the dynamics of star
formation [23, 29, 41], with chemists to develop ways to analyze catalysts for chemical separation [30], and with
civil engineers to monitor terrestrial water systems [31]. Common research themes across these collaborations
include techniques to adapt CV models across heterogeneous domains, learning with limited amounts of super-
vision, and enabling scientists to draw conclusions from large datasets using imperfect AI systems.
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Research themes In the context of these applications my research follows two themes:

• AI with humans in-the-loop. My earlier research focused on designing annotation tasks to discover interpretable
parts and attributes [33,38], efficiently annotate data [36], and incorporate human feedback for deploying imper-
fect AI systems [60]. My recent research revisits these techniques to use modern AI systems for applications. For
example, we have developed a technique called DISCOUNT [40], which enables accurate and efficient counting
in large image collections by using humans to vet a fraction of the detector outputs. DISCOUNT was deployed for
estimating damaged buildings for disaster planning for the Red Cross and for estimating bird migration trends
from radar imagery. This work won the Best Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper Award at AAAI’24 (AI for Social Impact Track).

• Efficiency in learning. My earlier work contributed to improving the efficiency of recognition systems (e.g., [34,
37]), analysis of image representations for 3D shape understanding, and algorithms for few-shot learning. My re-
cent research focusses on techniues for learning from coarse labeled datasets, developing self-supervised learn-
ing techniques for 3D data, understanding properties of deep networks theoretically [10, 22, 51], and modeling
similarity between tasks for meta-learning [1, 15, 25, 57–59]).

Research collaboration, impact, and funding Within CS, I am a member of the CV, ML, and broadly AI commu-
nities. My research strategy is to publish fundamental and application-driven results in AI venues and collaborate
with domain experts to publish novel scientific findings in ecology, astronomy, chemistry, and remote sensing jour-
nals. My PhD students find these collaborations fruitful, and several of them have won the Outstanding Synthesis
Award, given to a few students each year in the Computer Science (CS) department. Besides this, I also engage
in community building to identify interesting problems and develop benchmarks. I have organized the last nine
Fine-Grained Visual Categorization workshops (FGVC3 – FGVC11), as well as the first CV4Science workshop, and
contributed several datasets to the community.

Since joining UMass, I have published 70 articles in highly selective CV, ML, and AI conferences, including 35 at
CVPR, ICCV, ECCV, KDD, SIGGRAPH, and AAAI, 18 articles at high-impact journals, and two book chapters. These
include 23 conference papers and 11 journal articles that were published since my Tenure application in June
2019. My publications have been cited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 timescited 26,419 times (h-index 47; i10-index 86) according to Google Scholar as of
June 2024. Papers that I have co-authored have received the Best Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper AwardBest Paper Award at AAAI (AI for Social Impact Track)
2024 [40], Best Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable MentionBest Paper Honorable Mention at CVPR 2018 [52], and Best Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student PaperBest Student Paper at WACV 2015 [60].

My work has been supported by eight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundationeight awards from the National Science Foundation (NSF), with three as sole PI
and five as Co-PI, as well as grants from the National Aeronautics and Space Administration (NASA), Climate
Change AI Foundation, and gifts from Dolby, Facebook, Adobe, and NVIDIA. Three NSF grants (one as sole PI
and two as Co-PI) and the NASA grant (as Co-PI) were awarded since I applied for Tenure. The UMass portions of
these awards total 5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars5.7 million US dollars, of which 2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million2.4 million are since my Tenure application.

On the education side, I have supervised twelve PhD students, seven of whom have graduated and taken up re-
search positions in industry, or have remained in academia as post-docs. One of my students, Zezhou Cheng, will
start as an Assistant Professor at the University of Virginia in Fall 2024.

Below, I describe my research contributions and future work organized into two thrusts: advancing visual recogni-
tion and applications, with a focus on work since my Tenure application.

1 Advancing Visual Recognition

The last few years have seen dramatic progress toward general intelligence with models such as GPT4, DALLE, and
Gemini, that can answer natural language questions and generate images corresponding to them across a wide
range of visual domains. We have also developed high-performance AI models for specific tasks such as playing Go,
protein folding, and species identification from images and sound. These models are increasingly being deployed
for analyzing vast datasets for scientific analysis and decision-making in novel ways.

However, deploying AI models for specific applications remains challenging. First, fields like astronomy and med-
ical imaging are constrained by the amount of data they can acquire and label. Similarly, on citizen-science plat-
forms like iNaturalist, despite millions of shared images, fewer than a few thousand species have sufficient obser-
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vations out of the possible millions of plant and animal species that exist on our planet. This makes it challenging
to train or adapt models with standard supervised learning. Second, current AI models are far from perfect. They
may introduce bias or have unacceptable error rates. Even worse, their performance may be unpredictable when
deployed in new domains. This makes it difficult to use AI models for scientific or high-stakes applications, where
precise characterization of failure modes or statistical guarantees in performance is essential.

My ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systemsMy ongoing research aims to improve the usability and precision of AI systems. I have explored the use of unla-
beled and coarsely labeled data to train models for recognition tasks such as species recognition from images,
audio, and text, as well as for segmenting parts and finding correspondences in both 2D and 3D objects [7, 11, 19,
22, 44–50, 55, 61, 62]. I have developed techniques to model and relate computer vision tasks that can be used to
solve meta-tasks such as dataset discovery, model transfer, and task grouping for multi-tasking [1,15]. Additionally,
I have developed techniques for 3D shape generation that provide better control in the generative process through
the use of shape handles, images, and even line drawings [6, 17]. Finally, I have developed human-in-the-loop
recognition techniques that can estimate quantities of interest to any desired level of precision when deploying
imperfect AI systems [40, 42]. I will briefly highlight each of these directions and explain how they connect to
various applications in the next section.

Fine-grained categorization Recognizing species of birds, or makes and models of cars is challening because the
subtle differences between categories are confounded by factors such as pose, viewpoint, and occlusion. My early
research focused on texture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generationtexture understanding and generation and developed techniques that combined the benefits
of deep learning with classical orderless texture representations [12,13], greatly improving performance on texture
and material understanding tasks. At ICCV 2015, we proposed bilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNNbilinear CNN [26, 27], a deep architecture that of-
fered the effectiveness of part-based representations, the dominant approach at that time, but did not require part
annotations. The key idea was a factorization of the representation as a product of two learnable deep network
representations designed to capture localized interactions. We also showed that the model is related to bag-of-
words representations and their deep variants [13, 14] and could be trained in an end-to-end manner. The work
was influential in the design of several architectures for fine-grained classification, and the idea of combining of in-
formation from multiple streams through product interactions has found its use in visual question answering and
activity recognition. Interestingly, these product interactions are ubiqutous in the attention layers of Transformers.

Recent work from the community has emphasized the role of large-scale, high-quality training datasets for strong
performance. In particular, the iNaturalist datasets (2018 to 2021) combined with ResNets have become a high-
performance baseline. However, the iNat21 dataset only covers a few thousand species, leaving a large number
of species in the long tail. Our ECCV’20 paper [56] explored the role of unlabeled datasets in improving the few-
shot performance of these models. We found that existing benchmarks for semi and self-supervised learning are
limited; they assume that images are evenly distributed across the (unknown) classes and that the unlabeled data
does not contain images from classes not in the test set. These conditions are rarely met in practice, especially in
fine-grained domains. For example, while it is easy to find images of Sparrows, it is more difficult to ensure that
are images of Brewer’s sparrow.

Our CVPR’21 paper [54] performed an extensive evaluation of existing semi-supervised learning methods on two
novel benchmarks and found them to be brittle in the presence of class imbalance and novel classes. We proposed
a distillation-based self-training approach that was more robust. These datasets were part of the challenges in the
FGVC workshop in 2021 and 2022. In a follow-up BMVC’21 paper [55], we proposed ways to incorporate taxonomic
labels within existing semi-supervised learning frameworks to further improve their robustness, as seen in Fig. 1.

Beyond categorization My recent research has explored the role of self-supervision and coarse supervision be-
yond classification tasks, extending to part segmentation and landmark detection tasks. Obtaining pixel labels or
landmark annotations is time-consuming, but being able to estimate these labels from images can enable appli-
cations in image editing, animation, and body shape and pose estimation for animal monitoring. Our ICCV’21
work [11] developed a framework for learning landmarks from a collection of images of a category based on equiv-
ariant and invariant learning. We observed that most self-supervised learning techniques focus on learning rep-
resentations invariant to photometric and geometric transformations. However, the emergence of invariance is
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Figure 1: Learning from coarse supervision such as taxonomic labels (left) and annotation styles (middle). In both
cases, we assume that the coarse labels are conditionally independent of the image given the fine label, as shown
by the graphical model (right). Our recent work [8, 45, 55] learns to model the conditional distributions among
labels, allowing learning from diverse and coarsely labeled data.

gradual in the layers of a convolutional network; early layers are nearly equivariant. By combining features from
multiple layers of the network and training a lightweight network to be spatially equivariant, we obtained detailed
spatial representations of objects. These representations can be used for image matching and landmark predic-
tion. Our approach was significantly faster and more accurate than existing methods.

While unsupervised learning is attractive, there are often labeled datasets corresponding to related tasks that could
be used to improve performance. For example, we found that different researchers had labeled bird roosts in radar
images to conduct specific studies. However, the labels have widely different annotation styles; for example, some
drew smaller bounding boxes than others, and they were across different subsets of data. Training a model by
combining these datasets was not effective as the performance metrics and training objectives were affected by
the heterogeneous annotation styles. In our AAAI’20 paper [8], we developed a latent variable model to account
for the annotation styles, which resulted in a better model and meaningful performance metrics.

Our ECCV’22 paper [45] extended the framework to learn part segmentations by utilizing datasets consisting of
coarse labels such as bounding boxes, figure-ground masks, and keypoint annotations (Fig. 1). We developed a
probabilistic framework to infer the latent fine labels given coarse labels and the image in an iterative framework,
where we also learned how to model the relationships between fine and coarse labels. We assumed that coarse
labels are conditionally independent given the fine labels and parameterized these mapping using neural net-
works. The paper developed an amortized inference scheme, which made learning efficient and allowed the use of
existing black-box models. This led to more accurate models than multi-tasking and transfer learning approaches.

Generative and contrastive learning In another line of work, we compared features from contrastively trained
models with generative models such as GANs for image segmentation [44]. Both techniques learn from unlabeled
data in different ways. At the time, several methods proposed using GANs to generate synthetic data for training
but lacked a comparison with contrastive approaches. In our paper, we developed a strong baseline for using
contrastively trained representations for segmentation and demonstrated that they are more effective than GAN-
based representations. Additionally, contrastive representations were faster to train and simpler to use. We also
highlighted that certain biases get amplified when training models on AI-generated datasets.

The debate over whether generative models are effective representation learners for images has resurfaced with
the development of diffusion-based generative models, particularly stable diffusion. Recent research has shown
that the features from stable diffusion models possess different properties than those from contrastively trained
representations, such as DINO, and can be combined for added benefits.

Learning from text and large language models (LLMs) Arguably, the biggest improvement in image recognition
systems has come from utilizing vast amounts of image and text data on the web as a source of supervision. For
example, CLIP shows strong zero-shot and few-shot performance across existing benchmarks. Several techniques
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Figure 2: DISCOUNT uses detector-based importance sampling for estimation. (a) Geographical regions
S1,S2, . . . ,S7 where we want to estimate counts of damaged buildings. (b) A building damage detector is applied
on satellite imagery to obtain approximate counts g (s) for each tile (shown as dots). (c) Tiles selected for screening
to determine true counts f (s). (d) Counts (C ) and confidence intervals (σ) are estimated for all regions. (e) DIS-
COUNT outperforms Monte Carlo and covariate-based sampling.

have been proposed to further improve performance using language data obtained from the web or large language
models (LLMs) such as GPT4. However, training or fine-tuning CLIP when performance is poor requires large
datasets of aligned language and image data, which can be hard to obtain.

Our recent CVPR’24 work [46] proposed combining fine-grained image datasets such as iNaturalist with sum-
maries of categories obtained from LLMs to fine-tune CLIP and related vision-language models. This form of
supervision is easy to generate (e.g., using Wikipedia pages or prompting LLMs appropriately); however, the su-
pervision is coarse because sets of images are aligned with sets of text descriptions. We found that with a suitable
change in the loss formulation, we can fine-tune CLIP, resulting in much higher zero-shot and few-shot perfor-
mance in fine-grained domains.

More recently, we have been investigating ways to combine location data from observations, image data, and
language data describing habitat and range preferences of animals to better estimate the distribution of particular
species across the earth.

Statistical estimation with AI and humans in-the-loop Many applications use CV to detect and count objects
in massive image collections. However, automated methods may fail to deliver accurate counts, especially when
the task is very difficult or requires a fast response time. For example, during disaster response, aid organizations
aim to quickly count damaged buildings in satellite images to plan relief missions, but pre-trained building and
damage detectors often perform poorly due to domain shifts. Similarly many applications in ecology and remote
sensing aim to make measurements (e.g., estimating populations across time, or surveying species diversity) to
answer science or policy questions (e.g., which North American bird species are declining fastest?). In such cases,
there is a need for human-in-the-loop approaches to accurately count with minimal human effort.

Our AAAI’24 work [40] developed DISCOUNT– a detector-based importance sampling framework for counting
in large image collections (Fig. 2). DISCount uses an imperfect detector and human screening to estimate low-
variance unbiased counts. We propose techniques for counting over multiple spatial or temporal regions using a
small amount of screening and estimate confidence intervals. This enables end-users to stop screening when es-
timates are sufficiently accurate, which is often the goal in real-world applications. We demonstrated our method
with two applications: counting birds in radar imagery to understand responses to climate change, and counting
damaged buildings in satellite imagery for damage assessment in regions struck by a natural disaster (see Fig. 2).
On the technical side we developed variance reduction techniques based on control variates and proved the (con-
ditional) unbiasedness of the estimators. DISCOUNT leads to a 9-12× reduction in the labeling costs to obtain
the same error rates compared to naive screening for tasks we consider, and surpasses alternative covariate-based
screening approaches. The work was awarded the Best Paper in the AI for Social Impact Track at AAAI’24.

Our ECCV’24 paper [42] extended this framework for estimating cluster counts using a pairwise similarity model.
This facilitates population size estimation by combining imperfect Re-ID systems with small amounts of human
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vetting. We introduced a nested importance sampling approach which results outperforms existing active cluster-
ing approaches on a variety of animal Re-ID tasks.

Understanding deep networks Some of my research has focused on understanding the properties of neural net-
works to inform design choices, especially when data is limited. In CVPR’19 [10], we developed a Bayesian in-
terpretation of the “deep image prior" work by analyzing the properties of convolutional networks with random
parameters. We showed that random networks exhibit spatial smoothness properties in their generated outputs,
which can be precisely characterized by a Gaussian process (GP) whose mean and covariance depend on the net-
work architecture. This allowed us to design network architectures with different smoothness preferences and
improve inference for denoising tasks.

In a follow-up work, we precisely characterized the spectral bias, i.e., the preference for learning smooth functions,
and how to control it [51]. We also extended the work to describe manifold data such as point clouds and demon-
strated how to estimate smooth surfaces from point clouds by fitting a neural network to them [22], or estimating
3D shapes from sparse views using silhouettes or depth maps [21]. Such methods have become increasingly com-
mon with the introduction of NeRFs, where the architecture itself provides a smoothness prior.

Modeling and relating visual tasks Our TASK2VEC paper [1] proposed a technique to map CV tasks into em-
beddings in Euclidean space, where distance in the embedding space reflects task similarity. A recently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awardedrecently-awarded
NSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grantNSF grant aims to improve the framework to better undestand the space of tasks, and to solve meta-tasks such as
dataset discovery, modeling transfer, and multi-tasking. With the growth of publicly available datasets and models,
being able to quickly find similar tasks and their solutions can enable one to quickly develop solutions for the task
in hand. Our CVPR’24 work [15] developed TASK2BOX which replaces Euclidean embeddings with box embed-
dings, allowing of assymetic relations between tasks such as transfer and containment. We used this framework
to predict relations between novel tasks as well as to visualize publicly-available computer vision datasets. Unlike
t-SNE, box embeddings allow better visualization of their hierarchical relationships.

3D shape understanding and generation There is a growing need to analyze and generate 3D shape data for
applications in computer graphics, robotics and autonomous driving. However, existing datasets and techniques
for processing 3D data are lacking in comparison to those for image data. My early research at UMass, in collab-
oration with several colleagues and graduate students advanced techniques for 3D shape analysis and synthesis.
For example, we developed the multi-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNNmulti-view CNN [53] for view-based representations of 3D shapes. The architec-
ture is end-to-end trainable and benefits from transferable representations learned on large-scale image datasets.
Although several new techniques were proposed since, a survey presented at an ECCV 2018 workshop [57] showed
that multi-view architectures outperform these techniques when they are combined with the latest image classifi-
cation networks. Multi-view representations were also effective for 3D shape segmentation and other tasks.

My recent work has focused on learning 3D representations for segmentation and correspondence tasks with less
supervision. In our ECCV’20 paper [19], we demonstrated that using convex decomposition of 3D shapes as a
proxy task leads to effective representations for part segmentation. This approach was based on the observation
that most parts of natural and man-made objects are convex due to physical constraints or ease of assembly. Our
results for few-shot segmentation on the ShapeNet dataset were state-of-the-art at the time of publication.

Building on this, we incorporated convex decomposition within the network architecture through an end-to-end
primitive fitting [47]. This simplified the learning and offered flexibility in choosing primitives. Unlike our ECCV’20
work, which relied on an off-the-shelf approximate convex decomposition library, this new framework was based
on our PARSENET approach [49], which developed a parametric surface fitting method for points.

In ECCV’22, we introduced MVDECOR [50], a framework that leverages view-based representations for 3D shape
correspondence tasks. This approach utilized equivariant learning across images by rendering the 3D data and
enforcing geometric consistency. However, the pipeline is most effective in domains with high-quality rendering
engines, such as human bodies.

My recent work has also focused on providing users with better control when generating 3D data. While uncon-
ditional and text-based 3D shape generation have been successful, content creators use a wide range of tools for
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Figure 3: Extracting biological information from weather radars. (a) We developed MistNet [28], a deep network
capable of separating biology from rain, allowing us to estimate the density and velocity of flying animals at the
continental scale and across decades. (b) The exodus of birds, bats, and insects can be detected on weather radars
using CV models we developed [8, 43], allowing us to study phenomena tied to specific species.

3D editing, as indicated by the complexities of software such as 3DS Max and Maya. In our CVPR’20 paper [17], we
developed a generative model for shape handles—lightweight primitives that allow for explicit control over the 3D
shape. Examples include rigging cages and primitives, which are often used by 3D content creators to manipulate
shapes efficiently. Our paper introduced an auto-regressive model to generate sets of primitives that approximate
the 3D shape. The model was trained without explicit supervision in an end-to-end manner using a reconstruc-
tion objective. A side effect of this learning process was that the model implicitly learned correspondences and
semantic parts across a shape collection.

More recently, our ECCV’22 work [6] developed a method to edit 3D shapes using images, sketches, and text in a
unified manner. Our model learned a latent space over the 3D shapes and mappings from individual modalities to
the latent space, allowing one to combine feedback across multiple modalities seamlessly.

Ultimately, these models are limited by the availability of 3D data, which is much harder to collect than images.
In our “Accidental Turntables" project [9], we explore the use of videos of rotating objects to collect 3D data using
off-the-shelf object detection, tracking, and structure-from-motion techniques. While these methods sometimes
fail, we demonstrate that the data can be used to train models for relative pose estimation, offering robustness that
training on synthetic data does not provide. We have also explored how 3D shapes can be estimated from a few
views of an object by aligning local NeRF-based representations and synchronizing poses.

2 Applications

Radar aeroecology Weather radar networks offer an unprecedented opportunity to study dynamic, continental-
scale movements of animals over a long time. For example, the U.S. National Weather Service operates a network
of 143 radars in the contiguous U.S, with data archive dates from the early 1990s. These radars were designed to
study weather phenomena, such as precipitation and severe storms, but are very sensitive and turn out to also
detect flying animals, including birds, bats, and insects. Radars can also detect phenomena that can be matched
to individual species, such as insect hatches and departures of large flocks of birds or bats from roosting locations.
However, the scope of ecological research using weather radar has historically been limited due to the difficulty of
accessing the biological information in the data.

I lead the computer vision efforts for a NSF funded dark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecologydark ecology project — a research collaboration between
the University of Massachusetts and the Cornell Lab of Ornithology. Together with collaborators, in particular
Prof. Daniel Sheldon at UMass, we developed new methods to measure and predict biological activity in the U.S.
weather radar data and conducted long-term large-scale analyses of bird migration. We developed MistNet [28], an
AI system to discriminate between precipitation and biology in radar data and enable massively scalable analyses
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(Fig. 3(a)). The project led to a number of high impact publications, including the first continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analysesfirst continent-scale radar analyses
to document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North Americato document multi-decadal decline shifts in timing of bird migration in North America [24]. The work has been cov-
ered by dozens of news outlets and inspired community-wide conservation efforts.

Another, recently funded NSF project in collaboration with University of Colarado and Oklahoma State University,
aims to (1) understand how global environmental change has impacted seasonal timing and population abun-
dance of aerial insectivores over the past twenty-five years and (2) determine drivers of recent within and between
seasonal variation in timing and abundance. Aerial insectivore populations have shown precipitous declines in
the last half century — often at much steeper rates than other aerial taxa. Understanding mechanisms driving
these changes would have broad implications for hundreds of species of birds, bats, and insects, and serve as an
indicator of terrestrial and aquatic ecosystem health.

Over the last few years we have developed a CV system to detect signatures of roosts in radar data [8], and a pipeline
to process large-scale and long-term data in the Great Lakes area in the U.S. (Fig. 3(b)). This work proposed a
benchmark and developed ways to train Faster R-CNN detectors using annotations with varying labeling styles as
we described earlier. We also developed a model that uses spatio-temporal information (e.g., previous two scans)
which has better precision at the task [43]. The data from the models has also led to two scientific publications [2,
16] in high-impact journals.

While CV made it possible to perform the analysis, it still took more than 180 human hours to screen the model
ouputs across nearly 600,000 radar scans in the Great Lakes region. Despite years of effort from the team the
detector performance is far from perfect. This is often a sitution a scientist faces when using off-the-shelf AI system
which does not have high-enough precision for their needs. This motivates methods like DISCOUNT which allow
end users to estimates quantities of interest with statistical guarantees for a given amount of effort. Our ongoing
work aims to deploy DISCOUNT within the labeling UI to enable scaling of the study to the entire US archive to
unlock new biological information.

Astronomy I collaborate with Astronomer Prof. Daniela Calzetti to develop algorithms for search, classification,
and shape measurement of young star clusters in high resolution images of galaxies. We developed STARCNET, a
deep network capable of classifying star clusters into various morphological types and achieving accuracy com-
parable to human experts [41]. Our initial tests were performed on the two closest galaxies to our own Milky Way
(M31 and M33), and then extended to M51 and NGC628, which are further away from us. These are well-studied
galaxies for which high-fidelity catalogs already exist, and can be used for training and evaluation of automatic
systems. Subsequently, we used the model to analyze star cluster formation and evolution in the M101 galaxy [29].

The recent launch of the James Webb Space Telesope (JWST) is paving the way to answer some of the remaining
questions in star formation: 1) what determines the (low) efficiency of star formation in galaxies? Is this regulated
at the local (cloud) or global (galaxy) level? 2) Which are the dominant mechanisms that enable recently formed
stars to emerge from their natal cocoons of dust and gas? 3) How do those mechanisms depend on the physical
parameters of the stellar populations and on the galactic environment? A recently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposalrecently funded NSF proposal will help
us answer some of these questions by combining the data from ALMA, JWST and Hubble Space Telescope and our
previously developed AI tools to search for and identify star clusters across various stages of evolution. We piloted
the tool in some initial studies [39] to study the feedback mechanisms in star formation [23].

Predicting material properties for separation processes Separation of chemical mixtures accounts for more
than 10% of global energy consumption, driven heavily by thermal processes such as distillation. Replacing these
energy-intensive traditional separation processes with more efficient alternatives is projected to eliminate 100 mil-
lion tonnes of CO2 emissions and save billions of dollars in energy costs. Among the alternatives, separation using
nanoporous materials, for example in an adsorption or membrane-based setup, can be an order of magnitude
more efficient. Despite their great promise, identifying the optimal material out of the large pool of candidate
structures for a given separation task requires significant resources and prolongs the development cycle.

Ongoing work in collaboration with Prof. Peng Bai in Chemical Engineering, initially funded by Climate Change AI
Foundation, develops AI techniques to predict optimal materials for targeted separation applications (Fig. 4). Our
primary focus is on nanoporous zeolites, for which we already have several existing datasets and the capability
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Figure 4: Zeolites have nanometer-sized pores that can adsorb and react with molecules selectively. We developed
ZeoNet [30], a 3D ConvNet that can predict the adsorption properties of target molecules. Compared to the geo-
metric features shown on the right (a), the ConvNet’s predictions are much more accurate (b).

to generate a new dataset relevant for CO2 capture. We developed ZeoNet [30], a representation learning frame-
work using ConvNets and 3D volumetric representations for predicting adsorption in zeolites. ZeoNet was trained
on the task of predicting Henry’s constants for adsorption, kH, of n-octadecane in more than 330,000 known and
predicted zeolite materials. Employing a 3D grid based on the distances to solvent-accessible surfaces, a volumet-
ric representation that can be generated efficiently, the best-performing model achieved a correlation coefficient
r 2 = 0.977 and a mean-squared error MSE = 3.8 in lnkH, which corresponds to an error of 9.3 kJ/mol in adsorp-
tion free energy. In comparison, a model based on hand-designed geometric features has values of r 2 = 0.777 and
MSE = 36.6. ZeoNet is also relatively efficient and can process 8 structures per second on an Nvidia RTX 2080TI
GPU, orders of magnitude faster than forcefield simulations.

These results provide benchmark quality data and comprehensive guidelines for using 3D ConvNets to model
porous materials. Our ongoing work aims to extend these ideas to a broader class of materials such as metal or-
ganic frameworks (MOFs) and learn to predict their properties for other tasks such as CO2/N2 and ethanol/water
separation tasks at multiple pressures. On the representation learning side we are investigating equivariant repre-
sentations and self-supervised learning to make training label efficient.

Mapping and monitoring rivers networks NASA’s recently launched SWOT mission promises a sea change for
terrestrial hydrology. Principally, SWOT’s reservoir/lake volume change observations and SWOT’s derived river
discharge product are each unprecedented in terms of their resolution, scale, and frequency. I lead the computer
vision efforts within a large collaborative project across Umass Amherst, University of Pittsburgh, University of
North Carolina, and NASA, which seeks to integrate data from the soon-to-be launched SWOT mission with tradi-
tional optical imagery from Landsat and Sentinel-2 into a common platform to dramatically and uniquely advance
our understanding of the world’s river water quality and quantity, informing the management and use [31].

Beyond these projects, my research group is developing methods to estimate damaged buildings for disaster response
planning, landcover mapping, biodiversity estimation from remote sensing data, as well as general tools that can
enable interactive estimation building on DISCOUNT, test-time adaptation, active learning, and language models.

3 Future Work and Conclusion

While we have made significant progress in advancing AI in recent years, several technological and social chal-
lenges must be addressed for its widespread adoption. My research tackles several key aspects: generalization,
robustness, and usability of AI systems in visual domains.

In core computer vision, I aim to improve our understanding of spatio-temporal domains such as video, audio,
and remote sensing data. This includes object detection, tracking, 3D shape estimation, depth estimation, as well
as various temporal reasoning tasks. Active learning, labeling, and statistical estimation in these domains present
unique challenges as individual frames cannot be treated independently. I also plan to continue our research on
how to combine language and vision for multi-modal reasoning and for learning generalizable representations.
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I plan to strengthen collaboration with domain experts to better understand the role of AI within scientific fields.
AI, particularly computer vision, has benefited from benchmarks that allow systematic evaluation and adoption of
methods. However, the utility of standard benchmarks such as CIFAR and ImageNet is becoming limited. I intend
to introduce better benchmarks and tasks inspired by real-world use cases and problems of societal interest, both
through publications and workshops such as FGVC and CV4Science, which I help organize.

For scientific tasks, the goal often involves performing measurements on a large, but finite collection of images.
My ongoing and future work aims to better incorporate human feedback to improve estimations when using AI
models. Human effort can be utilized in multiple ways, such as active learning to improve model performance,
data collection in conjunction with semi-supervised learning, providing detailed feedback or labels, or direct sta-
tistical estimation, as we proposed in DISCOUNT. Each of these tasks has different associated costs, and currently,
no framework allows end-users to explore these options for their specific problems without requiring significant
expertise. Through collaborations, I aim to understand these trade-offs for use cases in radar aeroecology, astron-
omy, and remote sensing tasks.

I am also interested in advancing tools for fine-grained recognition to better monitor biodiversity. Two ongoing
collaborations with Prof. Van Horn and the iNaturalist team focus on building benchmarks and models for recog-
nizing animal species based on sound, and incorporating observation data across thousands of species and their
habitat and range preferences extracted from text to develop better species distribution models.
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