

Describing Textures

interlaced, smeared, swirly

scaly, crosshatched, flecked

- Goal: automatically describe textures by using English words (e.g. interlaced, lace-like, fibrous, ...)
- **Challenges:** defining, learning, and detecting multiple subjective attributes per texture
- **Applications:** human-centric texture description Contributions

Describable Textures Dataset (DTD)

- Low dimensionality texture representation,
- Above 10% accuracy improvement over existing state-of-the-art on FMD and KTH-TIPS2-b
- Coarse-to-fine strategy to cheaply label joint attributes
- Evaluation of texture representations methods on DTD

Describable Textures Dataset (DTD)

- 5640 images, 47 attributes, 120 images per attribute
- Collected in the wild (Internet: Google, Flickr)

http://goo.gl/w0E8P5

Describing Textures in the Wild

Mircea Cimpoi¹, Subhransu Maji², Iasonas Kokkinos³, Sammy Mohamed⁴, Andrea Vedaldi¹

¹Visual Geometry Group, University of Oxford {mircea, vedaldi}@robots.ox.ac.uk ²Toyota Technological Institute smaji@ttic.edu ³Ecole Centrale Paris/INRIA-Saclay iasonas.kokkinos@ecp.fr ⁴Stony Brook sammy.mohamed@stonybrook.edu

Data Collection

Texture vocabulary:

- Starting point: list of 98 words in [Bhushan 97]
- Discarded non-visual words (e.g. "jumbled" or "rhythmic")
- Merged similar words (e.g. "corkscrewed" + "coiled" + "spiraled") Example images:
- Consider each word as key attribute
- Query Google (e.g. "corkscrewed textures", "coiled pattern")
- Discard or crop images covered by less than 90% with content representing the query

Coarse-to-Fine Joint Annotation

Annotations using Amazon MTurk Stage 1

Verify key attributes.

Stage 2

Sequentially collect joint

annotations based on

co-occurrence probability;

 Avoid labelling low probability attributes, given key attribute;

• Using classifier scores to further

- Bag of Visual Words approach
- 470 dimensional vocabularies, built using K-means 10 visual words per texture
- Filter banks, SIFT, LBP and image patches as local descriptors
- SVM with several kernels: linear, Hellinger, χ^2 and exponential χ^2

State of the Art on Texture Datasets

- Improved Fisher Vector (IFV) and Deep Convolutional Activation Feature (DeCAF) are tuned for object recognition, but perform very well on textures Combined, lead to state-of-the-art results on all datasets

Dataset

CUReT
UMD
UIUC
KTH-TIPS
KTH-TIPS2a
KTH-TIPS2 <i>b</i>
FMD
DTD
DTD(AP)
DTD-J(AP)

Local Descriptor Comparison on DTD

Kernel				
Linear	Hellinger	add- χ^2	exp-χ²	
25.8 (0.1)	28.9 (0.5)	31.9 (0.5)	35.6 (0.4)	
18.1 (0.9)	24.1 (0.1)	29.2 (0.5)	33.4 (0.5)	
13.9 (1.0)	20.1 (0.5)	23.1 (0.3)	26.5 (0.4)	
16.7 (0.8)	24.1 (0.3)	28.6 (0.5)	32.3 (0.5)	
8.9 (0.7)	9.7 (0.7)	12.4 (0.5)	19.7 (0.5)	
19.6 (1.0)	22.7 (0.4)	26.5 (0.4)	31.2 (0.2)	
31.2 (0.3)	38.6 (1.0)	41.4 (1.5)	44.1 (1.7)	
30.6 (0.6)	38.1 (1.2)	40.6 (1.4)	43.3 (1.9)	
	Linear 25.8 (0.1) 18.1 (0.9) 13.9 (1.0) 16.7 (0.8) 8.9 (0.7) 19.6 (1.0) 31.2 (0.3) 30.6 (0.6)	Linear Hellinger 25.8 (0.1) 28.9 (0.5) 18.1 (0.9) 24.1 (0.1) 13.9 (1.0) 20.1 (0.5) 16.7 (0.8) 24.1 (0.3) 8.9 (0.7) 9.7 (0.7) 19.6 (1.0) 22.7 (0.4) 30.6 (0.6) 38.1 (1.2)	KernelLinearHellinger $add-\chi^2$ 25.8 (0.1)28.9 (0.5) $31.9 (0.5)$ 18.1 (0.9)24.1 (0.1)29.2 (0.5)13.9 (1.0)20.1 (0.5)23.1 (0.3)16.7 (0.8)24.1 (0.3)28.6 (0.5)8.9 (0.7)9.7 (0.7)12.4 (0.5)19.6 (1.0)22.7 (0.4)26.5 (0.4) 31.2 (0.3)38.6 (1.0)41.4 (1.5) 30.6 (0.6)38.1 (1.2)40.6 (1.4)	

Experiment with various encodings on top of best performing local descriptor (SIFT)

SIFT				IFV +	Previous
IFV	BOVW	VLAD	Decar	DeCAF	best
99.6±0.4	98.1±0.9	99.1±0.6	98.9±0.4	99.8±0.2	99.4
99.2±0.4	98.1±0.8	99.4±0.4	97.4±0.7	99.5±0.3	99.7±0.3
97.2±0.8	94.4±1.3	97.3±0.9	95.5±0.9	99.0±0.5	99.4±0.4
99.7±0.4	98.6±1.0	99.2±0.8	98.4±0.8	99.8±0.2	99.4±0.4
82.5±5.3	74.8±5.4	77.6±4.3	77.7±2.0	84.3±1.8	73.0±4.7
69.3±0.9	58.4±2.2	61.7±2.2	70.4±1.8	76.0±2.9	66.3
58.1±1.7	49.5±1.9	54.8±1.8	57.6±1.2	65.6±1.4	57.1
58.6±2.0	53.6±1.5	57.3±1.5	52.5±1.3	64.7±1.6	
60.3±2.8	52.2±2.2	58.5±2.4	51.3±1.6	66.7±2.3	
60.6±2.4	53.6±1.9	58.9±1.9	51.7±1.5	66.5±1.9	

Describable Attributes as Representation Use the scores from the 47 classifiers trained on DTD as a meaningful, low dimensionality descriptor. Low dimensionality allows to apply an RBF kernel DTD descriptor learned on IFV + DeCAF, alone, exceeds previous state-of-the-art on FMD and KTH-TIPS2-b Combined with IFV and DeCAF results in more than 10% above previous best.

- DTD(IFV)
- DTD(IFV)_R
- DTD(FVCA
- DTD(FVCA
- IFV+DTD_R
- DeCAF+D
- IFV+DeCA

IFV+DeCA

Conclusions

- joint subjective attributes

References

[Bhushan 97] N. Bhushan, A. Rao, and G. Lohse. *The texture lexicon: Understanding the* categorization of visual texture terms and their relationship to texture images. Cognitive Science, 21(2):219–246, 1997

Acknowledgements

This research is based on work at the 2012 CLSP Summer Workshop. It was partially supported by NSF Grant #1005411, ODNI via the JHU HLTCOE and Google Research. Mircea Cimpoi was supported by ERC grant VisRec no. 228180 and Iasonas Kokkinos by ANR-10-JCJC-0205.

ature	KTH-TIPS2-b	FMD	
IN	64.07 +/- 3.07	45.70 +/- 1.33	
BF	67.68 +/- 2.18	50.94 +/- 1.46	
AF) _{LIN}	70.31 +/- 0.91	53.72 +/- 2.16	
AF) _{RBF}	72.45 +/- 2.30	57.74 +/- 1.68	
BF	76.17 +/- 1.21	65.12 +/- 1.86	
TD _{RBF}	74.92 +/- 1.18	64.86 +/- 2.24	
۶.	76.10 +/- 3.14	65.90 +/- 1.50	
F+DTD _{RBF}	77.44 +/- 2.16	68.28 +/- 1.48	
interlaced (0.99) grid (0.93) meshed (0.82)	swirly (0.84) interlaced (0.80) crosshatched (0.35)	smeared (0.93) banded (0.83) stratified (0.35) bumpy (0.4	6) 57) 46)

Introduced a large texture dataset, exhaustively labelled with

Proposed a low dimensionality, meaningful, texture descriptor based on describable texture attributes

Set new state-of-the art on challenging material datasets