Parsing World’s Skylines using Shape-constrained MRFs
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Problem and contributions Region representation \ Rectangle MRF O(mn?) ; Experimental evaluation
An approach for segmenting buildings in skyline images Upper boundary is a rectangle parameterized by (left, right, top). Evaluation metric
. ¢, (b, Brute-force s_ear.ch for optimal rectangle can be done in O(1) t_ime Let G; and P; denote ground truth and predicted labeling.
l Dy(b) = a(pmjn per value using integral images, hence optimal can be found in Let Gi and Pi denote the set of pixels labeled as building i.
L‘ + (1 - lf) min T,,(b, k)) + (1 - a)S,(b)  O(mn?) time. Addltlonally can enforce width, height and aspect The average overlap for the image with N buildings is defined as :
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We report mean average overlap (MAQO) scores over the fest set.
Interactive setting

Seeds are provided as input along with upper/lower boundary

" Tiered MRF o(mzn) Automatic setting
lI!' | /.- . — — < Only the upper/lower boundaries are provided, i.e., no seeds. We

We use priors on topology and shape of the Unary term D,,(b)for pixel p, building b.

buildings to develop a MRF solver that is 10x faster
and more accurate than a graph-cut based approach. ' mm

Energy minimization formulation (MRF)

For a set of pixels P and set of possible labels L, energy of
labelingF : P - L, is defined as : ﬂﬂl!i E]l "i
@J}

Color C,(b, k) modeled with Gaussian Mixture
Models representing color contribution at pixel p
in the k" cluster in building b.

B Texture T, (b, k) is modeled as X* distance _ | | Upper boundary is x-monotonic’, .e. intersects each column only start with several automatic segmentation algorithms and improve
E(F) — Dp(Fp) + qu(Fp, Fq) of the local histogram at pixel p from the mean Spatla_l S,(b) modeled as horlzontgl _dlstance once. Optimal path can be Computed using dynamic programming Ta over them using the shape and topological priors we proposed.
peP p.aeN histogram at k™" cluster center for building b. of pixels p from center of the building b. O(m?2n) time [1,2]. Fast, but cannot enforce shape priors efficiently.
Where V,,(a,b) = Aexp (—Y(Ip - 1q)2) A(a#b)and I, denotes A h ) For evaluation we first perform a matching b.etween the ground trgth
image intensity at pixel p. The optimal labeling can be pproac an(i she_gmented labels m: N — M. Accuracy s me(?sured under this
-  _ : matching: i m(i
obtained by, F* = argminsE(f) Topological structure J A0(G P, = G 0P
: : ( D I) max j m(i)
; Given label a, background beneath it can be N —/ G; U P,
Skyline-12 dataset obtained by copying labels top to bottom, . . —
Consisting of 120 h|gh resolution Sky“ne imageS, with 10 a”OWing us to SimU|taneOUS|y expand and T g 1 sl 5
images from each of the 12 cities - Chicago, Dallas, contract regions with label a, i.e. only the upper - 2 2 mm Graph based[4]
Frankfurt, Hong Kong, Miami, New York, Philadelphia boundary needs to be estimated per building. : Refined MRF O(mn®+ m“d) ,
, MONY RONG, ’ ’ phia, Foreground a and background . o . - Standard MRF  62.3%  69.5s 2456%  20.17%  26.35%
Seattle, Shanghai, Singapore, Tokyo and Toronto. Only refine the upper boundary within the width of the building. |
Input to the algorithm Method (1) Order the buildings Constrains the overall segmentation and improves accuracy. Tiered MRF  59.4%  7.5s  27.22% 25.86 % 31.51%
Code and dataset available at : based on the lowest seed pixel. Given a building of width d the refinement can be computed in Rectangle MRF 62.0%  5.5s  27.33% 27.87 % 32.79 %

http://ttic.uchicago.edu/~smaiji/projects/skylineParsing

i Images within each city are .| J—

1% " divided into training, testing
sacesmi gand validation in 3:3:4 ratio.

(2) lteratively refine upper boundary. ~ O(m?d) time, for a total of O(mn? + m#d) per building. Refined MRF  63.4%  92s  27.30%  27.42%  33.13%

Algorithm 1 Greedy skyline segmentation
l..m'l iﬁ-ﬂ

Require: data D, pairwise V', boundary (I, u)
1: Initialize, initial labeling F from unary labels
2: foriter:=1to Kdo
3:  Initialize, frontier f < [

B i & 4: fora:=1toNdo Ground Truth
m Annotations of upper 5 ?a — Uplt()?fgm)mdaw(a, F,D,V, f,u)
6: — maxi{ J,3iq
boundary, lower bO‘,mdary p— - i 7 F < updateLabels(F, )
and seeds are provided for f . 8: end for
. each image, as seen below: image, upper/lower boundary, seeds 9: end for References f
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