
a

When we can minimize risk?
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Motivation
We investigate the Bayeisan aspects of 
PAC-Bayesian generalization bounds.

Contributions: Posterior distributions that 
allow efficient sampling procedures
• Posterior distributions for supermodular 

predictions.
• Predictive models for approximate 

inference / LP relaxations.
• Empirical risk minimization for any loss 

function and smooth posterior. 

Learning efficient posteriorsPAC-Bayesian generalization
For any δ and any λ>0, with probability at 
least 1-δ over the draw of the training set, 
the following holds simultaneously for all w: 

while

Empirical Evaluation

Background
Supervised learning: given training data 
(x,y) ∈ S, learn parameters w to derive 
prediction rule yw(x) that minimizes the risk. 

• Maximum A-Posteriori (MAP) prediction:

• Random MAP predictor:

• Bayesian risk:

To find the best parametrized posterior 
distribution qw(γ) we minimize the bound, as 
long as the posterior is smooth 

Proof:

Differentiate under the integral and use

Priors set regularizations 
The Complexity of the bound (regularization) 
is determined by its prior distribution:
Let qw(γ) = q0(γ-w) then 

For Gaussian prior 

Proof: Change variable 

Learn supermodular MAP predictors

Multiplicative posteriors result in log-barrier 
functions over the parameters: For any 
probability distribution q1(γ) over the 
nonnegative reals, let qw(γ) = q1(γ/w)/w

Proof: Change of variable 

Learn with approximate MAP prediction

Any optimal solution b* is described by

Proof: Any feasible solution that has the 
same support as b* is also optimal solution. 
Follows from Lagrange optimality conditions 

For Gaussian prior: 

For exponential prior: 

Learning supermodular segmentations with 
non-decomposable loss functions (Grabcut)

Method Grabcut loss PASCAL loss
Our method 7.77% 5.29%

Structured SVM (hamming loss) 9.74% 6.66%
Structured SVM (all-zero loss) 7.87% 5.63%

GMMRF (Blake et al. [1]) 7.88% 5.85%
Perturb-and-MAP ([17]) 8.19% 5.76%

Table 1: Learning the Grabcut segmentations using two different loss functions. Our learned param-
eters outperform structured SVM approaches and Perturb-and-MAP moment matching

Figure 1: Two examples of image (left), input “trimap” (middle) and the final segmentation (right)
produced using our learned parameters.

functions are supermodular as long as the parameters w
a

are nonnegative, thus MAP prediction can
be computed efficiently with the graph-cuts algorithm. For these parameters we use multiplicative
posterior model with the Gamma distribution. The dataset does not come with a standard train-
ing/test split so we use the odd set of images for training and even set of images for testing. We use
stochastic gradient descent with the step parameter decaying as ⌘
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for 250 iterations.

We use two different loss functions for training/testing for our approach to illustrate the flexibility
of our approach for learning using various task specific loss functions. The GrabCut loss measures
the fraction of incorrect pixels labels in the region specified as the boundary in the “trimap”. The
PASCAL loss, a commonly used loss in various image segmentation benchmarks, measures the ratio
of the intersection over union of the foregrounds of ground truth segmentation and the solution.

As a comparison we also trained parameters using moment matching of MAP perturbations [17]
and structured SVM with different loss functions. We use a stochastic gradient approach with a
decaying step size for 1000 iterations. Using structured SVM, solving loss-augmented inference
max

ŷ2Y

{L(y, ŷ)+ ✓(y;x,w)} with the hamming loss can be efficiently done using graph-cuts. We
also consider learning parameters with all-zero loss function, i.e., L(y, ŷ) ⌘ 0. To ensure that the
weights remain non-negative we project the weights into the non-negative side.

Table 1 shows the results of learning using various methods. On comparing methods using the
GrabCut loss, our method obtains comparable results to the GMMRF framework of [1], which
used hand-tuned parameters, and it is significantly better when PASCAL loss is used. Our method
also outperforms the parameters learned using structured SVM and Perturb-and-MAP approaches.
In our experiments the structured SVM with the hamming loss did not perform well – the loss
augmented inference tended to focus on maximum violations instead of good solutions which causes
the parameters to change even though the MAP solution has a low loss (a similar phenomenon was
observed in [22]). Using the all-zero loss tends to produce better results in practice as seen in Table 1.
Figure 1 shows some examples images, the input “trimaps”, and the segmentations obtained using
our approach.

6 Related work

Recent years have introduced many optimization techniques that lend efficient MAP predictors for
complex models. These MAP predictors can be integrated to learn complex models using structured-
SVM [25]. Structured-SVM has a drawback, as its MAP prediction is adjusted by the loss function,
therefore it has an augmented complexity. Recently, there has been an effort to efficiently integrate
non-decomposable loss function into structured-SVMs [24]. However this approach does not hold
for any loss function.
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measures incorrect pixels

measures pixel overlap 
(set intersection over union)

Measuring segmentation loss
Given a segmentation

Unary potentials are obtained using 
color Gaussian mixture models 
learned from the initial “trimap”.

Results on the Grabcut dataset (Blake et. al., ECCV 04)

PASCALLoss(A,B) = 1�
P

i (A[i]⌦B[i])P
i (A[i]�B[i])

A[i] 2 {0 background, 1 foreground}

GrabcutLoss(A,B) =

P
i2U (A[i] 6= B[i])

|U | unknown region

image “trimap” ground truth


