Detecting People Using Mutually Consistent Poselet Activations*
Lubomir Bourdev1,2, Subhransu Maji1, Thomas Brox1 and Jitendra Malik1
1University of California, Berkeley 2 Adobe Systems, Inc.

Goals and Contributions
• Best person detection/segmentation on RASCAL VOC 07-09
• New poselet selection algorithm to maximize coverage on the training examples
• Improved detections using neighboring detections of other poselets
• Saliency based agglomerative clustering for generating hypotheses
• Integrating both top-down and bottom-up information for segmentation
• Large scale 2D annotations done on Amazon Mechanical Turk

Comparison to Felzenszwalb et al.[1]

From annotations to poselets
1. Randomly sample patches as seeds
2. Find corresponding patches using keypoint configurations
3. Train poselets (linear SVMs based on HOG features)
4. Select poselets based on maximizing coverage of the training examples

• Best person detection/segmentation on RASCAL VOC 07-09
• New poselet selection algorithm to maximize coverage on the training examples
• Improved detections using neighboring detections of other poselets
• Saliency based agglomerative clustering for generating hypotheses
• Integrating both top-down and bottom-up information for segmentation
• Large scale 2D annotations done on Amazon Mechanical Turk

We use “100 parts that are nicely clustered in pose space. Poses always have visual meaning (“Frontal face”, “hand next to hip”).

1. Finding poselet activations
 Dots represent centers of poselet activations with size proportional to the detection score

2. Rescoring activations
 An example of an activation and its consistent neighbors

3. Clustering activations
 Each cluster represents a person hypothesis

4. Hypothesis generation
 Example bounds and segmentation

Which poselet activations are consistent?
• Consistent activations refer to the same object
• We measure consistency by thresholding the KL-divergence

Detection/Segmentation Results

Consistent Not Consistent

References
1. P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, PAMI’09

* This work was supported by Adobe Systems, Inc., a grant from Hewlett Packard and the MICRO program, a Google Graduate Fellowship, a fellowship from the German Academic Exchange Service (DAAD), as well as DNR MURI N00014-06-1-0734