Understanding Objects in Detail with Fine-grained Attributes

Andrea Vedaldi lasonas Kokkinos

Siddharth Mahendran Matthew B. Blaschko

Detailed object understanding

Driving challenges in object recognition:

Contributions

Describing object in details: parts and corresponding fine-grained attributes.

- A direct evaluation of fine-grained part detection and description.
- A supporting **Object in Detail (OID) dataset**.
- Efficient coarse-to-fine detailed part matching.

The OID challenge and data

Goal: directly evaluate detailed image understanding tasks.

- ~7,500 aircraft images, 100 years of aviation
- 5 parts with 18 attributes

aeroplane facing-direction: SW; isairliner: no; is-cargo-plane: no; is-glider: o; is-military-plane: yes; is-propellorplane: <mark>yes</mark>; is-seaplane: no; planelocation: on ground/water; plane-size: nedium plane; wing-type: single wing olane; undercarriage-arrangement: one ront-two-back; airline: UK-Air Force; model: Short S-312 Tucano T1 2 2 vertical stabilizer tail-has-engine: noengine **3** nose has-engine-or-sensor:

has-engine 4 wing wing-has-engine: no-engine 5 undercarriage cover-type: retractable; group-type: 1-wheel-1-axle; location: front-middle 6 **undercarriage** cover-type: retractable; group-type: 1-wheel-1-axle; location: back-left 7 undercarriage cover-type: retractable; group-type: 1-wheel-1-axle; location: back-right.

Data definition and construction

- Part and attribute definitions were extracted from human descriptions of objects.
- Amazon Mechanical Turk for part segmentation and attribute collection.
- Three weeks of intense work of several researchers in the CLSP Summer Workshop.

Stavros Tsogkas David Weiss Ben Taskar

Local vs global attribute modeling

- Locality of meaning. Part attributes are semantically local (e.g. round nose). A modular and transferable visual model should be based on the part appearance only.
- Globality of evidence. Local evidence is often weak and part attributes are often best predicted by global cues.

Examples

1) This nose attribute is well predicted by the nose appearance, but adding context is better still.

2) This tail attribute is not well predicted by the appearance of the tail (vertical stabilizer).

3) Global attributes are often best predicted by the overall appearance of the plane, but in some cases parts are better when considered in isolation.

combined (87.2 aeroplane (74.6 fuselage (74.0) image (72.9) nose (66.8) wingPhr (60.0) background (55.5) undercarr (50.0) wing (49.3) undercarrPhr (49.3) vertStab (38.2) combined (50.7) nose (39.5) aeroplane (30.9) undercarrPhr (20.6)

fuselage (17.5) image (16.4) background (15.0 undercarr (10.3) wingPhr (7.8) wing (4.1) vertStab (3.3

ombined (82.8 eroplane (70.7) image (64.1) wingPhr (62.4) fuselage (62.2) nose (61.8) undercarr (55.3 undercarrPhr (52.5) vertStab (50.9) background (45.7) wing (45.2)

combined (65.7) aeroplane (44.2) fuselage (39.2) undercarr (32.6 nose (30.5) image (27.0) undercarrPhr (23.0) wing (20.4) vertStab (18.0) wingPhr (14.8) background (9.3)

- Each parent filter is the average of its aligned children.
- The parent score **uniformly bounds** the children scores:

Ross Girshick Subhransu Maji Juho Kannala Esa Rahtu Karen Simonyan Naomi Saphra Sammy Mohamed

The richness of part appearances

Probabilistic but tight bounds allow for a 5-7-fold speedup with negligible accuracy loss:

CTF bound derivation

The probability of any of *M* children scores to be larger than the parent score is no more than M times the probability of an individual violation (union bound): $P[\exists m : \langle f_m$

Expected value of square residual:

Ben Taskar's Memorial <u>http://www.bentaskar.com</u>

CTF speedup

The bound can be used to cull search locations. Most templates are evaluated only where the part is likely to be found:

$$\langle f, I \rangle > \langle \hat{f}, I \rangle \leq M \sup_{m} P[\langle f_m, I \rangle > \langle \hat{f}, I \rangle]$$

Chebyshev's inequality $P[x > \alpha] \le E[x^2]/\alpha$ allows bounding the individual terms by

$$| \rangle > \langle \hat{f}, I \rangle + \sqrt{\frac{E[\langle f_m - \hat{f}, I \rangle^2]}{p_e}} \le p_e$$

$$\left[\langle f_m - \hat{f}, I \rangle^2\right] = \sum_c V_{cm} ||I_c||^2$$

 V_{cm} = 2nd-moment of HOG cell filter approximation residual.

Acknowledgments

The bulk of this work was carried in the CLSP Summer Workshop 2012.

