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Fine-grained visual recognition

¢ Example: distinguish between closely related categories

-

Ringed beak gull
-
¢ Intra-category variation v.s. inter-category variation

» location, pose, viewpoint, background, lighting, gender, season, etc
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Part-based models

¢ Localize “parts” and compare corresponding locations

+ Factor out the variation due to pose, viewpoint and location
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Texture models

¢ Image as a collection of patches [bag-of-visual-words, Csurka et al 04]
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¢ Orderless pooling and no explicit modeling of pose or viewpoint
¢ Invariances due to
» choice of features (e.g. SIFT is robust to lighting changes)

» encoding + pooling + classification
¢ E.g., Fisher-vectors work remarkably well for fine-grained tasks
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Tradeoffs

¢ Part-based models [Zhang'14, Branson’14]

v Offer the best recognition accuracy on many fine-grained
recognition datasets (e.q., birds, cars, etc)

x Relatively slow since it involves part detection

x Needs part annotations for training. This can be time consuming
and may require expert knowledge (especially for fine-grained
domains). Parts may be hard to define them for some categories.

¢ Texture models [Perronnin’10]
v Easy to deploy since they only need image labels for training
v Fast CPU implementations
X Lower recognition accuracy

= Pipelined procedure (features = encoding — classification) can be
suboptimal. For example, the teature extractors are not learned.

¢ Can we get the best of both?
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Bilinear models for classification

¢ A bilinear model for classification is a four-tuple
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Bilinear models for classification

¢ A bilinear model for classification is a four-tuple
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BoVW is a bilinear model

¢ Image is a collection of patches
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¢ Bag-of-visual words model [Csurka et al., 2004]
¢ Assign SIFT descriptor to the nearest center

» Suppose N(x) =[0... 1 ... ], i.e., the binary assignment vector
¢ Then BoVW is a bilinear model

— (n(fSift)a 17 7)7 C)

Talk @ Seattle Subhransu Maji (UMass Amherst) 8



VLAD is a bilinear model

¢ Image is a collection of patches
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¢ Vector of Locally Aggregated Descriptors ‘(VLAD[Je gou et al., 10]

» Locally encode each feature x as (x — ,uk) X 77( )
“kronecker product”

¢ VLAD is a bilinear model with
fa=[x—p1;x—po;. .. ;X — pig]
fB = diag(n(x))
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Fisher Vector I1s a bilinear model

¢ Image is a collection of patches
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¢ Fisher vector (FV) models [Perronnin et
» Locally encode statilstics of feature x weighted by n(x)
__ Y2 —1 ‘
a; =3, 2(X— i) B = M (X =) O(x—ps)—1
o FV is bilinear model with

fa = a1 Brs02 Bo;...;ak Bl
fB dlag(n(x)) “soft assignment”
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O2P is a bilinear model

¢ Image is a collection of patches
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¢ Second order pooling [Carreira et al., 10]‘
» Locally encode statistics of feature x weighted by x itselt

= Original formulation also proposes log non-linearity (maps the space
of PSD matrices to an Euclidean space)

= This is bilinear model with identical feature extractors

fa=fB=X
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Texture representations vs CNNs

iImage non-linear feature encoder representation
9 filters field P
0 4 R
Handcrafted > Orderless
features pooling

\_ J

AR
‘ | ».,‘Mj,}
M»‘v‘ ci||ca||cs||cal|cCs fo fz fo = d(x)

l 0

i
AR
,:n‘n’."'n'
,?‘t""l

Cimpoi et al., CVPR 15
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Texture representations vs CNNs

image non-linear feature encoder representation
9 filters field P
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“convolutional” layers “fully-connected” (FC) layers
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Mix and match

non-linear feature

image filters field

encoder representation

Handcrafted Orderless
local descriptors pooling
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Mix and match

Standard texture representation

image non-linear feature encoder representation
9 filters field P
Handcrafted Orderless
local descriptors pooling
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[Sivic and Zisserman 03, Csurka et al. 04, Perronnin and Dance 07, Perronnin et al. 10, Jegou et al. 10]
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Mix and match

Standard application of CNN

. non-linear feature .
iImage filters field encoder representation
r B
Handcrafted Orderless

local descriptors pooling
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[Chatfield et al. 14, Girshick et al. 2014, Gong et al. 14, Razavin et al. 14]
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Mix and match

Order-less pooling of CNN local descriptors

non-linear feature

image filters field

encoder representation

Handcrafted | Orderless
local descriptors pooling
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Mix and match

CNN descriptors pooled by Fisher Vector

image non-linear feature encoder representation
9 filters field P
- )
Handcrafted Fisher
local descriptors Vector
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CNNs for texture recognition

Texture recognition accuracy

Dataset FV-SIFT FC-CNN
KT-2b |

FMD
DTD

Cimpoi et al., CVPR 15

Using the very deep model from Oxford VGG group that performed
among the best on LSVRC 2014 (ImageNet classification challenge)

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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Scenes as textures

¢ MIT Indoor dataset (67 classes)

Working plac

Ihospial room kinder garden restaurant kichen atsaudio
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conwlrt
e

bedroom  mursen

P P
3 B -gmm
o= ﬂm_
Prev. best: 70.8% FV—CN\I 81.0%

Zhou et al., NIPS 14 Cimpoi et al., CVPR 15

¢ Domain specific CNNs with texture models

Accuracy (%)
CNN | FC-CNN FV-CNN FC+FV-CNN
PLACES 65.0 —¥ 67.6 73.1 The advantage of domain specific training
CAFFE 58.6 —% 69.7 71.6 disappears with FV-CNN
VGG-M 62.5 74.2 74.4 Better CNNs lead to better performance
VGG-VD 67.6 81.0 ¢ 80.3 and FV is better than FC

(no data augmentation)
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SIFT vs. CNN filter banks with FV

(VGG-M) CNN filterbank analysis
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Learning features for texture models

¢ The features in the texture models (e.g. FV) are not learned

» Hand crafted (e.g. SIFT), or CNN but trained with a different
architecture (e.g. fully-connected layers)

» The GMM parameters are learned in an unsupervised manner
¢ Can we learn the features for FV models?

» Computing the gradients of the bilinear feature with respect to the
feature X is nasty since both fa and fs depend on x via the GMM
parameters

=X P(x— ) B =37 () © (x—pa) — 1

fa = la1 B2 Bo;. .. Bi
fp = diag(n(x))

» Hard to compute the gradients

= Partial attempt : Sydorov et al. [CVPR14] learn parameters of the GMM
for FV-SIFT discriminatively but not the features themselves
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Bilinear CNN model

+ Generalization: decouple fa and fg by using separate feature functions

CNN stream A

»“where” pathway (dorsal stream)

oY -
T / 4| S E chestnut
S —»sided
8 warbler
CNN stream B > : E
L 9 o
LLL o 8
I . J%‘\ %ﬂ } S k
“what” pathway (ventral stream >
nat' p 34/3’ _,__) s| softmax

pooled
bilinear vector

hitp://arxiv.org/abs/1504.07889
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http://arxiv.org/abs/1504.07889

Bilinear CNN model training

+ Back-propagation though the bilinear layer is easy

d/ dl dz dy \ *
.............. > A at B .
dA (dz dy dx)
X = AT B Bqrt >y 2 > 7 ...... >

A o dzdy "
>B dB dz dy dx !

+ Allows end-to-end training

+ Added two normalization layers inspired by “improved Fisher
vector” [Perronnin et al., 10]

» Square-root normalization (y < sign(x)+/|x|)

» [>normalization (z «+ y/||y||2)
» Both these improve performance (see arXiv report for details)

hitp://arxiv.org/abs/1504.07889
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Experiments

¢ We consider two CNN models initialized from ImageNet
» VGG-M (5 convolutional layers + 2 fully connected layers)
» VGG-D (13 convolutional layers + 2 fully connected layers)
+ Methods considered in addition to the state-of-the-art:
» FV-SIFT: Fisher-vector with SIFT features
» FC-CNN: Features from the penultimate layer of a CNN
» FV-CNN: Fisher-vector with CNN features [Cimpoi et al., CVPR 15]
» B-CNN: Bilinear model with two CNNs feature extractors
+ Trained using image labels only (no part or bounding-box annotations)

¢ Datasets:
small, clutter clutter

| 200-2011 FC Aircraft Stanfrd cars
200 species, 11,788 images 100 variants, 10,000 images 196 models, 16,185 images
Talk @ Seattle Subhransu Maji (UMass Amherst)
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Results: Birds classification

¢ Per-image accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

Method w/o ft w/ ft
FV-SIFT 18.8 -
FC-CNN (M) 52.7
“shape” models| £ FC-CNN (D) 610
0 .
O
a| FV-CNN (M) 61.1
=
~| FV-CNN (D) 71.3
“texture” models § B-CNN (M, M) 72.0
(orderless) 3
S B-CNN (M,D) 80.1
¥ B-CNN (D,D) 80.1

SoTA 84.1 [4],66.7 [1], 73.9 [2], 75.7 [3]

| Multi-scale FV-CNN (D), Cimpoi et al., CVPR 15

| Part-based R-CNNs, Zhang et al., ECCV 14 (+ part bounding-boxes during training)
Pose normalized CNNs, Branson et al., BMVC 14 (+ landmarks during training)

4] Spatial Transformer Networks, Jaderberg et al., NIPS 2015
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Results: Birds classification

¢ Per-image accuracy on CUB 200-2011 dataset

¢ Setting: provided with only the image at test time

‘shape” models

“texture” models
(orderless)

SN=

Talk @ Seattle

accuracy improves

Method w/o ft w/ ft
FV-SIFT 18.8 -
FC-CNN (M) 2.7 —p 58.8
FC-CNN (D) 61.0 » 704
FV-CNN (M) 61.1
FV-CNN (D) /1.3
B-CNN (M,M) 72.0
B-CNN (M,D) 80.1
¥ B-CNN (D,D) 80.1

SoTA 84.1 [4],66.7 [1], 73.9 [2], 75.7 [3]

| Multi-scale FV-CNN (D), Cimpoi et al., CVPR 15
| Part-based R-CNNs, Zhang et al., ECCV 14 (+ part bounding-boxes during training)
Pose normalized CNNs, Branson et al., BMVC 14 (+ landmarks during training)

4] Spatial Transformer Networks, Jaderberg et al., NIPS 2015

Subhransu Maji (UMass Amherst)
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Results: Birds classification

¢ Per-image accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

Method w/o ft w/ ft
FV-SIFT 18.8 -
FC-CNN (M) 507 58.8 .,
“shape” models § FC-CNN (D) 610 70.4
é FV-CNN (M) 61.1 » 6415} ~ indirect
=| FV-CNN (D) 713 —t4 74.7 ¥  fine-tuning helps
“texture” models § B-CNN (M, M) 72.0
orderless) | 2| "5 oNN (M.D) 80.1
¥ B-CNN (D,D) 80.1

SRE

A

SoTA 84.1 [4],66.7 [1], 73.9 [2], 75.7 [3]

| Multi-scale FV-CNN (D), Cimpoi et al., CVPR 15
| Part-based R-CNNs, Zhang et al., ECCV 14 (+ part bounding-boxes during training)

Pose normalized CNNs, Branson et al., BMVC 14 (+ landmarks during training)
Spatial Transformer Networks, Jaderberg et al., NIPS 2015
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Results: Birds classification

¢ Per-image accuracy on CUB 200-2011 dataset

¢ Setting: provided with only the image at test time

‘shape” models

“texture” models
(orderless)

SN=

Talk @ Seattle

accuracy improves

SoTA 84.1 [4],66.7 [1], 73.9 [2], 75.7 [3]

| Multi-scale FV-CNN (D), Cimpoi et al., CVPR 15
| Part-based R-CNNs, Zhang et al., ECCV 14 (+ part bounding-boxes during training)
Pose normalized CNNs, Branson et al., BMVC 14 (+ landmarks during training)

4] Spatial Transformer Networks, Jaderberg et al., NIPS 2015

Subhransu Maji (UMass Amherst)

Method w/o ft w/ ft
FV-SIFT 18.8 -
FC-CNN (M) 2.7 58.8
FC-CNN (D) 61.0 70.4
FV-CNN (M) 61.1 64.1
FV-CNN (D) 71.3 4.7
B-CNN (M,M) 720 —+¥ /8.1
B-CNN (M,D) 80.1 ~—r¥ 84.1
¥ B-CNN (D,D) 80.1 —r¥% 840

fine-tuning helps
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¢ Per-image accuracy on FGVC aircraft dataset
¢ Setting: provided with only the image at test time

5
\

low clutter + big \
{ objects — localization is
less important ‘

Method w/o ft
FV-SIFT 61.0 -

— FC-CNN (M) 444 ——p 57.3 - fine-tuning helps
STape Moders O FC-CNN (D) 45.0 ¥ 74.1.:  (much more)
O 3
a| FV-CNN (M) 64.3 p 70.1 »:

= ; o
=| FV-CNN (D) 704 —4 7765 _ Inaiect
) , O ; fine-tuning helps
texture” models | ©| B-CNN (M,M) 727 —+¥ 779
(orderless) 3 ; , ,
S B-CNN (M,D) /84 —r% 839 fine-tuning helps
¥ B-CNN (D,D) 76.8 —r¥% 84.1

SoTA 72.5[1], 80.7 [2]

[1] Symbiotic segmentation, Y. Chai et al., ICCV 15 (+ object bounding-boxes during training)
2] Fisher vector SIFT++ , Gosselin et al., Pattern Recognition 14

Talk @ Seattle Subhransu Maji (UMass Amherst)
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Results: Cars classification—

¢ Per-image accuracy on Stanford cars dataset
¢ Setting: provided with only the image at test time

more \
clutter + small objects
- localization is |

Method w/o ft Wit
FV-SIFT 59.2 -

T FC-CNN (M) 37.3 —+¥ 586 . fine-tuning helps
STape Moders O FC-CNN (D) 36.5 % 79.8.:  (much more)
O 7
o| FV-CNN (M) 70.8 » 77.2 5

- ; .
=| FV-CNN (D) 752 -t 857,  Indirect
) , O ; fine-tuning helps
texture” models | ©| B-CNN (M,M) /7.8 —r¥ 806.5
(orderless) 3 ; , ,
S B-CNN (M,D) 83.9 ~—r#% 913 fine-tuning helps
¥ B-CNN (D,D) 829 ¥ 90.6

1]

2]
=

SOTA 92.6 [1], 82.7 [2], 78.0 [3]

Fine-grained recognition without part annotations, Krause et al., CVPR 15

(+ object bounding-boxes during training)
Fisher vector SIFT++ , Gosselin et al., Pattern Recognition 14
Symbiotic segmentation, Y. Chai et al., ICCV 15 (+ object bounding-boxes during training)
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Most confused birds

Talk @ Seattle

.

American_Crow

Loggerhead_Shrike

Glaucous_winged_Gull

Common _Raven

Westem_Gull

Subhransu Maji (UMass Amherst)
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Design and development |edit)

The C-47 differed from the civilian DC-3 in numerous modifications, including being fitted with a
cargo door and strengthened floor, along with a shortened tail cone for glider-towing shackles,
and an astrodome in the cabin roof. 3l

During World War I, the armed forces of many countries used the C-47 and modified DC-3s for
the transport of troops, cargo, and wounded. The U.S. Naval designation was R4D. More than

10,000 aircraft were produced in Long Beach and Santa Monica, California and Oklahoma City,
Oklahoma. Between March 1943 and August 1945 the Oklahoma City plant produced 5,354 C-

[2]15] K| i
47s. source: wikipedia

737-500

P nemen N o

767-200 767-300
Talk @ Seattle Subhransu Maji (UMass Amherst)
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Most confused cars

Chevrolet Silverado 154~ | hevrolet Silvérado 1500
Hybrid Crew Cab 2012 Extended Cab 2012

ﬂ??l o

Bentley Contmental GT Coupe 2007

Audi V8 Sedan 1994 Audi 100 Sedan 1994
Talk @ Seattle Subhransu Maji (UMass Amherst)



What is learned [birds]

Talk @ Seattle Subhransu Maji (UMass Amherst)
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What is learned [airplanes]
M-Net

Talk @ Seattle Subhransu Maji (UMass Amherst)
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What is Iearned [cars]

Talk @ Seattle Subhransu Maji (UMass Amherst)

M-Net
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Symmetric vs. asymmetric models

¢ The B-CNN(M,M) is symmetric — fine-tuning will keep them
symmetric

» 2% faster than asymmetric model but sub-optimal
+ Breaking the symmetry
» Dropout — made it worse

» Dimensionality reduction — reduce the output of one CNN before
the bilinear combination (i.e., bilinear classifier)

1 -

512
512 [
D 0.4 |
Q. 79.8 (m,m)+ft \\
64 T~ 03 . 72.0 (m,m?%) \
] 021 %\
5-] 2 51 2 0.1} 80.1 (m,mgia)#t )

% 01 02 03 04 05 06 07 08 09 1

512x512xK 512x64 + 64x512xK recall
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Summary

¢ Bilinear CNN models :
» generalize both texture methods and part-based methods
» training Is requires only image labels

» fairly efficient at test time — our MatConvNet based B-CNN (D, M)
runs at 8 fps on a Tesla K40 GPU

» code is available at http://vis-www.cs.umass.edu/bcnn

¢ Inverting B-CNN (D,D) :

» Images that match bilinear responses of relu1_1, relu2_1, relu3_1,
relu4_1, relus_1 layers of vgg-verydeep-16 model

“equivalent” images
Talk @ Seattle Subhransu Maji (UMass Amherst) 39
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