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Fine-grained visual recognition

o Example: distinguish between closely related categories

¢ inter-category variation v.s intra-category variation
» location, pose, viewpoint, background, lighting, gender, season, etc
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Part-based models

¢ Localize parts and compare corresponding locations

+ Factor out the variation due to pose, viewpoint and location



General image classification

¢ Classical approaches: Image as a collection of patches
» Orderless pooling and no explicit modelling of pose or viewpoint
» Variants such as Fisher vectors work well for image classification
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+ Modern approaches: CNN, Fisher vector CNN [Cimpoi et al., CVPR15]



Tradeoffs

¢ Part-based models ¢ Image classification models
v Higher accuracy v Only requires image label
x Part detection is slow v Faster evaluation
X Requires part annotations X LLower accuracy
¢ Examples: ¢ Examples:
» Birdlets [Farrell et al. » Bag-of-visual-words [Csurka et al.]
» Part-based RCNN [Zhang et al.] » Fisher vector [Jégou et al.]
» Pose-normalized CNNs [Branson et al.] » VLAD [Perronnin et al.]

» CNNs [ Krizhevsky et al., .... ]

¢ We propose bilinear models
» Generalizes both part-based and bag-of-visual-words models
» Better accuracy than part-based models w/o part annotations
» Allows fine-tuning of features for bag-of-visual-words models




Bilinear models for classification

¢ A bilinear model for classification is a four-tuple
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Bilinear models for classification

¢ A bilinear model for classification is a four-tuple
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¢ Fisher vector (FV) models [Perronnin et I., 1]
» Locally encode statistics of feature x weighted by n(x)
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Bilinear CNN model

¢ Decouple fa and fg by using separate CNNs

CNN stream A
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Bilinear CNN model

+ Back-propagation though the bilinear layer is easy

d/ dl dz dy)T

.............. > A B
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. — ATB sqrt R
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.............. )B dB dz dydx

+ Allows end-to-end training

-------------
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Experiments: Methods

¢ Local features:
» SIFT descriptor [Lowe ICCVA9]
» VGG-M (5 conv + 2 fc layers) [Chatfield et al., BMVC14]
» VGG-VD (16 conv + 2 fc layers) [Simonyan and Zisserman, ICLR15]

+ Pooling architectures:

» Fully connected pooling (FC)
» Fisher vector pooling (FV)

» Bilinear pooling (B)

+ Notation examples:
» FC-CNN (M) — Fully connected pooling with VGG-M
» FV-CNN (D) — Fisher vector pooling with VGG-VD [Cimpoi et al.,15]
» B-CNN (D, M) — Bilinear pooling with VGG-D and VGG-M
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Experiments: Datasets

small, clutter clutter

CUB 200-2011 FGVC Aircraft Stanford cars
200 species 100 variants 196 models
11,788 images 10,000 images 16,185 images

+ All models are trained with image labels only
» No part or object annotations are used at training or test time
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Results: Birds classification

¢ Accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

Method w/o ft w/ ft

FV-SIFT 18.8
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Results: Birds classification

¢ Accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

Method w/o ft w/ ft
FV-SIFT 18.8
FC-CNN (M) 52.7 —+% 58.8

fine-tuning helps

FV-CNN (M) 61.1

B-CNN (M,M) 72.0
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Results: Birds classification

¢ Accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

Method w/o ft w/ ft direct fine-tuning

FV-SIFT 18.8 - IS hard so use ft

FC-CNN (M) | 527 588, o CNNmodels
Indirect

FV-CNN (M) 61.1 —1t% 064.1* fine-tuning helps
B-CNN (MM | 72.0 SiREITOE

multi-scale FV-CNN
Cimpoi et al. CVPR 15
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Results: Birds classification

¢ Accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

Method w/o ft w/ ft direct fine-tuning

FV-SIFT 18.8 - IS hard so use ft

FC-CNN (M) | 527 sgg o CNNmodels
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Results: Birds classification

¢ Accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

Method w/o ft w/ ft

FC-CNN (D) 61.0 70.4
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Results: Birds classification

¢ Accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

Method w/o ft w/ ft
FC-CNN (D) 61.0 70.4
FV-CNN (D) 71.3 74.7
B-CNN (D,M) 80.1 84.1
B-CNN (D,D) 80.1 84.0
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Results: Birds classification

¢ Accuracy on CUB 200-2011 dataset
¢ Setting: provided with only the image at test time

BN =

Method w/o ft w/ ft
FC-CNN (D) 61.0 70.4
FV-CNN (D) 71.3 74.7
B-CNN (D,M) 80.1 84.1
B-CNN (D,D)

SOTA 84.1 [1], 82.0[2], 73.9 [3], 75.7 [4]

Spatial Transformer Networks, Jaderberg et al., NIPS 15

| Fine-Grained Rec. w/o Part Annotations, Krause et al., CVPR 15 (+ object bounding-boxes)
| Part-based R-CNNs, Zhang et al., ECCV 14 (+ part bounding-boxes)

Pose normalized CNNs, Branson et al., BMVC 14 (+ landmarks)
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Results: Comparison

CcuUB-200-2011

FVGC-Aircraft

Stanford-Cars

B FC-CNN B FV-CNN [ B-CNN W SoTA
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70.4

74.7
84.1
84.1
4.
/7.6
84.1
80.7
79.8
85.7
91.3
92.6
65 75 88 160
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Model visualization

¢ Visualizing top activation on B-CNN(D,M)
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Most confused categories

CUB-200 Amerlcan_Crow Common_Raven

M4«l

Loggerhead_Shrike

Aircrafts

Stanford cars

Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007
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Conclusion

¢ Bilinear models
» generalize both part-based and bag-of-visual-words models

» achieve high accuracy on fine-grained recognition tasks without
additional annotations

¢ Fast at test time
» B-CNN [D, D] runs at 10 images/second on TeslakK40 GPU

+ Code and pre-trained models available
» more details here: http://vis-www.cs.umass.edu/bcnn

¢ Come by our poster [#68] for more details
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