
Learning Point Embeddings from Shape Repositories for Few-Shot Segmentation
Supplementary Material

Gopal Sharma Evangelos Kalogerakis Subhransu Maji
University of Massachusetts, Amherst

{gopalsharma,kalo,smaji}@cs.umass.edu

1. Dataset

Our dataset is a subset of ShapeNetCore where we focus
on 16 categories from ShapeNet part segmentation dataset.
Note that the semantic segmentation dataset contains 16.6k
shapes of these categories compared to 28k in the ShapeNet
core. We first start by downloading collada file for shapes
in ShapenetCore dataset from the 3D Warehouse website,
but constraining to 16 categories mentioned above. Sam-
ples from the dataset are shown in the Figure 2 (left). The
Collada format stores the meshes in hierarchical structure,
starting from the root node, recursively applying transfor-
mation until the leaf nodes that correspond to different parts
of the 3D shape.

Note that we only use a small number of the segmen-
tation labels provided in the ShapeNet segmentation bench-
mark for training in our few-shot segmentation experiments.
We also make sure that the there is no overlap between any
of our training set (embedding training, tag training, seman-
tic segmentation training) and the evaluation set.

Generating segments from meshes. The number of seg-
ments in meshes from Collada files can vary from 1-4000.
These range from ones where all the parts are grouped to-
gether to others where parts are vastly over segmented. A
possible way to control the number of segments is to se-
lect the depth of the tree that gives reasonable number of
segments. Lower level in the hierarchy gives smaller num-
ber of segments as shown in Figure-3 (main paper). We
select the depth of the tree such that the number of seg-
ments are at least k, where k is the number of semantic
parts present in the semantic part-segmentation dataset for
that category. This is done to avoid favoring cases where se-
mantically different parts are merged. We further, select the
depth of the tree such that maximum number of segments is
less than 500 to avoid large over-segmentation of shape and
to keep high ratio of number of points vs number of seg-
ments. Figure 1 shows the distribution of segments in our
pruned dataset.

These meshes have inconsistent orientation, thus we pre-

10
0

10
1

10
2

number of segments (log scale)

0

500

1000

1500

2000

2500

nu
m

be
r o

f s
ha

pe
s

Figure 1: Distribution of number of segments.

process these meshes to align in a canonical orientation of
the Shapenent core dataset. The alignment is done by first
sampling points from source and target meshes, then rotat-
ing the source point cloud along all the three-axis by from
0 to 180 degrees at the interval of 30 degrees and finally by
selecting the orientation which gives least Chamfer distance
between the source and the target shape points. The coarse
search is sufficient to align most models. We preprocess
the meshes by uniformly sampling 10k points from the sur-
face using stratified sampling where sampling is weighted
by the area of the segment, i.e. we sample more points from
the segments with larger surface area in comparison to seg-
ments with smaller surface area.

2. Network Architectures
The details about our point embedding network used for

various experiments are shown in Table 1. The PEN is a
variant of PointNet that produces a per-point embedding.
For classification tasks (segmentation, tag prediction) we
add two addtional layers to predict labels.

3. Visualization of Semantic Segmentation
Figure 3 compares the segmentation models pretrained

with Hierarchy meta data, trained from scratch, and autoen-
coder pretrained for training size 4 and 8.

1



Figure 2: Visualization of the meta data. (Left) Parts of various objects shown in different colors. Notice that segmentations
vary in their number and granularity across instances. (Right) A word cloud of the raw tags collected from the dataset. The
font size is proportional to the square root of frequency in the dataset.

(a) PEN Hierarcy (b) PEN Segmentation (c) PEN Tags

Layers Output
1 Input shape 3×N
2 Relu(FC(1, 64)) 64×N
3 Relu(FC(64, 128)) 128×N
4 Relu(FC(128, 512)) 512×N
5 Relu(FC(512, 1024)) 1024×N
6 Max-pool(1xN) 1024× 1
7 Concat(2, 6) 1088×N
8 Relu(FC(1088, 512)) 512×N
9 Relu(FC(512, 256)) 256×N

10 Relu(FC(256, 128)) 128×N
11 FC(128, 64) 64×N

Layers Output
1 Input shape 3×N
2 Relu(FC(1, 64)) 64×N
3 Relu(FC(64, 128)) 128×N
4 Relu(FC(128, 512)) 512×N
5 Relu(FC(512, 1024)) 1024×N
6 Max-pool(1xN) 1024× 1
7 Concat(2, 6) 1088×N
8 Relu(FC(1088, 512)) 512×N
9 Relu(FC(512, 256)) 256×N

10 Relu(FC(256, 128)) 128×N
11 Relu(FC(128, 64)) 64×N
12 Relu(FC(64, 64)) 64×N
13 Softmax(FC(64, C)) C ×N

Layers Output
1 Input shape 3×N
2 Relu(FC(1, 64)) 64×N
3 Relu(FC(64, 128)) 128×N
4 Relu(FC(128, 512)) 512×N
5 Relu(FC(512, 1024)) 1024×N
6 Max-pool(1xN) 1024× 1
7 Concat(2, 6) 1088×N
8 Relu(FC(1088, 512)) 512×N
9 Relu(FC(512, 256)) 256×N

10 Relu(FC(256, 128)) 128×N
11 Relu(FC(128, 64)) 64×N
12 Relu(FC(64, 64)) 64×N
13 Sigmoid(FC(64, T)) T ×N

Table 1: Architecture details. Network architecture for (a) point embeddings trained with hierachy data, (b) semantic
segmentation, and (c) tag prediction. The difference between (b) and (c) is that the latter is trained on noisy tag data, which
we do not know to be mutually exclusive and sparse. This motivates training using per-tag binary classification (sigmoid
vs. softmax for the semantic segmentation task on ShapeNet). For transfer learning of Hierarchy in (b), first 11 layers
are initialized using (a). Tag training in (c) can be done either with no initialization for Tags or with initializing first 11
layers using (a) for Hierarchy+Tags. For transfer learning in case of Tags or Hierarchy+Tags to predict semantic labels,
pre-trained network with tag supervision in (c) is used where the last layer of (c) is replaced by Softmax(FC(64, C)). ReLU
denotes max(0, x), FC: Fully Connected layer, Max-pool computes dimensionwise maximum across all points, Concat(i,j)
concatenates the ouputs of layer i and j, C: number of semantic classes and T: number of tags.



Ground Truth Scratch AutoEncoder Hierarchy Scratch AutoEncoder Hierarchy 
Num of train = 4 Num of train = 8

Figure 3: Segmentation results. Visualization of segmentations produced by various models (scratch, autoencoder, hierar-
chy) when the number of training shapes is 4 (Left) and 8 (Right). The boundaries between parts are better delinated (as seen
in the ground truth) by the models trained on hierarchy meta data.


