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Abstract

We present a distributed representation of pose and ap-

pearance of people called the “poselet activation vector”.

First we show that this representation can be used to esti-

mate the pose of people defined by the 3D orientations of

the head and torso in the challenging PASCAL VOC 2010
person detection dataset. Our method is robust to clutter,

aspect and viewpoint variation and works even when body

parts like faces and limbs are occluded or hard to localize.

We combine this representation with other sources of infor-

mation like interaction with objects and other people in the

image and use it for action recognition. We report compet-

itive results on the PASCAL VOC 2010 static image action

classification challenge.

1. Introduction

We can say a fair amount about the people depicted in

Figure 1 – the orientations of their heads, torsos and other

body parts with respect to the camera, whether they are sit-

ting, standing, running or riding horses, their interactions

with particular objects, etc. And clearly we can do it from

single image, video is helpful but not essential, and we do

not need to see the whole person to make these inferences.

A classical way to approach the problem of action recog-

nition in still images is to recover the underlying stick fig-

ure [9, 17]. This could be parameterized by the positions

of various joints, or equivalently various body parts. In

computer graphics this approach has been a resounding suc-

cess in the form of various techniques for “motion capture”.

By placing appropriate markers on joints, and using multi-

ple cameras or range sensing devices, the entire kinematic

structure of the human body can be detected, localized and

tracked over time [23]. But when all we have is a single

image of a person, or a part of a person, not necessarily at

high resolution, in a variety of clothing, the task is much

∗This work is supported by DOD contract W911NF-10-2-0059, Google

Inc. and Adobe Systems Inc.

Figure 1. Pose and action is revealed from all these patches.

harder. Research on pictorial structures [9, 17] and other

techniques [19] for constructing consistent assemblies of

body parts has made considerable progress, but this is very

far from being a solved problem.

In this paper we take the position that recovering the pre-

cise geometric locations of various body parts is trying to

solve a harder intermediate problem than necessary for our

purposes. We advocate instead the use of a representation,

the “poselet activation vector”, which implicitly represents

the configuration of the underlying stick figure, and infer-

ences such as head and torso pose, action classification, can

be made directly from the poselet activation vector.

We can motivate this by a simpler example. Consider

the problem of inferring the pose of a face with respect to

camera. One way of doing it is as an explicit 2D to 3D ge-

ometric problem by finding the locations of the midpoints

of the eyes, nose etc, and solve for the pose. Alternatively

one can consider the outputs of various face detectors - one

tuned to frontal faces, another to three-quarter view faces,

another to faces in profile. The responses of these detectors

provide a distributed representation of the pose of the face,

and one can use an “activation vector” of these responses

as the input to a regression engine to estimate pose. In bi-

ological vision, strategies such as these are common place.

Color is represented by a response vector corresponding to

three cone types, line orientation by the responses of vari-

ous simple cells in V1, and indeed neurons have been found

in macaque inferotemporal cortex which show differential

3177



responses to faces at different orientations, suggesting a dis-

tributed representation there as well.

In order to generalize this strategy to the human body, we

must deal with its articulated nature. Different parts can be

in different configurations, and occlusion can result in only

some parts being visible. In addition one needs to deal with

the variation in aspect due to changes in camera direction.

Poselets, introduced by Bourdev and Malik [4] and further

developed in Bourdev et al. [3] for person detection and

segmentation provide a natural framework.

We show that the poselet activation vector, which repre-

sents the degree to with each poselet is present in the image

of a person, provides a distributed representation of pose

and appearance. We use it to estimate the 3D orientation

of the head and torso of people in the challenging PASCAL

VOC 2010 person detection dataset [7]. This dataset is sig-

nificantly hard where the current state of the art methods

achieve detection performance only about 50%. Our ap-

proach achieves an error of 26.3◦ across views for the head

yaw and matches the “human error rate” when the person is

front facing.

Action recognition from still images can benefit from

this representation as well. Motion and other temporal cues

which have been used for generic action recognition from

videos [20, 22, 11, 6], are missing in still images which

makes it a difficult problem. In this setting the pose and ap-

pearance of the person provides valuable cues for inferring

the action. For example as seen in Figure 2, certain actions

like walking and running are associated with specific poses

while people riding bikes and horses have both a distinctive

pose and appearance.

Actions often involve interactions with other objects

and one can model these interactions to disambiguate ac-

tions [26]. In addition context based on actions of other

agents in the scene can provide valuable cues as well [13].

For example, certain activities like marathon events or mu-

sicians playing in a concert, are group activities and it is

likely that everyone in the scene is performing the same ac-

tion.

The rest of the paper is structured as follows: we begin

with a review of work in the area of action recognition and

pose estimation in Section 2. In Section 3, we describe how

we construct the poselet activation vector for a given person

in an image. We present experiments on 3D pose estima-

tion of people in the PASCAL VOC 2010 people detection

dataset in Section 4. Finally we report results on the re-

cently introduced PASCAL VOC 2010 action classification

dataset in Section 5 and conclude in Section 6.

2. Previous Work

The current work draws from the literature of two active

areas in the computer vision – pose estimation and action

recognition. We briefly describe some without any hope of

Figure 2. Pose and appearance variation across actions.

doing justice to either of the areas.

Human pose estimation from still images. Pictorial

structures based algorithms like that of [9, 19, 17, 10] deal

with the articulated nature of humans by finding body parts

like limbs and torsos and constructing the overall pose us-

ing the prior knowledge of human body structure. Though

completely general, these methods suffer when the parts

are hard to detect in images. Another class of methods

work by assuming that the humans appear in backgrounds

which are easy to remove, and in such cases the contour

carries enough information about the pose. This includes

the shape-context based matching of silhouettes in the work

of [16], the work of [21] where approximate nearest neigh-

bor techniques are used to estimate the pose using a large

dataset of annotated images.

A common drawback of all these approaches is that they

treat the task of pose estimation and detection separately.

Pictorial structure based models often assume a rough lo-

calization of the person and fail when there is significant

occlusion or clutter. In such a two-stage pipeline it would

be helpful if the detector provides a rough estimate of the

pose to guide the next step. We also believe that the detec-

tion algorithms need to have a crude treatment of pose in

them. This is reflected by the fact that some of the best peo-

ple detectors on the PASCAL VOC challenge namely the

detector of Felzenszwalb et al. [8] and Bourdev et al. [3] are

part based detectors which have some treatment of pose.

Action Recognition from video. Actions in this setting

are described by some representation of its spatio-temporal

signature. This includes the work of Blank et al. [2] and

Shechtman and Irani [22], who model actions as space-time

volumes and classification is based on similarity of these

volumes. Schuldt et al. [20] and Laptev [14] generalize the

notion of interest points from images to space-time volumes

and use it to represent actions. Actions as motion templates

has been explored in the work of Efros et al. [6], where

actions are described as series of templates of optical flow.

Other methods like [18, 27] are based on representations on

the 2D motion tracks of a set of features over time.

Action recognition from still images. Humans have a re-

markable ability to infer actions from a still image as shown

in Figure 1. In this setting it is natural to build representa-

tions on top the output of a pose estimation algorithm. Due

to the drawbacks of the current pose estimation algorithms,
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Figure 3. Our distributed representation of pose using poselets. Each image is shown with the top 9 active poselets consistent with the

person in the image (shown by their average training examples). Occlusion, variations in clothing, clutter, lack of resolution in images

makes the pose estimation a hard problem and our representation is robust to these.

several approaches build pose representations that are more

robust – Ikizler and Pinar [12] represent pose using a “his-

togram of oriented rectangle” feature which is the proba-

bility distribution of the part locations and orientations esti-

mated using part detectors. Thurau and Hlavac [24] repre-

sent pose as a histogram of pose primitives. These methods

inherit most if not all of the problems of pose estimation.

The closest in spirit to our approach is the work of

Yang et al. [25], who also use a representation based on

poselets to infer actions. Pose represented as a configura-

tion of body part locations is expressed as a latent variable

which is used for action recognition. Training and inference

in the model amount to reasoning over these latent poses

which are themselves inferred using a tree like prior over

body parts and poselet detections. Unlike their approach

we don’t have an explicit representation of the pose and use

the “poselet activation vector” itself as a distributed rep-

resentation. In addition, our poselets encode information

from multiple scales and are not restricted to parts like legs

and arms. In our experiments we found that such an over-

complete representation greatly improves the robustness of

the system. We show that linear classifiers trained on top of

the poselet activation vector can be used for both 3D pose

estimation of people in the challenging PASCAL VOC 2010
dataset and static image action recognition demonstrating

the effectiveness of our representation.

3. Poselet Activation Vector

Our framework is built on top of poselets [4, 3] which

are body part detectors trained from annotated data of joint

locations of people in images. The annotations are used to

find patches similar in pose space to a given configuration

of joints. A poselet is a SVM classifier trained to recog-

nize such patches. Along with the appearance model one

can also obtain the distributions of these joints and person

bounding boxes conditioned on each poselet from the anno-

tations. Figure 10 shows some example poselets.

Given the bounding box of a person in an image, our

representation, called the poselet activation vector, consists

of poselets that are consistent with the bounding box. The

vector has an entry for each poselet type which reflects the

degree to which the poselet type is active in that person.

This provides a distributed representation of the high di-

mensional non-linear pose space of humans as shown in

Figure 3. Notice that the pose and appearance information

is encoded at multiple scales. For example, we could have

a part which indicates just the head or just the torso or the

full pedestrian. We use this representation for both action

recognition and 3D pose estimation from still images.

4. 3D Pose Estimation from Still Images

First we quantitatively evaluate the power of the pose-

let activation vector representation for estimating pose. Our

task is to estimate the 3D pose of the head and torso given

the bounding box of the person in the image. Current ap-

proaches for pose estimation based on variants of pictorial

structures are quite ill suited for this task as they do not

distinguish between a front facing and back facing person.

Some techniques can estimate the 3D pose of the head by

first detecting fiducial points and fitting it to a 3D model

of the head, or by regressing the pose from the responses

of face detectors trained to detect faces at different orien-

tations [15]. These methods are not applicable when the

face itself is occluded or when the image is at too low a

resolution for a face detector, a common occurrence in our

dataset.

The pose/aspect of the person in encoded at multiple

scales and often one can roughly guess the 3D pose of the

person from various parts of the person as seen in Figure 1

and our representation based on poselets are an effective

way to use this information. Our results show that we are

able to estimate the pose quite well for both profile and back

facing persons.

A Dataset of 3D Pose Annotations. Since we wanted to

study the problem of pose estimation in a challenging set-

ting, we collected images of people from the validation sub-

set of PASCAL VOC 2010 dataset not marked as difficult.

We asked the users on Amazon Mechanical Turk [1], to es-

timate the rotations around X,Y and Z of the head and torso

by adjusting the pose of two gauge figures as seen in Fig-

ure 4(a). We manually verified the results and threw away

the images where there was high disagreement between the
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annotators. These typically turned out to be images of low

resolution or severe occlusion.

Our dataset has very few examples where the rotation

along X and Z axes is high, as is typical of consumer pho-

tographs, hence we removed images which have rotations

along X and Z > 30◦ and focus on estimating the rotation

around Y (Yaw) only. In the end we have 1620 people anno-

tations that along with their reflections result in 3240 exam-

ples. The distribution of the yaw across the dataset is shown

in Figure 4(c, d, e).

Figure 4(b) shows the human error in estimating the yaw

across views of the head and torso. This is measured as the

average of standard deviation of the annotations on a single

image in the view range. The error is small for people in

canonical views, i.e. when the person is facing front, back,

left or right, whereas it is high when the person in facing

somewhere in between. Overall the annotators are fairly

consistent with one another with a median error of 6.66◦

for the head and 7.07◦ for the torso across views.

Experiments. Similar to [3], we train 1200 poselets on

the PASCAL train 2010 + H3D trainval dataset. Instead of

all poselets having the same aspect ratio, we used four as-

pect ratios: 96 × 64, 64 × 64, 64 × 96 and 128 × 64 and

trained 300 poselets of each. In addition we fit a model of

bounding box prediction for each poselet. We construct the

poselet activation vector by considering all poselet detec-

tions whose predicted bounding box overlaps the bounding

box of the person, defined by the intersection over union

> 0.20 and adding up the detection scores for each poselet

type. We use this 1200 dimensional vector to estimate the

pose of the person.

We estimate the pose of the head and torso separately.

We discretize the yaw ∈ [−180◦, 180◦] into 8 discrete bins

and train one-vs-all linear classifiers for predicting the dis-

crete label. The angle is obtained by parabolic interpolation

using the highest predicted bin and its two adjacent neigh-

bors. We optimize our parameters on one split of the data

and report results using 10 fold cross validation. We split

the training and test set equally ensuring both the image and

its reflection are both either in the training or the test set.

Figure 5(a, b) show the confusion matrix for the task of

predicting the discrete view, one of front, left, right and

back, for the head and torso. The average diagonal ac-

curacy is 62.1% for the head and 61.71% for the torso.

The median errors in predicting the real valued view are

shown in Figure 5(c). We report results by averaging the

error for predicting view across 8 discrete views. Since

the dataset is biased towards frontal views, this error met-

ric gives us a better idea of the accuracy of the method.

Across all views the error is about 26.3◦ and 23.4◦ for the

head and torso respectively, while across the front views,

i.e. yaw ∈ [−90◦, 90◦], the error is lower: 20.0◦ and 19.6◦

respectively. In particular, the error when the person is fac-
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Figure 5. (a, b) Average confusion matrix over 10-fold cross vali-

dation, for predicting four views left, right, front and back. The

mean diagonal accuracy is 62.10% and 61.71% for predicting

the head and the torso respectively. (c) Error in predicting the

yaw averaged over 8 discrete views using 10-fold cross validation.

Across all views the error is about 26.3◦ and 23.4◦ for the head

and torso respectively, while across the front views, i.e. yaw ∈
[−90◦, 90◦], the error is lower 20.0◦, 19.6◦. In particular the er-

ror when the person is facing front, i.e. yaw ∈ [−22.5◦, 22.5◦]
matches the human error rate.

ing front, i.e. yaw ∈ [−22.5◦, 22.5◦] matches the human

error rate. Our method is able to recognize the pose of back

facing people, i.e. yaw ∈ [157.5◦,−157.5◦], a 45◦ range

around the back facing view, with an error of about 20◦ error

for the head and torso. Approaches based on face detection

would fail but our representation benefits from information

at multiple scales like the overall shape of the person, as

shown in Figure 6. The error is smaller when the person is

facing exactly left, right, front and back while it is higher

when the person is facing somewhere in between, qualita-

tively similar to humans.

At roughly 25◦ error across views, our method is signif-

icantly better than the baseline error of 90◦ for the method

that always predicts the view as frontal (It gets 0◦ error

for frontal view, but 180◦ error for back view). Figure 7

shows some example images in our dataset with the esti-

mated pose. We believe this is a good result on this difficult

dataset demonstrating the effectiveness of our representa-

tion for coarse 3D pose estimation.

5. Static Action Classification

In this section we present our method for action clas-

sification and report results on the newly introduced PAS-

CAL VOC 2010 action classification benchmark. The in-

3180



−180 −135 −90 −45 0 45 90 135 180
4

5

6

7

8

9

10

True yaw
A

v
e
ra

g
e
 e

rr
o
r

Average human error in degrees (6.66 head, 7.07 torso)

 

 

head

torso

  200

  400

  600

  800

30

210

60

240

90

270

120

300

150

330

180 0

Head Yaw

  200

  400

  600

  800

30

210

60

240

90

270

120

300

150

330

180 0

Torso Yaw

  500

  1000

  1500

30

210

60

240

90

270

120

300

150

330

180 0

Head Yaw − Torso Yaw

(a) AMT interface (b) Human Error (c) Head Yaw (d) Torso Yaw (e) Head-Torso Yaw

Figure 4. (a) Interface for annotating the 3D pose on Amazon Mechanical Turk. (b) Human error rate across view for estimating the pose

of the head and torso. (c, d, e) Distribution of the yaw of head, torso and torso relative to the head, on our 3D pose dataset.

Figure 7. Left to right are examples images in our 3D pose dataset of increasing prediction error. Under each image the plot shows the true

yaw for the head (left) and torso (right) in green and the predicted yaw in red. We are able to estimate the pose even when the face, limbs

and other body parts are hard to detect.

yaw = −180◦

yaw = −90◦

yaw = 0◦

yaw = +90◦

Figure 6. Poselets with the highest weights for discrete view

classification of the head. Note that information from multiple

scales is used to infer the view. When the person is back-facing,

i.e. yaw = −180◦, poselets corresponding to pedestrians and

upper-body are selected where as for the frontal view face poselets

are selected.

put is a set of bounding boxes on images and the task is

to score each of these with respect to nine action cate-

gories namely : phoning, playinginstrument, reading, rid-

ingbike, ridinghorse, running, takingphoto, usingcomputer

and walking. Figure 2 shows examples from various action

categories.

Action specific poselets. There are 608 training examples

for all the action categories. To train poselet models we first

annotate each person with 2D joint locations on Amazon

Mechanical Turk. Five independent annotators were asked

to annotate every image and the results were averaged with

some outlier rejection. Similar to the approach of [3] we

randomly sample windows of various aspect ratios and use

the joint locations to find training examples each poselet.

Figure 8 shows that pose alone cannot distinguish be-

tween actions and the appearance information is compli-

mentary. For example we would like to learn that people

riding bikes and horses often wear helmets, runners often

wear shorts, or that people taking pictures have their faces

occluded by a camera. To model this, we learn action spe-

cific appearance by restricting the training examples of a

poselet to belong to the same action category.

Many poselets like a “face” poselet may not discriminate

between actions. The idea illustrated in Figure 9, is win-

dows that capture salient pose specific to certain actions

are likely to be useful for action discrimination. We mea-

sure “discriminativeness” by the number of within class ex-

amples of the “seed” windows in the top k = 50 nearest

examples for the poselet. The idea is that if a pose is dis-

criminative then there will be many examples of that poselet

from within the same class. Combined with the earlier step

this gives us a way to select poselets which detect salient

pose and appearance for actions as shown in Algorithm 1.

Appearance models are based on HOG [5] and linear SVM.

We learn 1200 action specific poselets. Figure 10 shows

representative poselets from four action categories.
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phoning running walking ridinghorse
Figure 10. Example poselets shown by their top 5 training examples for various action categories. These capture both the pose and

appearance variation across the action categories.

Algorithm 1 Action specific poselet selection.

Require: 2D keypoint/action labels on training images.

1: for i = 1 to n do

2: Pick a random seed window and find the nearest ex-

amples in configuration space based on the algorithm

of [3].

3: Compute the number of within class examples in the

k = 50 nearest examples.

4: end for

5: Select the top m seed windows which have the highest

number within class examples.

6: For each selected window, restrict the training exam-

ples to within the class and learn an appearance model

based on HOG and linear SVM.

Remarks:

• Steps 1 − 5 learn action specific pose, while step 6 learns

action specific appearance.

• We ensure diversity by running steps 1−6 in parallel. We set

m = 60, n = 600 across 20 nodes to learn 1200 poselets.

seed all examples within class examples
Figure 8. The middle image shows the nearest examples matching

the seed using the pose alone, while the image on right shows the

top examples within the takingphoto category. This allows us to

learn appearance and pose specific to that action.

Poselet Activation Vector. The action poselets are run

in a scanning window manner and we collect poselet de-

tections whose predicted bounds overlap the given person

bounds, defined by the intersection over union of the area

> 0.15. The i’th entry of the poselet activation vector is the

sum of the scores of all such detections of poselet type i.

Spatial Model of Object Interaction. Interaction with

other objects often provides useful cues for disambiguat-

ing actions [26]. For example, images of people riding

seed Top 36 training examples

seed Top 36 training examples

Figure 9. The top row shows a seed window that captures a salient

pose for the takingphoto category. The 36 nearest examples in

configuration space for the top seed window has 7 examples from

the takingphoto category while the bottom seed has only 2.

horses have the person and the horse in certain spatial con-

figurations. We model the interaction with four object cat-

egories : horse, motorbike, bicycle and tvmonitor. We learn

a mixture model of the relative spatial location between the

person bounding box and the object bounding box in the im-

age as shown in Figure 11. For detecting these objects we

use the detector based on poselets trained on these object

categories presented in the PASCAL VOC 2010 object de-

tection challenge. For each object type we fit a two compo-

nent mixture model of the predicted bounding box to model

the various aspects of the person and objects.

Given the object detections we find all the objects whose

predicted person bounds overlap the bounds of the given
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motorbike bicycle horse tvmonitor
Figure 11. Spatial model of the object person interaction. Each im-

age shows the modes of the bounding boxes of the person (blue)

relative to the bounding box of the object (red). For horse, motor-

bike and bicycle category the two modes capture front and side

views of the object while for the tvmonitor it captures the fact

that TV monitors are often at the left or right corner of the per-

son bounding box.

person > 0.3. Similar to the poselet activation vector we

construct an ”object activation vector” by taking the highest

score of the detection for each object type among these.

Action context. Often the action of a person can be in-

ferred based on what others are doing in the image. This

is particularly true for actions like playinginstrument and

running which are group activities. Our action context for

each person is a 9 dimensional vector with an entry for each

action type whose value is the highest score of the action

prediction among all the other people in the image. Overall

the second stage classifier is a separate linear SVM for each

action type trained on 10 features: self score for that action

and 9 for action context.

Experiments. Table 1 shows the performance of various

features on the test and validation set. All the parameters

described were set using a 10-fold cross validation on the

trainval subset of the images.

The poselet activation vector alone achieves a perfor-

mance of 59.8 on the validation subset of images and does

quite well in distinguishing classes like ridinghorse, run-

ning, walking and phoning. Adding the object model boosts

the performance of categories like ridingbike and using-

computer significantly, improving the average AP to 65.3.

These classes either have the widely varying object types

and poselets are unable to capture the appearance varia-

tion. Modeling the spatial interaction explicitly also helps

for classifying usingcomputer class as the interaction is of-

ten outside the bounding box of the person. Finally the con-

text based re scoring improves the performance of playin-

ginstrument and running class as these are often group ac-

tivities.

Figure 12 shows the confusion matrix of our classi-

fier. Some high confusion pairs are {reading, takingphoto}
→ playinginstrument and running → walking. Figure 13

shows misclassified examples for several pairs of cate-

gories. Overall our method achieves an AP of 65.6 on

the validation and 59.7 on the test set which is compara-

ble to the winning techniques in PASCAL VOC 2010 chal-
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Figure 12. Confusion matrix for our action classifier. Each row

shows the distribution of the true labels of the top 50 ranked ex-

amples for each action category on the validation subset of the

images. Some high confusion pairs are {reading, takingphoto} →
playinginstrument and running → walking.

phoning → takingphoto takingphoto → phoning

reading → usingcomputer usingcomputer → reading

walking → running running → walking

ridingbike → running running → ridingbike

Figure 13. Pairwise confusions between several classes on the

PASCAL 2010 validation set. Each A → B shows the top 4 im-

ages of class A ranked by classifier of class B. Confusion is often

caused when the person has similar pose or failures of the object

detector.

lenge, for example, 60.1 for “INRIA SPM HT” and 60.3
for “CVC BASE”. We refer the readers to the challenge

website1 for details and results of other entries.

1http://pascallin.ecs.soton.ac.uk/challenges/VOC
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Validation Test

category PAV w/ OAV w/ C w/ C

phoning 63.3 62.0 62.0 49.6

playinginstrument 44.2 44.4 45.6 43.2

reading 37.4 44.4 44.3 27.7

ridingbike 62.0 84.7 85.5 83.7

ridinghorse 91.1 97.7 97.5 89.4

running 82.4 84.1 86.0 85.6

takingphoto 21.1 22.9 24.6 31.0

usingcomputer 54.2 64.9 64.3 59.1

walking 82.0 83.6 80.8 67.9

average 59.8 65.3 65.6 59.7

Table 1. Average precision on the action validation and test set us-

ing various features. PAV is the performance using just the poselet

activation vector. Column w/OAV shows the performance by in-

cluding the object activation vector as features and column w/C

shows the performance by including action context. The object

features help in the ridingbike, ridinghorse and usingcomputer cat-

egories, while the context improves the performance on playingin-

strument and running categories. Our methods achieves an aver-

age AP of 59.7 on the test set which is comparable to the winning

techniques in PASCAL VOC 2010.

6. Conclusion

We demonstrate the effectiveness of the poselet activa-

tion vector on the challenging tasks of 3D pose estimation

of people and static action recognition. Contrary to the tra-

ditional way of representing pose which is based on the lo-

cations of joints in images, we use the poselet activation

vector to capture the inherent ambiguity of the pose and

aspect in a multi-scale manner. This is well suited for es-

timating the 3D pose of persons as well as actions from

static images. In the future we would like to investigate

this representation for localizing body parts by combining

top down pose estimates with bottom-up priors and exploit

pose-to-pose constraints between people and objects to es-

timate pose better.

Most of the other high performing methods on the PAS-

CAL VOC 2010 action classification task use low-level fea-

tures based on color and texture together with a SVM classi-

fier, without any explicit treatment of pose. We believe that

such methods benefit from the fact that one is provided with

accurate bounding boxes of the person in the image. This

is quite unrealistic in an automatic system where one has

to estimate the bounds using a noisy object detector. We

on the other hand use the bounding box information quite

loosely by considering all poselet detections that overlap

sufficiently with the bounding box. In addition, the pose-

let activation vector provides a compact representation of

the pose and action, unlike the high dimensional features

typical of “bag-of-words” style approaches.

The annotations and code for estimating the yaw of the

head and torso in images, as well as the keypoint annota-

tions and code for static image action classification can be

downloaded at the author’s website.
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