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Abstract

Current similarity-based approaches to interactive fine-
grained categorization rely on learning metrics from holis-
tic perceptual measurements of similarity between objects
or images. However, making a single judgment of similar-
ity at the object level can be a difficult or overwhelming
task for the human user to perform. Secondly, a single gen-
eral metric of similarity may not be able to adequately cap-
ture the minute differences that discriminate fine-grained
categories. In this work, we propose a novel approach to
interactive categorization that leverages multiple percep-
tual similarity metrics learned from localized and roughly
aligned regions across images, reporting state-of-the-art re-
sults and outperforming methods that use a single nonlocal-
ized similarity metric.

1. Introduction

Fine-grained visual categorization (FGVC) is an area of

computer vision that has experienced an increased amount

of attention in recent years across various visual do-

mains [39, 9, 27, 52]. The goal is to distinguish between

fine-grained categories or subcategories (e.g., a Cardinal vs.

a Lazuli Bunting) that belong to the same basic-level cate-
gory (e.g., Bird).

Some work has focused on interactive methods for

FGVC [9, 55, 27], including using perceptual similarity

judgments from human users [57]. Perceptual similarity is

advantageous for categorization as it does not necessitate

detailed ground truth annotations such as object segmenta-

tions or part and attribute labels. Moreover, by eliminat-

ing part and attribute vocabularies, these similarity-oriented

systems reduce both the burden on non-expert human users,

who are not required to understand domain-specific jar-

gon, as well as the reliance on experts, who must define

these vocabularies. These factors contribute to the overall

ease and flexibility in porting similarity-based categoriza-

tion systems to other basic-level categories.

∗This work was done while the author was at UC-San Diego.
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Figure 1. In this work, we use perceptual similarity metrics learned

from localized comparisons to perform interactive categorization.

By directing the user’s attention to localized and roughly aligned

regions, we aim to reduce both overall human effort required for

categorization as well as improve performance over using nonlo-

calized comparisons and metrics.

While similarity can be holistic in nature (e.g., object

utility or function, or overall shape), it can also be highly

localized, for instance, when specific corresponding regions

or parts of the object differ from one other. Especially at the

fine-grained category level in which classes tend to be visu-

ally coherent, it is likely that the small yet important char-

acteristics that distinguish subcategories are localizable. In

these scenarios, a single metric of perceptual similarity that

is observed at the object level can be overly general, and

asking a user to make holistic nonlocalized similarity com-

parisons can be difficult.

By using localized similarity comparisons and constrain-

ing the user’s view to a portion of the image, we are able to

highlight certain aspects of similarity; these localized judg-

ments tend to be easier for humans to perform than holistic

similarity judgments (see Figure 1). Moreover, we can po-

tentially reduce the effect of nuisance factors such as back-

ground noise and differing object poses. For each common

region or part, we learn a separate perceptual space that cap-

tures local visual information.

In order to compare common local regions between im-

ages, we must first identify the set of relevant regions to

consider, and second, we must determine spatial correspon-

dences between regions across images and objects. For



many basic-level categories, there exist field guides that

specify part vocabularies for describing or discriminating

categories, but these share the same weaknesses as seman-

tic attribute vocabularies. The regions that are most useful

for discrimination may not align with part semantics, and

moreover, additional annotation is required to localize all

the regions in the images.

We propose using an unsupervised approach to discov-

ering discriminative, visually coherent and roughly aligned

regions [48, 13] in the dataset, which can be used to local-

ize the similarity comparisons. This method has multiple

advantages: first, we can determine spatial correspondences

between images by using the discovered patches as detec-

tors; second, the regions are by nature common in gradient

appearance; and lastly, the discovered regions may provide

implicit (albeit noisy) pose alignment.

Our contributions in this work are three-fold. First, we

present an approach to interactive classification that lever-

ages localized similarity comparisons and does not rely on

part or attribute vocabularies. We discover a set of discrimi-

native, localized and roughly aligned regions for this FGVC

task. Second, we provide a quantitative analysis of how hu-

man users respond differently to nonlocalized versus local-

ized perceptual similarity comparisons. Finally, we demon-

strate that localized similarity comparisons are more intu-

itive for users to perform, and that by using independent

localized metrics we can improve categorization accuracy

over using a single nonlocalized metric.

The rest of the paper is organized as follows. In Sec-

tion 2, we present an overview of the relevant literature.

In Section 3, we present our system. In Sections 4 and 5,

we discuss implementation details and our experimental re-

sults, respectively. We conclude in Section 6.

2. Related Work
Recently, there has been increased interest in the area of

fine-grained visual categorization [22, 10] with humans in

the loop [9, 55, 27]. Some of this work leverages attributes

that are harvested from existing resources [28, 19, 26],

while others discover attributes automatically [45, 5, 15] or

have humans assist in the annotation process [30, 29]. For

example, humans may be asked to identify and name se-

mantically meaningful attributes [40, 25, 34, 35], or provide

justification or feedback with respect to attributes in order

to improve classification accuracy [14, 43, 7, 42]. In con-

junction with attribute-based methods, parts are also used to

localize attributes and to assist in classification, for exam-

ple by using trained one-vs.-one region-based classifiers as

features [4, 3]. Often, humans are used to densely annotate

these parts [8, 56] and provide pose information [20, 58].

This part vocabulary may also be generated in an auto-

matic manner. Human-centric approaches have used partial

correspondences provided by humans to extrapolate anno-

(a) Localized comparison

(b) Nonlocalized comparison

Figure 2. User interfaces for interactive categorization.

tations to the entire dataset [35, 36]; others formulate the

annotation process as a game-with-a-purpose [54, 12]. On

the other hand, feature-centric approaches use image-based

features to automatically discover discriminative mid-level

patches [48, 13, 24] or localize attributes [15].

In this work, we focus on a part and attribute vocabulary-

free approach that utilizes perceptual similarity-based com-

parisons rather than semantic distinctions. Within the com-

puter vision community, several works have explored us-

ing similarity to perform classification, from the feature

level [2, 26] to high-level semantic representations [59, 41,

40, 33]. We specifically use relative comparisons, which

have been leveraged in categorization [46, 1, 37, 49, 47],

attribute classification [41, 29], clustering [23, 6], and in

improving classifiers [43, 7]. Some works capture multi-

ple modalities of similarity rather than use a single met-

ric [50, 38, 11]; we focus on learning an independent met-

ric of perceptual similarity for each shared localized region

across the dataset. Similar to [57], we use stochastic triplet

embedding [51] to learn these metrics.

3. Approach

3.1. Problem Definition

Given a reference image x, our goal is to predict as

quickly as possible the true object class c from C possible

classes that fall within the same basic-level category. We

do so by using both computer vision and user responses to



similarity-based questions posed by the system at test-time.

Each question is shown as a display of D images, and the

user is asked to make a relative judgment of similarity on

the D images with respect to the image x; this perceptual

measurement is recorded as response u.

Our system supports two types of similarity compar-

isons: nonlocalized and localized (see Figure 2). In the for-

mer, the images in the display each show the whole object.

For the latter, users are asked to make a localized judgment

of similarity, and all images in the grid are localized with

respect to a region r, drawn from a set of discriminative re-

gions R. We define a region as a visually discriminative

and recurring object part that does not have to be seman-

tically defined or meaningful. In practice, it is a spatially

localized and roughly aligned template derived from an as-

sociated descriptor (see Figure 3).

Each region for a localized comparison (or no region, in

the case of a nonlocalized comparison) specifies a similarity

comparison configuration. The set of A similarity configu-

rations used by the system can consist of localized region-

specific comparisons as well as a nonlocalized comparison.

We can represent an image x in pixel space as a vector z
in human perceptual space. Offline, the system is provided

N images annotated with subcategory labels {(xi, ci)}Ni=1.

We assume that we can decompose similarity into multiple

similarity metrics over A different configurations. For each

configuration a, we then ask human users to judge similar-

ity with respect to it, in order to learn a separate perceptual

embedding Za, a = 1 . . . A. At test time, we observe an

image x and ask a human user to draw similarity compar-

isons that are used to incrementally refine our probabilistic

estimates of z and c.
Our model is based on [57], and we briefly provide an

overview of this system in Section 3.2. In Section 3.3, we

discuss how we extend the prior system in order to support

localized similarity comparisons.

3.2. Interactive Classification System

We first discuss the interactive classification system of

Wah et al. [57], which uses only nonlocalized similarity

comparisons to learn a single perceptual metric. This corre-

sponds to a single similarity comparison configuration and

its associated embedding. For the sake of clarity, our nota-

tion below is agnostic to configuration.

Generating a perceptual metric for similarity. We rep-

resent image x as a vector z in this perceptual space. We

first collect a set of M user similarity comparisons un-

der this configuration; additional details on the data col-

lection can be found in Section 4.1. A user is asked

to judge the similarity of an image x with respect to a

set I of G images, shown in a display Dt at question

t (see Figure 2). From each user response um, where

m = 1 . . .M , we can generate a set of triplet constraints

T m = {(i, j, l)|xi is more similar to xj than xl}, where xi

is the reference image; xj is drawn from the set of images

IS that the user has selected as similar to xi; and xl is drawn

from the set of images ID that were not selected, such that

IS ∪ ID = I and IS ∧ ID = ∅.

The set T over N training images can be used to learn

a perceptual embedding Z = [z1, . . . , zN ] ∈ R
d for some

d ≤ N . From this embedding, we generate a similarity

matrix S ∈ N ×N with entries:

Sij = exp

(
−‖zi − zj‖2

2σ2

)
, (1)

that can be used directly in our system. The scaling pa-

rameter σ is jointly learned with the user response model

parameters [57].

Human-in-the-loop categorization. Recall that at test

time, the goal of the system is to estimate the true class c
of the reference image x as quickly as possible. As the user

provides more responses, the system updates the display in

an intelligent manner, and we iteratively refine probabilistic

estimates of z and c. Let Ut be the set of user responses

provided through question t. We can compute class proba-

bilities by marginalizing over all possible locations z:

p(c, Ut|x) =
∫
z

p(c, z, Ut|x)dz

=

∫
z

p(Ut|c, z, x)p(c, z|x)dz (2)

where p(Ut|c, z, x) models how users respond to similarity

questions, and p(c, z|x) is a computer vision estimate. We

assume that a user’s response to a similarity question is only

dependent on the true location z of image x in perceptual

space, and all answers are independent of one another.

Efficient computation. We are able to compute

p(Ut|c, z, x) efficiently by maintaining weights wt
k =

p(ck, zk, Ut|x) for each image xk in the training set and ap-

proximating the integral in Eq 2 as the sum of the weights

of the training examples of class c:

p(c|x, Ut) =

∑
k,ck=c w

t
k∑

k w
t
k

. (3)

Each weight wk captures how likely zk is the true location

z, and we can efficiently update wt+1
k from wt

k:

wt+1
k = p(ut+1|zk)wt

k =
φ(Sik)∑

j∈D φ(Sjk)
wt

k, (4)

where i is the image selected by the user at timestep t + 1,

Sik is drawn from the generated similarity matrix (Eq 1),

and φ(·) is a customizable function. We refer the reader

to [57] for additional details on the user response model and

how computer vision can be incorporated.



R1 R13 R21 R23 R39
Figure 3. We discover 106 discriminative regions total (Sec-

tion 3.3.1), selecting a subset of 5 representative regions to use

in our experiments (Section 4.3). Each region is visualized as a

HOG template (top) and the averaged image of the highest confi-

dence positive detections for that corresponding detector (bottom).

3.3. Incorporating Localization Information

The system by Wah et al. [57] supports the use of mul-

tiple similarity metrics, but it does not adequately handle

instance-level variations, specifically the presence or visi-

bility of certain pose-aligned parts in the image. In this

section, we describe how we automatically obtain the set

of discriminative regions to localize similarity comparisons

(Section 3.3.1) and how we choose which images and re-

gions to show in the display (Section 3.3.2).

3.3.1 Discovering Discriminative Regions

In order to highlight the same localized region across im-

ages for performing localized similarity comparisons, we

require instance-level region correspondences. We use the

unsupervised approach of Singh et al. [48] to discover a set

of mid-level discriminative visual representations that are

localized and roughly pose aligned. At test time, we can

use these templates as part detectors that are evaluated on

input images in a sliding window manner. The initial can-

didate regions are extracted at random from uncropped im-

ages across multiple categories to ensure that regions are

of sufficient resolution and of diverse scale. We found that

fixing the candidate regions to lie within the object bound-

ing box was too constraining, as the bounding boxes were

often very small relative to the size of the image. The dis-

criminative classifiers are iteratively trained on a positive set

of training examples belonging to a single basic-level cate-

gory, and a negative set consisting of images from all other

categories, drawn from the PASCAL VOC dataset [16]. We

refer the reader to Section 4.3 for additional details.

3.3.2 Question Selection and Display Model

Our augmented system must be able to: (1) select a simi-

larity configuration at each time step to pose to the user as

a question; and (2) given a particular similarity configura-

tion, update the display accordingly. We are able to support

these two additional features without adding to the overall

computational complexity of the system.

Question selection. Recall that at train time, we obtain an

embedding Za for each configuration a = 1 . . . A using

targeted similarity questions, and we generate a similarity

matrix Sa from the learned embedding (Section 3.2). At

test time, the similarity comparison configurations are rep-

resented as different questions, in which the system directs

the user’s attention to a specific region.

At each timestep t during test time, we wish to pick both

a configuration a and display of images D that is likely to

provide the most information gain. To do so, we identify the

configuration that can produce the most balanced clustering

according to the current weights wt
k. Computation of up-

dated class probabilities occurs identically as described in

Section 3.2, with a modified update rule that replaces Eq 4:

wt+1
k = p(ut+1|zak)wt

k =
φ(Sa

ik)∑
j∈D φ(Sa

jk)
wt

k. (5)

Here, we update weights wt+1
k according to the similarity

matrix Sa of the selected configuration a.

Updating the display. It is likely that the localized regions

discovered in Section 3.3.1 may not be present in certain im-

ages; this corresponds to a low detection score for a partic-

ular region detector. As such, we modify the display model

of [57] to take part presence into account.

Intuitively, for a particular region r, we wish to include

images in the display that are highly likely to contain that

localized region. Recall that we have a set R of discrimi-

native regions. For a given image xk in the training set, we

model the probability the region r ∈ R is present in xk as

p(vk|r, xk). In practice, this is determined by applying a

sigmoid function to the output of the region detector. The γ
parameter is learned on a validation set [44].

In selecting images for the display, we employ the ap-

proximate solution described in [57, 18, 21], which groups

the images into clusters to ensure that each image in the

display is equally likely to be selected, maximizing the in-

formation gain in terms of the entropy of p(c, zk, Ut|x). For

the display, we thus pick the image within the cluster with

the highest mass as weighted by the region presence proba-

bility wt
kp(vk|r, xk).

4. Implementation Details
4.1. Dataset and Data Collection

We perform our experiments on the fine-grained CUB-

200-2011 dataset [56], which consists of 200 subcategories

of bird species with roughly 60 images per class. We as-

sume that we are provided with ground truth object bound-

ing boxes in both training and testing, and we maintain the

specified train/test split.

For learning the perceptual metrics, we collect similarity

comparisons using the crowdsourcing workplace Amazon



Mechanical Turk. Collecting similarity judgments densely

over all training images for each region would be an expen-

sive and costly process; instead, we sample images for the

displays from the distribution p(vk|r, xk), such that noisy

detections with low p(vk|r, xk) are less likely to be selected

for annotation. For each region r, we collect localized simi-

larity comparisons using the GUI in Figure 2(a), which uses

a 3× 3 grid display of G = 9 images. Some context around

each region is shown.

4.2. Computer Vision Features and Learning

In order to compare to previous work, we initialize our

computer vision estimate of class probabilities using the

same setup as [57], with multiclass 1-vs-all SVMs [17]

trained on color/grayscale SIFT features and color his-

tograms extracted from the uncropped images. We also

compare to a method that uses Fisher vector encodings

(FVs) with features extracted from the object bounding

boxes, which has been demonstrated to improve FGVC ac-

curacy over other computer vision algorithms [22]. We ex-

tract SIFT descriptors and use a 256-visual words GMM,

applying an L2-normalization on the Fisher vectors and

learning a linear SVM with VLFEAT [53], yielding 34.76%
average classification accuracy on the test set, compared to

18.9% with SIFT/color features.

4.3. Discriminative Region Vocabulary

To generate the discriminative regions set, we only keep

discovered patches that have sufficient overlap (50%) with

the ground truth object bounding box [31]. This eliminates

many noisy detections that fire in the image background,

resulting in 106 localized and roughly aligned regions.

We also wish to ensure sufficient diversity in the regions

used; consequently, we apply agglomerative clustering to

reduce the set of 106 discovered regions to 23 region clus-

ters. These region clusters are fairly noisy, and semanti-

cally aligned regions are not always grouped together due

to translation and scale variance. We thus manually select 5
diverse and representative regions from different clusters to

comprise R and to use in our experiments (see Figure 3). In

practice, these regions can be selected in a more automated

manner, for example using an MTurk pipeline.

5. Experiments
In Section 5.1, we describe how the embeddings are

generated. In Section 5.2, we compare human perception

differences between localized and nonlocalized similarity

judgments. In Section 5.3, we present our interactive clas-

sification results.

5.1. Embedding Generation

For each localized region (Figure 3), we generate triplets

from similarity comparisons (Section 4.1) in order to learn

Figure 4. We visualize the first two dimensions of the embedding

for one localized region (R13) used in our experiments.

an independent localized embedding of N nodes and of di-

mensionality d for each region r. The comparisons are col-

lected at the instance level, and for each embedding, we

pool over instances in each class, such that we obtain an

embedding of N = C = 200 and d = 10 [57]. This en-

ables us to generate a similarity matrix Sr ∈ C×C for each

region r. The metric is learned independently from all other

regions; see Figure 4 for visualizations of the embeddings.

This pooling step mitigates the effects of noise in both

user similarity responses and region detection, and we find

that we do not need to filter any noisy user responses from

training in order to learn the embeddings. By pooling over

classes, we assume that the visual appearance of parts are

coherent within a subcategory; in reality, however, there is

intraclass variation due to differences in gender, age, sea-

son, etc. While we do not directly address this, our user re-

sponse model is able to account for noise in user responses.

5.2. Human Perception of Localized Similarity

We first observe empirically how users respond differ-

ently to localized compared to nonlocalized similarity ques-

tions. We generate 20 unique questions, each of which con-

sists of 10 images total: a reference image and a grid of

G = 9 images. Each question is seen by up to 10 AMT

workers. The 200 images in the questions are selected from

the top-scoring detections across the dataset for Region 1,

Region 21, and Region 39 (see Figure 3).

We create two experiments from the set of 20 questions.

One consists of localized questions only, in which the de-

tected region is highlighted in the image (Figure 2(a)). The

second experiment consists of the same set of questions, but

the images are shown to the user as the full uncropped ver-

sion (Figure 2(b)). Across both experiments, the images in
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Figure 5. Comparing human perception of nonlocalized vs. localized similarity. 5(a): Histogram of HITs with a certain maximum

percentage agreement (MPA) among 10 AMT worker responses; 5(b): MPA vs. average worker time per question; 5(c): the co-occurrence

rates of user-selected image locations in the 3× 3 grid, enumerated 1− 9.

the grid appear in the same position, and the user is asked

to select a single image in the grid that is most similar to the

reference image. The only variable that changes between

experiments is how the images are displayed to the user.

Due to how the discriminative regions are discovered, both

experiments show images that are roughly pose aligned. We

present our results in Figure 5.

Localized similarity comparisons require less human ef-
fort. We observe in Figure 5(b) the relationship between

user consistency and response time. Each point corresponds

to a single question. We plot the maximum percentage

agreement (MPA) of the 10 users who agree on a single

image in the grid, versus the average response time over

those users. On average, it takes a human user less time

(and with lower variance) to answer a localized comparison

(11.35 ± 10.17 sec), compared to 16.36 ± 14.31 sec for a

nonlocalized comparison.

Users answer both localized and nonlocalized questions
with similar consistency. In Figure 5(a), we plot the dis-

tribution of tasks according to the MPA. Both localized and

nonlocalized similarity questions have comparable average

MPA across questions (0.54 vs. 0.56, respectively), sug-

gesting that users answer the two types of questions with

similar levels of consistency. With localized regions, there

still exist multiple dimensions upon which to judge similar-

ity, such as color, shape, and pattern. As such, localization

does not necessarily remove ambiguities, but does make the

comparison task easier to perform.

Responses to localized questions yield different informa-
tion about similarity. We present in Figure 5(c) the co-

occurrence rates of selected image locations in the 3×3 grid

(1-9, enumerated in left-to-right, top-to-bottom order) for

corresponding nonlocalized and localized questions. Selec-

tions are normalized by row. Users select the same image as

the most similar for both nonlocalized and localized ques-

tions only 50.73% of the time on average, indicating that a

localized similarity response provides different visual sim-

ilarity information to the system. We do note that worker

noise and bias can affect their responses [32]; for example,

workers tend to click on the lower-left portion of the grid,

as it is closer to the button to advance to the next question.

5.3. Interactive Categorization

We show our results on interactive classification in Fig-

ure 6; qualitative examples are presented in Figure 7. At

test time, we use an interface similar to that used in train-

ing (Figure 2(a)), with the primary difference being how

the reference image is displayed. The region detections in

uncropped test images can be noisy, and we wish to avoid

highlighting an erroneous detection to the user. Instead, we

show the nonlocalized reference image, and we assume that,

with some cost in human effort, the user is able to mentally

localize and align the corresponding region, based on the

localized region highlighted in the grid images.

Similar to [57], we use simulated user responses that al-

low us to compare to previous work more readily as well

as explore different parameter choices. We use a model for

user behavior that accounts for noisy responses, estimating

parameters on a validation set of real human responses. We

refer the reader to [57] for details on the user model. Our

experimental setup and performance metrics are the same

as [55, 57], in which the user can verify perfectly the high-

est probability class, and we evaluate our system based on

the average number of questions a user must answer per test

image to classify it correctly.

It is advantageous to use localized and nonlocalized met-
rics together. In Figure 6(a), we compare performance

with simulated noisy users to the system presented in [57],

which uses a single nonlocalized class similarity metric

(Wah2014), as well as to previous baselines from [57]:

an interactive classification system that uses part-localized

computer vision algorithms and poses semantic part click

and binary attribute questions (Wah2011) [55]; an im-

plementation of a relevance feedback system that uses a

feature-based L1-distance metric (Ferecatu2009) [21]; and

a baseline derived from classification scores alone, in which

the user moves down the ranked list of classes to verify

the correct class (Ranked by CV). Class probabilities are



initialized using the computer vision algorithms based on

SIFT/color histograms.

By combining localized and nonlocalized metrics, we

are able to classify the test images with 9.85 questions

on average, compared to 9.99 by using localized metrics

only and 11.53 from using the nonlocalized metric. In Fig-

ure 6(b), we observe a similar trend when we use FV-based

computer vision estimates for initializing per-class proba-

bilities; using both types of metrics results in 0.44 less ques-

tions on average than using only localized metrics. We em-

phasize that this performance gain is further exaggerated

when we consider the observation that localized compar-

isons take on average 5.01 sec less time to perform than

nonlocalized comparisons (Section 5.2).

We also compare to the Ranked by CV baseline using

the Fisher vector encoding. This baseline outperforms our

system initially but fails on more difficult images, whereas

our similarity-based approach is able to ultimately identify

the correct class.

Localized comparisons are more informative than non-
localized comparisons. In general, our interactive cate-

gorization system will tend to ask users to make localized

comparisons in the beginning, as these questions provide

the most expected information gain. As the per-class prob-

ability estimates are refined, the system will ask more non-

localized similarity questions.

Some localized regions are more useful for categoriza-
tion than others. In Figure 6(c) we present categorization

results using the localized metrics separately. We note that

using the localized metric for Region 13 outperforms using

the other localized metrics. This may suggest that the visual

representation captured by Region 13, visualized in Fig-

ure 4, is particularly useful for discriminating bird species.

Nevertheless, it is still be beneficial to use a combination

of regions, as not all regions will be present in all the im-

ages. For example, using Region 13 alone produces a boost

in average categorization accuracy initially for the first 15
questions; after that point, other localized metrics become

more informative.

6. Conclusion

We present in this work a part and attribute vocabulary-

free approach for interactive categorization that uses lo-

calized perceptual similarity metrics. These metrics are

learned independently, even if the regions are overlapping

on the object. In the future, we can take spatial dependen-

cies into account in learning these localized metrics.

Performance of the system is affected significantly by

noisy detections, which impact how accurately a user can

judge localized similarity. To alleviate this and improve

classification accuracy, we can consider leveraging human

feedback to clean up poor detections or to aid in the selec-

(a) SIFT/color histograms

(b) Fisher vectors (FVs) (c) Local metrics (FVs)

Figure 6. Interactive categorization. 6(a): Using both localized

and nonlocalized metrics outperforms using either type of metric

alone. We compare to prior baselines from [57]. 6(b): We ob-

serve performance when the initial class probability estimates are

improved by using Fisher vectors. 6(c): We compare performance

using each localized metric separately.

tion of discriminative regions to incorporate in the system.

Because our system is able to discover and detect regions

in an unsupervised manner, it requires minimal manual in-

tervention. By having humans perform the aforementioned

steps as an automated crowdsourced process, we will have

all the necessary components to deploy this system as a

standalone interactive categorization pipeline. The only re-

quired input to this system would be a dataset of images

with class labels, enabling this system to potentially be ex-

tended to new domains easily and automatically.
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