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Abstract

During the last stage of RLHF, a large language model is aligned to human in-
tents via PPO training, a process that generally requires large-scale computational
resources. In this technical report, we empirically investigate an efficient imple-
mentation of RLHF using low-rank adaptation (LoRA), which allows us to align
the LLaMA 7B checkpoint on the Alpaca dataset (Taori et al., 2023) using only
two A100 GPUs instead of the eight required for full model fine-tuning. Despite
tuning only 0.2% of LLaMA 7B’s parameters, our implementation achieves better
performance than the publicly-released AlpacaFarm checkpoint (Dubois et al.,
2023) with full model fine-tuning. Next, we analyze several configurations of our
LoRA-based PPO implementation, varying the form of the KL regularization term
in the training objective. We find that (1) removing this penalty term does not harm
performance on the AlpacaFarm evaluation set under our LoRA setup; (2) other
regularizers, such as Jensen-Shannon divergence, lead to improved performance;
and (3) while PPO training negatively impacts the factuality of model-generated
responses, training with LoRA largely mitigates this effect. We release our code
and pretrained checkpoints to facilitate future research on more efficient RLHF.1

1 Introduction

Reinforcement learning from human feedback (Ouyang et al., 2022, RLHF) is a technique used to
align large language models (LLMs) with the intents of human users. While companies such as
OpenAI, Google, and Anthropic provide blackbox access to LLMs tuned with RLHF, their codebases
remain proprietary. While the development of open-source libraries such as TRL (von Werra et al.,
2020), TRLX (Castricato et al., 2023), and AlpacaFarm (Dubois et al., 2023) has enabled other re-
searchers to experiment with RLHF, the required experimental settings are computationally infeasible
for most under-resourced labs. For example, aligning the pre-trained LLaMA 7B checkpoint (Touvron
et al., 2023) with RLHF requires eight Nvidia A100 80GB GPUs using the AlpacaFarm library.
Currently, a single node with 8 A100 GPUs costs around $200K to purchase,2 and renting such
resources from cloud providers borders on the impossible due to limited supply and huge demand.

Why does RLHF require so many GPUs? RLHF involves three stages that each requires fine-
tuning a pre-trained LLM: (1) supervised fine-tuning on instruction following data; (2) reward model
training on human preference data; and (3) fine-tuning via proximal policy optimization (Schulman
et al., 2017b, PPO). The third stage, in which the RLHF-aligned LLM is actually created, is also
the most expensive because it requires storing multiple large models (e.g., policy, value, reward,
reference policy) along with gradients and optimizer states in GPU memory. The AlpacaFarm library
leverages fully sharded data parallel training (Zhao et al., 2023, FSDP) to distribute the parameters

1https://github.com/SimengSun/alpaca_farm_lora
2For example, see this quote from Lambda Labs.
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of these models across multiple GPUs, which along with flash attention (Dao et al., 2022) enables
processing two examples per GPU.

Saving memory with LoRA: Low-rank adaptation (Hu et al., 2021, LoRA) is a parameter-efficient
method to fine-tune large language models. In LoRA, the pre-trained LLM is frozen while only low-
rank decomposition of the weight matrices (commonly just the projection matrices in self-attention)
are optimized. The rank of the decomposition matrices is typically very small (e.g., 8 or 64) compared
to the dimensionality of the hidden states (e.g., 4096), which greatly reduces memory consumption.

Contribution #1: In this technical report, we implement the third and most resource-demanding
stage of RLHF (PPO) with LoRA and manage to bring down the hardware requirements from eight
to two A100s. We observe no performance degradation when using LoRA; in fact, with just 10
hours of LoRA-based PPO training, we outperform the publicly-released AlpacaFarm checkpoint
(trained via full model fine-tuning) in terms of win rate against text-davinci-003. To facilitate
reproducibility and future research, we release our code, which modifies the AlpacaFarm library to
support LoRA and alternative regularization schemes, as well as our LoRA weights for LLaMA-7B.
All experiments in this report were conducted on two A100 80GB GPUs.

KL regularization may not be critical when using LoRA. The third stage of RLHF (i.e., PPO
optimization) attempts to maximize the expected reward of the policy model while also penalizing
large deviations from the pre-trained base model. This penalty is implemented via an approximation
of KL divergence (Kullback and Leibler, 1951) between the policy and pre-trained reference LLM.

Contribution #2: While prior work has considered this penalty critical to the successful application of
RLHF (Ouyang et al., 2022), our experiments show that the KL penalty can be completely removed
when using LoRA without lowering the resulting model’s win rate. Additionally, we discover that
implementing this penalty using different divergence estimators (e.g., Jensen-Shannon divergence)
can lead to higher win rates on the AlpacaFarm evaluation set. We hypothesize that LoRA itself acts
as a powerful regularizer since most of the pretrained LLM’s parameters (e.g., in the feed-forward
layers) are left unchanged, and as such additional regularization is not as critical as in full model
fine-tuning. This can lead to further memory reductions, as it may not be necessary to keep the
reference policy in memory when using LoRA.

Limitations of this work: Due to limited compute (i.e., no access to a node with 8 A100 80GB GPUs),
we could not run RLHF on the LLaMA 7B checkpoint using full model fine-tuning. Thus, it is
infeasible for us to assess the impact of removing or replacing the KL penalty term on full model
fine-tuning. These experiments are critical to verify our hypothesis about LoRA’s regularization
effect. Additionally, because FSDP implementations did not support disabling gradients for specific
parameters at the time of our experiments, we do not use any model parallelism during training,
which makes it difficult to experiment with the larger LLaMA checkpoints. In our current codebase,
the policy and value models are stored on one GPU while the reference policy and reward model are
stored on the other; the latter GPU is thus only sparsely utilized. Finally, as we only experiment with
the AlpacaFarm data, our conclusions may not generalize to other domains, languages, or to more
complex instruction sets.

2 Implementing RLHF with LoRA

To ground our discussion, we first provide a brief overview of the experimental settings that we
consider in our work, which builds on the AlpacaFarm platform (Dubois et al., 2023). Then, we
discuss how we incorporate LoRA into the PPO step of RLHF, which leads to slightly improved
performance while also cutting down on memory consumption (from eight to two A100s).

2.1 Experimental settings

All of our experiments are conducted on the publicly-available LLaMA 7B checkpoint, which was
pre-trained on 1 trillion tokens using 82K GPU hours (A100 80GB) (Touvron et al., 2023). We
build our codebase on top of the open-source AlpacaFarm platform (Dubois et al., 2023) instead
of other open-source RLHF libraries because AlpacaFarm also implements rigorous evaluations of
RLHF-tuned instruction-following models.
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RLHF data: We follow Dubois et al. (2023) by applying RLHF to the pre-trained LLaMA model
using the Alpaca-52K instruction-following dataset (Taori et al., 2023). Each example in this dataset,
which was automatically generated using text-davinci-003 , contains an instruction for some
task and a corresponding demonstration (i.e., an optional input and output for that task). The dataset
contains a diverse set of tasks spanning both open-ended instructions (e.g., Describe the impact of
the coronavirus on the economy) and highly constrained ones (Standardize the following date to
the ISO 8601 format). Each of the three stages of RLHF is performed using a different split of the
Alpaca-52K data: supervised fine-tuning with 10K examples, reward modeling with 10K instructions
/ model-generated outputs for which human raters provided preference judgments, and PPO with 20K
instructions.3

Evaluation by win rate: AlpacaFarm collates existing open-source instruction-following
datasets (Wang et al., 2023b; Bai et al., 2022a; Chiang et al., 2023; Geng et al., 2023) to form
an evaluation dataset of 805 diverse instructions. To evaluate two models against each other on
this dataset, we first collect responses generated by both models for all 805 instructions. Then, a
pool of large language models (GPT-4-0314, GPT-3.5-turbo, text-davinci-003) are
prompted to provide preference judgments (i.e., which model’s output is better for a given instruction)
by simulating human annotators, which allows us to compute the win rate of one model over the
other. The LLM-based simulated workflows were shown to highly correlate with human raters
in system-level comparison with a Spearman correlation of 0.98 Dubois et al. (2023). As in the
original codebase, we compute the win rate of each of our model configurations against OpenAI’s
text-davinci-003.

Baseline model: Dubois et al. (2023) release checkpoints for the SFT-10K step (stage 1 of RLHF),
the reward model trained on human preference (stage 2), and the PPO-optimized stage 3 checkpoint.
Their SFT-10K model4 reaches a win rate of 37% against text-davinci-003, while the PPO-
optimized checkpoint5 has a win rate of 47%.

In this technical report, we use the publicly-released AlpacaFarm checkpoints for the SFT and reward
modeling stages of RLHF. These first two stages are not as memory intensive as the third stage,6
and prior work (Hu et al., 2021; Santacroce et al., 2023) has shown that LoRA is very effective for
fine-tuning LLMs with limited resources. Our focus is on the third stage of RLHF (PPO), in which
these previous two checkpoints have to be kept in memory along with the policy network, where we
perform PPO with LoRA using the third split of 20K instructions.

2.2 Reducing RLHF’s memory consumption with LoRA

To alleviate the memory consumption of the third stage of RLHF, we employ low-rank adaptation (Hu
et al., 2021) to align the model. In LoRA, an input hidden state hin ∈ Rd is projected to hout ∈ Rd via
a weight matrix W ∈ Rd×d and two low-rank decomposition matrices A ∈ Rk×d and B ∈ Rd×k,
where k is the rank of the low-rank matrices (k ≪ d) and α is a scaling hyperparameter:

hout = (W +
α

k
BA)hin (1)

During LoRA training, W is kept frozen while the decomposition matrices A and B are trained.

Experiment details: We follow the original LoRA setup of Hu et al. (2021) by setting the rank
k to 8. Additionally, we set the scaling hyperparameter α to 64, which is a critical decision: using
the default value of α = 1 in the LoRA codebase7 reduces the win rate by ∼ 6 points compared to
when α = 64. We apply LoRA only to the projection matrices (key, query, value, and output) in the
attention layers. We also apply normal fine-tuning to the final projection head of size [4096, 1] in the
value function (critic), which leads to faster convergence in our experiments. Finally, we add dropout
to all tuned layers with p = 0.1. In total, we optimize 16.7M parameters with LoRA (∼ 0.2% of

3The rest of the data is left unused.
4https://huggingface.co/tatsu-lab/alpaca-farm-sft10k-wdiff
5https://huggingface.co/tatsu-lab/alpaca-farm-ppo-human-wdiff
6Full-model fine-tuning for the first two stages requires 4 A100 80GB GPUs; however, only one A100 is

needed if using LoRA.
7https://github.com/microsoft/LoRA/tree/main
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Adaptation
method Regularization Divergence estimator Win rate

Publicly-released supervised fine-tuning (SFT-10k) checkpoint from Dubois et al. (2023)
Full model tuning - - 37.0

Publicly-released PPO checkpoint from Dubois et al. (2023)
Full model tuning Clamped KL max(0, log πθ(y)− log πref(y)) 46.7

Our PPO models trained with LoRA
LoRA Clamped KL max(0, log πθ(y)− log πref(y)) 47.5± 0.2

LoRA KL log πθ(y)− log πref(y) 46.7± 0.02

LoRA Bregman πref(y)
πθ(y)

− 1− log πref(y)
πθ(y)

49.0± 0.1

LoRA Squared error 1
2
(log πθ(y)− log πref(y))

2 47.1± 0.1

LoRA Jensen-Shannon 1
2
max(0, log πθ(y)− log 1

2
(πθ(y) + πref(y)))+ 49.8± 0.3

1
2
max(0, log πref(y)− log 1

2
(πθ(y) + πref(y)))

LoRA No regularization - 48.2± 0.1

LoRA Dropout only (p=0.5) - 48.4± 0.2

Table 1: Our experiments demonstrate that (1) LoRA is a competitive parameter adaptation method to
full-model fine-tuning for PPO training in RLHF; and (2) PPO training with LoRA does not require
any additional regularization (KL or otherwise) to succeed. We evaluate the win rate of each model in
the table against text-davinci-003 on the AlpacaFarm evaluation data. Preference judgments
to calculate win rate are simulated by a pool of automated LLM annotators (e.g., GPT-4). We evaluate
the public AlpacaFarm checkpoints in the top two rows (SFT-10k and PPO); for each of the remaining
rows, we perform three runs of PPO optimization with LoRA and the corresponding regularizer, and
we report the mean and standard error with bootstrap sampling.

LLaMA 7B’s parameters). For all experiments, we set the KL coefficient β = 0.02 (see Eq. 3), the
rollout batch size to 256, and the gradient update batch size to 128. We perform three training runs
for each of our configurations and report mean and standard error with bootstrap sampling.

2.3 LoRA is effective for PPO training

Our experiments in Table 1 show that LoRA is a powerful parameter-efficient adaptation method
for PPO training. While the publicly-released PPO-optimized checkpoint of Dubois et al. (2023)
reaches a win rate of 46.7% with full model fine-tuning,8 our corresponding LoRA model (third row
of Table 1) obtains a slightly higher win rate of 47.5% despite optimizing just a small fraction of
the parameters. Note that this is as controlled of an experiment as we can perform: we use the same
KL regularization penalty as that of the published checkpoint and also the same batch size (16). We
report win rate after 100 steps of training,9 which takes around 10 hours of training on two A100s.
The released AlpacaFarm PPO checkpoint was trained for 20 PPO steps,10 which is equivalent to
40 steps in our experimental setup. Dubois et al. (2023) noted that optimal PPO performance is
achieved between 20 to 80 PPO training steps under their setup, and they perform model selection
based on simulated win rates.11 In contrast, we observe increases in win rate until ∼100 steps in our
LoRA setup (Figure 1). Having established the effectiveness of LoRA for RLHF, we now turn to
investigating the regularization effects that it has on PPO training.

8We download their checkpoint and rerun the evaluation ourselves using pooled LLM annotators.
While the AlpacaFarm leaderboard was recently updated to report a higher win rate of 49.25, our evalu-
ation result closely matches their previously-reported number of 46.6 when using the pooled annotators
before the update on Jun 23rd, 2023. (see here: https://github.com/tatsu-lab/alpaca_
farm/blob/0cfd0bce0506b3d68998c82b17a160d7da1d99a0/src/alpaca_farm/auto_
annotations/eval.py#L23).

9We report results after 100 steps because we empirically observe the win rate of most configurations plateaus
after this point (see Figure 1 for win rates at other points during training).

10Verified after email communication with one of the authors.
11https://github.com/tatsu-lab/alpaca_farm/issues/60
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Figure 1: Win rate against text-davinci-003 on the AlpacaFarm evaluation set plotted as a
function of PPO steps. The Jensen-Shannon estimator consistently outperforms no regularization,
which in turn outperforms the standard KL estimator. We observe win rates plateauing after roughly
100 steps.

3 KL regularization in PPO training

First, we provide a brief overview of PPO training in the third stage of RLHF, highlighting the KL
regularization term that is commonly regarded as critical for successful training. We experiment with
different variants of this KL penalty with our LoRA setup (including no regularization at all), which
we fully specify here.

3.1 PPO training

In the third stage of RLHF, the SFT model from the first stage (which is a model with basic instruction-
following capabilities) is reinforced with PPO against the reward model trained in the second stage.
PPO training (Schulman et al., 2017b) iterates between a rollout phase and an optimization phase.

Rollout: In rollout, the policy πθ being optimized (i.e., the LM undergoing alignment) generates
responses to a batch of input instructions. Each response is then assigned a scalar score by the reward
model. This score is then used to estimate the advantage12 for optimization in the next phase.

Optimization: The policy is optimized to maximize a surrogate objective using the advantage
estimated during rollout. Then, the newly-optimized policy is used to generate responses in the next
rollout phase. The surrogate objective in the optimization phase has the form

J (θ) = E[min(r(θ)Âθold , clip(r(θ), 1− ϵ, 1 + ϵ)Âθold)], (2)

where r(θ) = πθ(y|x)
πθold (y|x)

denotes the output probability ratio between the current policy πθ and the
policy πold from the previous rollout step, computed on responses y sampled during the previous
rollout. Â denotes the estimated advantage (Schulman et al., 2018), which depends on the reward
value; we refer readers to other materials (Schulman et al., 2018; Weng, 2018) for understanding
advantage estimation. The clipped output probability ratio stabilizes training by preventing large
policy updates, thus discouraging πθ from deviating too much from πold during optimization.

3.2 KL Regularization

While the clipped ratio in Equation 2 constrains the extent to which πθ can change from a recent
policy πold, πθ can still reach a sub-optimal region by “reward hacking” (Pan et al., 2022) after
enough rollout-optimization steps. To avoid this, a KL regularization term is added to penalize πθ

when it deviates too far from a reference policy πref during PPO training; the reference policy is
usually set to the output of the first stage of RLHF (i.e., the SFT-10k checkpoint).

12A positive advantage suggests that when πθ generates token y given a certain prefix, it receives a reward
higher than the average reward expected from generating other tokens in the vocabulary given the same prefix.
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Formally, let x be an instruction and y be a corresponding response of L tokens sampled during
rollout. While the reward model produces a scalar value r(x,y) ∈ R given the pair (x,y), the total
reward r(x,y) of the response y is a vector of dimensionality RL due to the KL penalty:

r(x,y) = [0 0 . . . r(x,y)]
⊤ − βKL(πθ(y | x), πref(y | x)) (3)

Here, KL(·, ·) denotes the KL divergence (Kullback and Leibler, 1951) between πθ and πref at each
position (token) of y, and the scalar reward r is added to the last position of the KL term. The shaped
reward r is then used to estimate the advantage, which is at the core of PPO.

As it is memory-consuming to compute the KL divergence over the entire vocabulary at each
timestep,13 prior work approximates the KL term via Monte-Carlo estimation (Schulman et al.,
2017a). Does the form of this approximation make an impact when implementing RLHF with LoRA?
In this report, we compare the following divergence estimators based on win rate:

• KL divergence: Given the distributions over the vocabulary predicted by both the current
policy πθ and the reference policy πref at token y of the response, the Kullback-Leibler
divergence is defined as KL(πθ(y), πref(y)) =

∑
y∈V πθ(y) log

πθ(y)
πref(y)

. By minimizing the
KL divergence, we effectively add an entropy regularizer that diversifies the generated
tokens while also maintaining high likelihood under the reference policy. In practice
(and in many open-source implementations), the true KL divergence is approximated as
log πθ(y)− log πref(y), which saves memory as only the probability of the generated token
y is stored instead of the entire distribution. While this estimator is unbiased, it also
suffers from high variance (Schulman, 2020); to enforce non-negativity, the AlpacaFarm
implementation clamps the minimum value to zero, which reduces variance at the cost of
biasing the estimator.

• Alternative divergence approximations: Schulman (2020) proposes two alternative
KL approximations that have lower variance. The first takes the form of squared error be-
tween log πθ(y) and log πref(y), which is biased and approximates a different f -divergence
measure.14 The second one is the Bregman divergence BF (

πref(y)
πθ(y)

, 1) associated with the
convex function F(x) := − log x, which is an unbiased KL estimator.15 Both alternatives
are shown to reduce variance and bias in a toy setting by Schulman (2020); in this report,
we verify their effectiveness on real natural language tasks.

• Jensen-Shannon divergence: We also experiment with the Jensen-Shannon divergence,
which is the average of the KL divergence for both πref and πθ against the intermediate
distribution πm(y) = 1

2 (πref(y) + πθ(y)). Note that the responses are sampled from πθ

instead of πref. Similar to the AlpacaFarm implementation, the minimum value is clamped
to zero for stabilized training. We fully specify the estimator in Table 1.

• No KL regularization: Finally, to evaluate whether KL regularization is necessary under
the LoRA setup, we also discard KL penalty entirely in two of our configurations, one with
dropout (Srivastava et al., 2014) and the other without.

4 Results & analysis

We observe several interesting phenomena while varying the regularization estimator within our
LoRA RLHF setup. First and perhaps most notably, completely removing the KL regularization
penalty does not affect win rate (it actually increases from 47.5% to 48.2% given same amount of

13Computing the true KL requires summing over the entire vocabulary, which is not economical if done for
every token in the sequence.

14f(x) := 1
2
(log x)2

15It is an unbiased estimator of KL because

Ey∼πθ [
πref(y)

πθ(y)
− 1− log

πref(y)

πθ(y)
] = −1 +

∑
y∈V

πθ(y)
πref(y)

πθ(y)
−

∑
y∈V

πθ(y) log
πref(y)

πθ(y)

= −1 + 1 + KL(πθ(y), πref(y))
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Figure 2: (Left): Regardless of the estimator, the true KL divergence (measured on 28K tokens
sampled from AlpacaFarm) steadily increases as training proceeds. The standard KL estimator is
predictably the most effective regularizer in terms of reducing true KL divergence. (Right): Response
length increases until about 100 PPO steps, after which it plateaus or drops for most configurations.

compute). Of the alternative estimators, the Jensen-Shannon divergence yields the highest overall
win rate (49.8%). We also compare the quality of the estimator against the true KL divergence
computed over the full distributions and discover that win rate is not necessarily correlated with low
KL divergence.

KL regularization is not critical when using LoRA. While previous work (Ouyang et al., 2022;
Stiennon et al., 2022) include the KL regularization penalty during PPO training, it is not necessary to
achieve a high win rate within our LoRA-based experimental setup. In fact, as shown in Table 1 and
Figure 1, a LoRA configuration without any KL regularization outperforms the released AlpacaFarm
PPO checkpoint (48.2 vs 46.7). We conjecture that LoRA provides implicit regularization by freezing
most of the parameters (e.g., feed-forward layers, layernorm, and embeddings), which already
discourages large deviations from the reference policy in parameter space. Previous work on other
parameter-efficient fine-tuning methods (Houlsby et al., 2019) such as prompt tuning (Lester et al.,
2021; Vu et al., 2022) and prefix tuning (Li and Liang, 2021) also demonstrate less overfitting in
low-data regimes, which corroborates our hypothesis. One major caveat in our experiments is that
properly verifying the regularization effect of LoRA requires a comparison to full-model fine-tuning
without the KL penalty, for which we do not have adequate resources.

Other divergence estimators outperform the standard KL estimator. Table 1 shows that the
KL estimator used in open-source RLHF implementations such as TRLX underperforms alternative
estimators. KL estimator does benefit from clamping (46.7 vs. 47.5 when clamped), but it is still
worse than Jensen-Shannon regularizer (46.7 vs. 49.8) at step 100. The Jensen-Shannon estimator
consistently outperforms all other estimators after step 60 in our experiments, and thus appears to
be a promising alternative for future RLHF work. This finding aligns with previous work (Go et al.,
2023), who also show that the Jensen-Shannon divergence outperforms other divergence measures
when fine-tuning language models to approximate energy-based models.

We observe high win rates even when the KL divergence is moderately large. RLHF uses
Monte-Carlo estimates of the KL divergence, and it is unclear how good these estimates are of
the actual KL divergence (i.e., when computed over the entire distribution). To understand the
effectiveness of minimizing the true KL, we sample 28K tokens from the AlpacaFarm evaluation data
and plot the KL divergence in Figure 2 (left). Regardless of the estimator used, the KL divergence
increases as the training proceeds. The choice of regularizer impacts the speed in which KL grows:
KL divergence increases faster without any regularization (“No regularization”) or when using the
Bregman divergence,16 it grows slower when regularized by the standard KL and the squared error
estimators. While removing KL penalty entirely leads to larger KL (e.g., 6 times that of the standard

16In the Bregman divergence penalty, πref(y)
πθ(y)

is minimized, which encourages πθ(y) to be large when πref(y)

is small despite the entropy bonus.
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Figure 3: (Left): We plot the win rate vs. token-level true KL divergence for the checkpoints from
steps 20, 40, 60, 80, 100, 140, and 180 of multiple configurations and multiple runs. In general
win rates sharply increases and then more gradually decreases as the true KL divergence increases.
(Right): The linear relationship between

√
KL(πθ, πref) and reward, observed in prior work, also

holds in our LoRA implementation within a certain regime.

KL estimator at step 180), the resulting model still reaches win rates of 47% ∼ 49%, which are higher
than that of the released AlpacaFarm PPO checkpoint. That said, the best win rates are achieved
when the KL divergence from the reference policy is neither small nor large (on our evaluation set,
around 0.05 to 0.12 per token).

A linear relationship between
√

KL(πθ, πref) and reward exists in our LoRA setup. Previous
work (Bai et al., 2022a; Gao et al., 2023) demonstrates an approximately linear relationship between√

KL(πθ, πref) and reward, which suggests that πθ stays within a small region relative to πref (i.e.,
πref + δπref) during PPO training. In Figure 3 (right), we confirm that this linear relationship also
holds in our LoRA setup. To go beyond the δπref region, we also experiment with a configuration
that maximizes KL during training. We find that this “negative KL” estimator leads to a region where
the linear relationship breaks (

√
KL(πθ, πref) > 0.4 in our experiments). In this region, reward either

plateaus or starts decreasing instead of linearly increasing. This suggests that the ratio between√
KL(πθ, πref) and the reward can be a useful metric to monitor for over-optimization during training.

We observe positive correlations between rewards, win rates, response length, and KL in certain
regimes. In addition to rewards, we find that win rates and response length also positively correlate
with KL within a certain regime (step < 100 and KL < 0.12 in our experiments). Going beyond
this region, the average response length does not change much as KL divergence keeps increasing
(Figure 2, right), whereas win rates start to drop significantly (Figure 3, left). This has practical
implications on PPO training – early stopping leads to better performance while also saving compute.

PPO training has a larger negative impact on factuality with full model fine-tuning than with
LoRA. To quantify the effects of PPO training on the factuality of LLM-generated text, we evaluate
several checkpoints using the FActScore metric (Min et al., 2023). FActScore evaluates the factual
precision of a language model by breaking a long-form response into a collection of atomic facts
and then computing the precision of these atomic facts.17 Table 2 shows that the SFT10k model
(without any PPO training) obtains a higher FActScore than any checkpoint trained with PPO.
Meanwhile, the released AlpacaFarm PPO checkpoint with full-model fine-tuning achieves the lowest
FActScore (34.5%), with all of our LoRA-based implementations outperforming it (39.4% for the
most comparable configuration). This result suggests that while PPO training can effectively steer the
output to those preferred by humans for stylistic reasons (e.g., by increasing response length), it also
may hurt the factuality of the generated text, and perhaps LoRA’s regularization properties mitigates

17We use the ChatGPT+retrieval configuration of FActScore. The prompt for all of our experiments is “Tell
me a bio of X”, and we perform all evaluations on the labeled split of 183 people entities released by Min et al.
(2023).
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Configuration FActScore (↑) # facts per response # tokens per response
Publicly-released AlpacaFarm checkpoints from Dubois et al. (2023)

AlpacaFarm SFT10k 39.7% 19.3 121.1
AlpacaFarm PPO 34.5% 37.1 247.9

Our PPO models trained with LoRA

LoRA PPO w/ KL 39.4% 26.7 170.8
LoRA PPO w/ Jensen-Shannon 38.2% 30.7 199.1
LoRA PPO w/o regularization 38.4% 33.9 217.5

Table 2: Evaluation on the FActScore labeled split (Min et al., 2023), which requires each model
to generate a biography of 183 people entities. Models fine-tuned with the PPO training objective
consistently underperform the SFT10k checkpoint in terms of factual precision. Implementing PPO
training with LoRA somewhat mitigates the negative impact on factuality of model-generated text.

this effect to some extent. We provide example output on FActScore in Table 3 and example output
on AlpacaFarm in Table 4 and Table 5 in the Appendix.

5 Related work

Our work tackles the task of aligning large language models (LLMs) to human intents via instruction-
following methods (Ouyang et al., 2022). Instruction-following methods can be broadly categorized
into (1) those that just perform supervised fine-tuning and (2) those that additionally apply reinforce-
ment learning.

Methods in the first category differ in how they source instruction-following data for supervised
fine-tuning. The instruction-response pairs can be generated from existing (close-sourced) mod-
els (Taori et al., 2023; Honovich et al., 2022; Mukherjee et al., 2023; Wang et al., 2023b), curated by
humans (Köpf et al., 2023; Zhou et al., 2023), or even curated by LLMs (Li et al., 2023). Open-source
models, when fine-tuned on high quality (Zhou et al., 2023) and diverse data (Wang et al., 2023a),
can compete with blackbox LLMs on certain evaluations.

RL-based methods (Ziegler et al., 2020; Ouyang et al., 2022) align LLMs via online policy rollout
and optimization. In contrast to SFT-based methods, RL incorporates feedback collected from either
humans (Stiennon et al., 2022; Ouyang et al., 2022) or AI (Bai et al., 2022b; Lee et al., 2023). These
judgments are distilled into a preference (reward) model for evaluating responses during online
policy rollout with (sparse) rewards (Wu et al., 2023), and the whole process is more involved than
the single-stage teacher-forced training used in SFT. While most RL-based methods depend on
pairwise preference judgments (Dubois et al., 2023), feedback can take other forms including natural
language (Saunders et al., 2022; Fernandes et al., 2023). Recently, Bansal et al. (2023) show that
human feedback protocol (e.g., rating or ranking) has significant impact on the evaluation of aligned
LLMs.

RL-based methods are typically regularized by a distributional term (e.g., a KL divergence penalty)
to avoid degeneration caused by large deviations from a reference model. Previous work (Korbak
et al., 2022b) shows that KL-regularized RL can be viewed as Bayesian inference. Minimizing KL
divergence is also related to distribution matching (DM) methods (Khalifa et al., 2021), where the
target optimal distribution is available. Recently, Korbak et al. (2022a) introduced KL-regularized RL
from the perspective of DM, and Go et al. (2023) propose a framework that unifies KL-regularized
RL, DM, and other f -divergence minimization methods.

6 Conclusion

In this technical report, we conduct an empirical analysis of the last stage of RLHF (PPO training)
when implemented with low-rank adaptation, a parameter-efficient fine-tuning method. Our LoRA-
based implementation of RLHF reduces the required hardware from eight to two A100 GPUs. Besides
reduced memory consumption, we also observe that LoRA provides an implicit regularization effect
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during PPO training – good performance can be achieved even when the KL regularization term in
the PPO objective is removed. Additionally, we find that alternative regularizers to the standard KL
divergence estimator (e.g., Jensen-Shannon divergence) lead to higher win rates. We release our code
and LoRA weights to spur future research on RLHF from under-resourced labs.
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Instruction Tell me a bio of Don Featherstone (artist)

AlpacaFarm SFT10k Don Featherstone (1935-2015) was an American artist and sculptor best
known for creating the iconic plastic pink flamingo lawn ornament. He was born in 1935 in Hartford,
Connecticut and studied at the Art Students League of New York and the Yale School of Art and
Architecture. He worked as an artist and sculptor for the Garden Artists Guild in New York City,
creating sculptures for the Smithsonian Institution and the Metropolitan Museum of Art. In 1957,
he created the plastic pink flamingo lawn ornament for the Guild, which quickly became a popular
icon of the mid-20th century American suburban landscape. He continued to create sculptures
and artworks throughout his life, and his work is included in the collections of the Smithsonian
Institution and the Metropolitan Museum of Art. He passed away in 2015 at the age of 80.

AlpacaFarm PPO Don Featherstone (1921-1991) was an American artist and sculptor best
known for creating the iconic plastic pink flamingo lawn ornament. He was born in 1921 in Los
Angeles, California and studied art at the Chouinard Art Institute. He began his career as an artist
and sculptor in the 1940s, creating sculptures out of clay and other materials. In the 1950s, he moved
to Florida and began creating sculptures out of plaster. He was inspired to create the iconic pink
flamingo lawn ornament in 1957, when he saw a flock of real pink flamingos in a Florida park. He
created the first prototype out of plastic and presented it to the public the following year. The pink
flamingo lawn ornament was an instant success and is now considered to be an iconic symbol of the
1950s. Don Featherstone continued to create sculptures out of plaster and other materials, but he is
best known for his iconic pink flamingo lawn ornament. He passed away in 1991 in Florida.

AlpacaFarm PPO (LoRA) Don Featherstone (1935-1991) was an American artist and sculptor
best known for creating the iconic plastic pink flamingo lawn ornament. He was born in 1935 in
Los Angeles, California and studied art at the Chouinard Art Institute. He worked as an artist and
sculptor for several companies, including Union Products and Union Plastics, before founding his
own company, Don Featherstone Studios, in 1960. He is best known for creating the pink flamingo
lawn ornament, which he designed in 1957 and which became a popular fixture in suburban yards in
the 1960s. He also designed several other garden ornaments, including the purple swan and the blue
jay. He passed away in 1991.

No regularization Don Featherstone (1935-1991) was an American artist and sculptor best known
for creating the iconic plastic pink flamingo lawn ornament. He was born in 1935 in Massachusetts
and studied art at the Massachusetts College of Art and the School of the Museum of Fine Arts in
Boston. He began his career as an illustrator and graphic designer, creating advertisements and logos
for companies such as Coca-Cola and Ford. In the late 1950s, he moved to New York City and began
creating sculptures out of plaster and fiberglass. In 1957, he created his first plastic pink flamingo
lawn ornament for the Union Products company. The flamingo quickly became a pop culture icon
and is now considered to be a symbol of mid-century modern design. Featherstone continued to
create sculptures and other works of art throughout his life, and his pieces can be found in museums
and private collections around the world. He passed away in 1991 at the age of 56.

Table 3: Example of FActScore output. The actual biography of Don Featherstone can be found
at https://en.wikipedia.org/wiki/Don_Featherstone_(artist). Each of the
responses contains hallucination to various degree. Models aligned with PPO training are less
factually precise than SFT10K model.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Bernard Nguyen, Geeta
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Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. 2020. Fine-tuning language models from human preferences.

13

https://en.wikipedia.org/wiki/Don_Featherstone_(artist)
http://arxiv.org/abs/2304.11277
http://arxiv.org/abs/2304.11277
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/1909.08593


Instruction Verify the correctness of the given statement. “For all integers j and k, if j and k are
odd, then jk is odd.”

AlpacaFarm SFT10k True.

AlpacaFarm PPO This statement is correct. For any two integers j and k, if both j and k are odd,
then their product jk will also be odd. This is because the only even numbers that can be multiplied
together to produce an odd number are 2 and 1. Since j and k are both odd, they can only multiply
together to produce an odd number, and jk will also be odd.

AlpacaFarm PPO (LoRA) This statement is correct. For any integers j and k, if j and k are odd,
then jk is also odd. This is because the product of two odd numbers is always odd. Therefore, the
statement is correct.

No regularization This statement is correct. To see this, let’s consider the cases where j and k
are both even and where j and k are both odd. When j and k are both even, jk = (j - k) + (k - j) is
even since both j - k and k - j are even numbers. When j and k are both odd, jk = (j - k) + (k - j) is
odd since the sum of two odd numbers is odd. Therefore, the statement is correct.

Table 4: Example of AlpacaFarm output.

Instruction In a world where automation is becoming increasingly prevalent, is it more important
to prioritize job creation or technological progress?

AlpacaFarm SFT10k It is more important to prioritize job creation in the short-term, as
automation can lead to job losses and disruption of the existing economic order. In the long-term,
however, technological progress should be prioritized in order to remain competitive in the global
marketplace.

AlpacaFarm PPO In my opinion, it is more important to prioritize job creation in a world
where automation is becoming increasingly prevalent. While technological progress is undoubtedly
important, it is essential to ensure that automation does not lead to mass unemployment. Job creation
should be prioritized in order to ensure that people have access to meaningful employment, as well
as the income and security that comes with it. Additionally, job creation should be prioritized in
order to ensure that automation does not lead to a widening of economic inequality, as automation
has the potential to disproportionately benefit those who are already economically advantaged. Job
creation should also be prioritized in order to ensure that automation does not lead to a decrease in
human autonomy, as automation has the potential to reduce the need for human labor and therefore
reduce human agency. Therefore, I believe that job creation should be prioritized in a world where
automation is becoming increasingly prevalent, in order to ensure that automation does not lead to
negative consequences such as mass unemployment, widening economic inequality, and a decrease
in human autonomy.

AlpacaFarm PPO (LoRA) In my opinion, it is more important to prioritize job creation in the
world where automation is becoming increasingly prevalent. Automation can lead to technological
progress, but it can also displace workers and cause economic disruption. Therefore, it is essential
to ensure that workers have access to meaningful employment and that the economy continues to
grow and create new jobs. By prioritizing job creation, governments and organizations can help
workers adjust to the changing job market and ensure that everyone has access to the opportunities
and benefits of technological progress.

No regularization In today’s world, it is more important to prioritize job creation. Automation
can create efficiencies and reduce costs, but it can also displace workers and lead to job losses.
Therefore, it is essential to focus on creating new job opportunities and providing people with
the skills they need to succeed in the labor market. This will ensure that people have access to
meaningful employment and can contribute to their communities. At the same time, it is important to
encourage technological progress and innovation, as this can lead to new job creation and improved
standards of living. By balancing job creation and technological progress, governments can ensure
that their citizens are able to benefit from the changing economy.

Table 5: Example of AlpacaFarm output.
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