
TOWARDS EFFECTIVE MODELING OF LONG-RANGE CONTEXT

A Dissertation Presented

by

SIMENG SUN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2024

Robert and Donna Manning College of
Information and Computer Sciences

© Copyright by Simeng Sun 2024

All Rights Reserved

TOWARDS EFFECTIVE MODELING OF LONG-RANGE CONTEXT

A Dissertation Presented

by

SIMENG SUN

Approved as to style and content by:

Mohit Iyyer, Chair

Andrew McCallum, Member

Brendan O’Connor, Member

Brian Dillon, Member

Ani Nenkova, Member

Ramesh K. Sitaraman, Associate Dean for
Educational Programs and Teaching
Robert and Donna Manning College of
Information and Computer Sciences

ACKNOWLEDGMENTS

First and foremost, I would like to extend my deepest gratitude to my advisor, Mohit

Iyyer, for his invaluable guidance and mentorship over the years. I am thankful for the

support he provided in helping me develop my own research taste, encouraging me when

I struggled with negative results, and offering me insightful feedback on many things,

including the very details of my works and presentations. I am greatly indebted to him for

empowering me to grow as a researcher. I feel fortunate to have learned from him, and am

grateful for being a part of the UMass NLP lab.

I would like to thank my committee members Andrew McCallum, Brendan O’Connor,

Brian Dillon, and Ani Nenkova. Their refreshing views, thoughtful comments and construc-

tive advice helped shape this thesis into its final form. I would also like to extend special

thanks to Ani for her guidance during my master’s study at UPenn and for sparking my

passion for research. Her mentorship has led me to pursue a field I find deeply rewarding.

This thesis would not have been possible without the support of my friends in Amherst.

I am grateful for the warm companionship and friendship with Xiang Lorraine Li, Weiqiu

You, Yixiao Song, Mengxue Zhang and her feline friends. The hiking trips, interesting

conversations, and movie and game nights are my precious memories. I appreciate the

helpful discussions with Nader Akoury, Yapei Chang, Andrew Drozdov, Dhawal Gupta,

Marzena Karpinska, Kalpesh Krishna, Tu Vu, and Shufan Wang. Special thanks to Nader

for teaching me how to parallel park, and to Marzena for bringing so much joy to the lab.

Studying and living in Amherst has also been enjoyable because of Yutao Zhou, Lijun

Zhang, Xiao Liu, Chau Pham, Yekyung Kim, Katherine Thai, Katie Keith, Wenlong Zhao,

Chenyun Wu, Zhan Xu, Zhipeng Tang, Erica Cai, Marisa Hudspeth, and Ankita Gupta. I

would like to thank David Jensen for teaching my favorite seminar at UMass, Georgia Stuart

iv

and other Unity staff for allowing smooth usage of the cluster, and Eileen Hamel, Elizabeth

Parolski and Kyle Skemer for their administrative support.

I am also grateful to people I met outside of Amherst and friends living far away. I thank

Varun Manjunatha for his guidance during my internship at Adobe, James Cross, Angela

Fan, and Maha Elbayad for their mentorship during my internships at Meta, and Yang Liu

for his guidance during my internship at Microsoft. I would like to express my gratitude to

Steven Tan, Haoran Xu, and Prashant Rajput for their companionship during the in-person

internship in 2022 summer. Additionally, I would like to thank Zixin Zhang for introducing

me to the OTW Open Doors project and volunteer activities. I also want to thank the friends

I made many orbits ago – Yaohua Ma and Jiahua Kang, for the regular online movie parties

and their ongoing support. I also appreciate the many authors whose writings impacted me

profoundly in multiple ways.

Finally, I extend my heartfelt gratitude to my family, especially my parents, for their

unwavering care and constant encouragement throughout this journey.

v

ABSTRACT

TOWARDS EFFECTIVE MODELING OF LONG-RANGE CONTEXT

MAY 2024

SIMENG SUN

B.Sc., BEIHANG UNIVERSITY

M.Sc., UNIVERSITY OF PENNSYLVANIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Mohit Iyyer

At the core of recent advancements in natural language processing are language models,

which are trained to predict the next token given the preceding context. Recent developments

in deep learning has led to the efficient scaling of context window in Transformer-based

language models. Despite the progress, these models still exhibit severe limitations when

tackling long-context tasks, such as book-level summarization and long-document question

answering.

While the context window size has been continuously increasing, there is a lack of

understanding on how these models utilize long-range context, or context that spans at

least several thousand tokens. As such, we first provide an analysis of long-range context

modeling with both perplexity and segment-level task evaluations. Our results show that

perplexity, the most commonly used intrinsic metric for language model evaluation, may

obscure the evaluation of long-range context modeling. In contrast, segment-level evaluation,

vi

which involves computing the probability of a sequence of tokens rather than a single token

as done in perplexity, proves to be a more suitable method for evaluating long-range context

modeling. Based on this finding, we enhance the segment-level evaluation by proposing

a challenge dataset ChapterBreak, and demonstrate that SuffixLM, a model trained with

segment-level signals, outperforms the standard token-level language model in this task.

The limited context modeling capability prompts us to investigate new ways to improve

recent large language models. To this end, we first develop a prompting framework, PEARL,

by leveraging large instruction fine-tuned language models to decompose complex reasoning

into executable plans. We demonstrate the efficacy of PEARL on a subset of the long-

document QA dataset, where the correct answer depends on the long-range context instead

of a short excerpt. Our second approach builds on the benefits of modeling context at the

segment level. Concretely, we propose a new training method, SuffixRL, by fine-tuning

a token-level language model directly using segment-level signals. We show that training

models with SuffixRL leads to more natural and coherent continuations in an open-ended

generation setting.

Finally, we conclude this thesis by proposing three general directions and identifying

seven concrete topics that hold promise for future exploration. We hope this thesis can spur

more principled research in long-context modeling.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Overview . 1
1.2 Evaluation of Long-range Context Modeling . 3
1.3 Towards Effective Modeling of Long-range Context . 4
1.4 Future directions . 6
1.5 Declaration of Collaborations . 6

2. DO LONG-RANGE LANGUAGE MODELS ACTUALLY USE
LONG-RANGE CONTEXT? . 8

2.1 Introduction . 8
2.2 Background & Setup . 10

2.2.1 Long-range Language Modeling . 10
2.2.2 Experimental setup . 11
2.2.3 Dataset & Models . 11

2.3 The effect of longer context . 13
2.4 The perturbation of long-range context . 20
2.5 Sequence-level analysis . 23
2.6 Related work . 26
2.7 Conclusion . 26

viii

3. CHAPTERBREAK: A CHALLENGE DATASET FOR LONG-RANGE
LANGUAGE MODELS . 28

3.1 Introduction . 28
3.2 The CHAPTERBREAK dataset . 30

3.2.1 Task overview. 30
3.2.2 Dataset overview . 31

3.3 Experiments . 34
3.4 Results & Analysis . 36
3.5 Related Work . 38
3.6 Long-range context modeling in the era of “large language models” 41

3.6.1 Evaluating large language models on CHAPTERBREAK 42

3.6.1.1 Models & Evaluation setup . 43
3.6.1.2 Results & Analysis . 43

3.6.2 General discussion on the evaluation of long-range language
models . 48

4. PEARL: PROMPTING LARGE LANGUAGE MODELS TO PLAN AND
EXECUTE ACTIONS OVER LONG DOCUMENTS 51

4.1 Introduction . 51
4.2 Related work . 54
4.3 PEARL: Planning and Executing Actions for Reasoning over Long

Documents . 55

4.3.1 Action mining . 56
4.3.2 Plan generation . 58
4.3.3 Plan execution . 58
4.3.4 Self-correction and self-refinement . 60

4.4 Experiments . 60

4.4.1 Experimental setup . 63
4.4.2 Baselines . 63

4.5 Main results . 65
4.6 Analysis . 66
4.7 Conclusion . 69

5. SUFFIXRL: TRAIN LANGUAGE MODELS WITH SEGMENT-LEVEL
SIGNALS . 71

ix

5.1 Introduction . 71
5.2 SuffixRL . 73
5.3 Efficient training and regularization for SuffixRL . 74

5.3.1 Low-rank Adaptation . 74
5.3.2 KL regularization . 76

5.4 Validation of efficient training and alternative regularization on
AlpacaFarm . 78

5.4.1 Validation setup . 78
5.4.2 Results & analysis . 80
5.4.3 Discussion . 84

5.5 SuffixRL experimental setup . 85
5.6 Results & Analysis . 86
5.7 Related work . 88
5.8 Conclusion . 91

6. FUTURE DIRECTIONS . 93

6.1 Follow-up works of SuffixRL . 93
6.2 Better evaluations of long-range language models . 94
6.3 Better training and architectures for long-range foundation models 95

BIBLIOGRAPHY . 97

APPENDICES

A. APPENDIX FOR CHAPTER 2 . 120
B. APPENDIX FOR CHAPTER 3 . 130
C. APPENDIX FOR CHAPTER 4 . 137

x

LIST OF TABLES

Table Page

2.1 An example of suffix identification task, the full version of this example is
included in Appendix A.5. 25

3.1 Our human annotation on 300 chapter transitions randomly sampled from
CHAPTERBREAKAO3 shows the diversity and complexity of the
dataset. 32

3.2 Summary of LRLMs (top), Transformer LMs (middle), and our SuffixLM
(bottom). All models are trained or fine-tuned on PG-19 except for
GPT-2. The third column shows the word-level perplexity of gold suffix
in the PG-19 split. The last two columns show the suffix identification
accuracy of each model on the two CHAPTERBREAK splits when
evaluated at maximum input length. ∗ indicates results are on a subset
of CHAPTERBREAK. 34

3.3 Prompts used to evaluate instruction fine-tuned large language models (e.g.
GPT-4 and GPT-3.5-Turbo) on CHAPTERBREAK. 42

4.1 Comparison of PEARL to other recently-proposed prompting techniques.
PEARL is the only one designed for and evaluated on tasks that require
complex reasoning over long documents. 53

4.2 We present baseline and PEARL as well as ablation results on our generative
subset of QuALITY questions. Long denotes the split where the
questions require reasoning over long contexts to answer accurately. As
we only evaluate on a subset, we also provide p-values to verify
statistical significance against the zero-shot GPT-4 baseline. 61

4.3 Accuracy by reasoning types. ∗ denotes statistically significant
improvement with p-val < 0.005. We provide other reasoning types in
Appendix C.2. 66

xi

5.1 Our experiments demonstrate that (1) LoRA is a competitive parameter
adaptation method to full-model fine-tuning for PPO training in RLHF;
and (2) PPO training with LoRA does not require any additional
regularization (KL or otherwise) to succeed. We evaluate the win rate of
each model in the table against text-davinci-003 on the
AlpacaFarm evaluation data. Preference judgments to calculate win rate
are simulated by a pool of automated LLM annotators (e.g., GPT-4).
We evaluate the public AlpacaFarm checkpoints in the top two rows
(SFT-10k and PPO); for each of the remaining rows, we perform three
runs of PPO optimization with LoRA and the corresponding regularizer,
and we report the mean and standard error with bootstrap sampling. 79

5.2 Evaluation on the FActScore labeled split [121], which requires each model
to generate a biography of 183 people entities. Models fine-tuned with
the PPO training objective consistently underperform the SFT10k
checkpoint in terms of factual precision. Implementing PPO training
with LoRA somewhat mitigates the negative impact on factuality of
model-generated text. 84

5.3 Applying SuffixRL leads to more coherent output compared to SFT on the
PG-19 data. The gains are consistent and also improve with the increase
of suffix length. Instruction fine-tuning (AlpacaSFT10k) also yields
coherent and natural continuation; however, it does not saturate the
performance, and can be further improved by applying SuffixRL. 86

5.4 Randomly sampled example from the PG-19 coherence evaluation set.
Spans that do not contribute to the coherence of the continuation are
highlighted in red, while those contributing to coherence are highlighted
in teal. 89

A.1 Ratio of overlapped target tokens among different categorizations. infreq
are infrequent tokens, in-subword are tokens within a subword cluster
(i.e., excluding the first word in a subword cluster), distant are tokens
only appear in the distant context (more than 2K away). Row 1 column
3 the number 0.08 indicates around 8% of the infrequent tokens are
those that can only be found in the distant context. 123

A.2 Suffix identification example, extracted from the book Beyond the City by
Arthur Conan Doyle. For each suffix, we show the perplexity of the
suffix evaluated with the Routing Transformer. RT assigns a lot lower
perplexity to examples (e.g. negative 1,3,4) that are obviously wrong
given the prefix. 128

xii

A.3 Suffix identification example, extracted from the book Beyond the City by
Arthur Conan Doyle. For each suffix, we show the perplexity of the
suffix evaluated with the Routing Transformer. RT assigns a lot lower
perplexity to examples (e.g. negative 1,3,4) that are obviously wrong
given the prefix. 129

B.1 Statistics of long fanfictions collected from AO3 story dump. 130

B.2 Data statistics of CHAPTERBREAK as well as another two discourse
boundary examples. 131

B.3 Human annotation on 89 examples sampled from
CHAPTERBREAKAO3where all models make the wrong prediction.
74% errors come from the examples where new event starts from the
new chapter and 64% errors from the change of location. 136

C.1 human freeform feedback aggregation . 137

C.2 Accuracy by reasoning types. ∗ denotes statistically significant
improvement with p-val < 0.005. 139

C.3 Examples of errors exhibited by PEARL answers. 140

C.4 Prompt for action mining. {Question} indicates the placeholder for filling
in training set question. In this stage, we only care about the new
actions proposed by the model. 142

C.5 A subset of mined actions from training set questions. 143

C.6 Prompt for generating plan given a question, which is filled in the
placeholder {question}. 144

C.7 Prompt for executing a step in a plan. Prompt of this step is a template with
placeholders which will be filled with the output from previous step(s).
. 145

C.8 Prompt for mapping generative answer to provided options 145

C.9 Example human feedback from annotators on PEARL-generated plans. 146

xiii

LIST OF FIGURES

Figure Page

2.1 The perplexity of all target tokens plateaus after 2K prefix tokens for both
Routing Transformer (RT) and Local Transformer (LT), showing the
negligible overall impact of the long-range context. 13

2.2 RT perplexity of infrequent tokens continues to decrease until prefix length
is 5K. 14

2.3 RT perplexity of tokens inside subword clusters continues to decrease until
a prefix length of 5K. 15

2.4 RT perplexity of target tokens whose last appearance is more than 2K
tokens away in the prefix keeps decreasing. 16

2.5 RT takes better advantage of context beyond 2K tokens for fictional and
continuous books than non-fictional and discontinuous books,
respectively. 17

2.6 The majority of improvements on tokens inside subword clusters (i.e.,
excluding the first token in subword clusters) from prefixes longer than
2K tokens comes from fictional and continuous books. 18

2.7 Perturbing up to 6K prefix tokens does not notably affect RT’s overall
perplexity. The corresponding plot for LT is included in
Appendix A.4. 19

2.8 Generic illustration of the x-axis in all the perturbation analysis. 19

2.9 While perturbing up to 6K prefix tokens has little impact on frequent tokens,
it increases the perplexity of infrequent tokens. 21

2.10 Both shuffling and random replacement increase the perplexity of tokens
inside subword clusters, with the former having more negative impact.
. 21

2.11 Both perturbation operations increase the perplexity of target tokens whose
last appearance in the prefix is more than 2K tokens away. 22

xiv

2.12 Perplexity of target tokens whose last occurrence in the prefix is within
previous 2K tokens (left) or more than 2K tokens away (right), when
dropping either these target tokens or random tokens in the perturbed
range. The curve on the right indicates RT memorizes token identity in
the distant prefix to some extent. 23

2.13 Left: Both models assign low perplexity if a duplicate sequence appears
within previous 512 tokens. Right: Both models have almost identical
performance on our suffix identification task. Adding context beyond
2K tokens does not improve performance of either sequence-level
prediction task. 24

3.1 An illustrative example of our suffix identification task from Kurt
Vonnegut’s Slaughterhouse-Five, in which an LRLM needs to make
connective inferences across temporal and spatial shifts in a long
prefix of the narrative to correctly disambiguate the

start of the next chapter from negative examples . 29

3.2 Suffix identification accuracy on both splits (PG-19 and AO3) of
CHAPTERBREAK is much lower for LRLMs than our SuffixLM upper
bound. 35

3.3 Left: Prefixes ending at chapter breaks benefit more from long-range
context than other types of discourse boundaries. Right: Word-level
perplexity of the gold suffix does not correlate to accuracy (e.g., GPT-2
has high perplexity but outperforms RT on suffix identification). 36

3.4 Suffix identification accuracy of recent open-source and proprietary
language models on CHAPTERBREAK. SuffixLM outperforms
open-source language models (both Transformer-based and state-space
models) despite having 87M parameters. GPT-4 outperforms SuffixLM
when prefix length is short, and displays degraded performance as prefix
length increases. 44

3.5 Instruction fine-tuning leads to slight degradation in suffix identification
accuracy, but the upward trend with the increase of prefix length
persists. 46

3.6 Comparison of Transformer-based model (Cerebras-BTLM-8k-3B) and
state-space model (Mamba-2.8B-slimpj) on CHAPTERBREAK. Both
models are trained on SlimPJ dataset, and are of similar sizes. 46

xv

3.7 Comparison of open-source models on the passkey retrieval task. Model
performance on passkey retrieval does not correlate with performance
on CHAPTERBREAK. 47

4.1 High-level overview of our framework PEARL. Each stage in PEARL is
achieved via zero-shot or few-shot prompting of an LLM (in our work,
GPT-4). We also provide example outputs from each stage. 52

4.2 Prompt sketch for action mining. It comprises human-written seed actions
set and instructions, as well as question for which LLM will extract
action(s) from. Finally, we also present an example mined action. More
details can be found in the Appendix C.6. 56

4.3 Prompt sketch for plan generation. In the prompt, we include the list of
actions mined from previous stage in-context, natural language detailing
the task, and few-shot examples guiding the plan generation. 57

4.4 Prompt sketch for plan execution. This prompt contains multiple
{placeholders} that will be filled with output from previous stages. 59

4.5 Accuracy by the amount of required context to answer, as annotated by
humans in QuALITY. The short, long, and longer splits correspond to
average annotation scores on the amount of required context [1, 3), [3,
3.5), and [3.5, 4), respectively. 64

4.6 PEARL accuracy given in-context action sets of various sizes. Having too
few or too many actions impairs the performance. 64

5.1 An illustration of SuffixRL pipeline. In the first stage (reward modeling),
synthetic pairs consisting of gold suffix and model generated suffix are
used to train a reward model. In the second stage, the policy is trained
against the reward model derived from the first stage with proximal
policy optimization (PPO). The second stage iterates between rollout
and optimization. During rollout the policy is frozen and generates
suffixes which combined with corresponding prefixes are then passed
into the reward model to get reward signals. During optimization, the
policy model is unfrozen and trained on the reward signals collected
during rollout. 75

5.2 (Left): Regardless of the estimator, the true KL divergence (measured on
28K tokens sampled from AlpacaFarm) steadily increases as training
proceeds. The standard KL estimator is predictably the most effective
regularizer in terms of reducing true KL divergence. (Right): Response
length increases until about 100 PPO steps, after which it plateaus or
drops for most configurations. 81

xvi

5.3 (Left): We plot the win rate vs. token-level true KL divergence for the
checkpoints from steps 20, 40, 60, 80, 100, 140, and 180 of multiple
configurations and multiple runs. In general win rates sharply increases
and then more gradually decreases as the true KL divergence increases.
(Right): The linear relationship between

√
KL(πθ, πref) and reward,

observed in prior work, also holds in our LoRA implementation within
a certain regime. 82

5.4 The change of reward (Left) and loss (Right) over the course of PPO
training. When the reward model is trained on data without applying
any preprocessing filters, the policy can quickly “hack” the reward
model, achieving sudden jump in reward scores and decline in losses,
whereas significantly degenerated output quality. 87

A.1 Perplexity of target chunk of 10 tokens long near the end of sequence. The
legend indicates how far away the evaluated chunk is from the end of
sequence (e.g., [-15:-5] means evaluating the last 15 tokens to the last 5
tokens). The left plot shows the clustering mechanism in the Routing
Transformer assigns higher perplexity to around the last 15 tokens in a
sequence. Due to this artifacts, in our analysis, we avoid tokens within
this range to make comparable comparison with the Local Transformer.
In the main text, our analysis are conducted over the last 50 to last 40
tokens, which are not affected by this artifact. 121

A.2 Perplexity of infrequent target tokens, broken down by genre (left),
continuity (middle), and authorship (right). Perplexity of infrequent
tokens in fictional, continuous and single-authored books decreases as
the context length increases to around 5K. On the other hand, the rest
types of books rely on more local context while predicting the
infrequent tokens. 122

A.3 Perplexity of target tokens inside subword clusters (i.e., excluding the first
subword in each cluster), broken down by genre (left), continuity
(middle), and authorship (right). Perplexity of these tokens in fictional
and continuous books improves as the length increases up to around 4K,
whereas nonfictional and discontinuous books are not taking any
advantage of long-range context at all. 122

xvii

A.4 Perplexity of target tokens that can only be found in the distant context,
when evaluated with the Routing Transformer on subset of PG-19
validation set, broken down by genre (left), continuity (middle), and
authorship (right). Fictional, continuous, and single-authored books
continue to have improved perplexity for this type of tokens as the
prefix length increases up to 8K. The single-authored books also
contain discontinuous books which require less modeling of long-range
context. The decreasing curve indicates the model might have acquired
author specific token statistics from incorporating longer context. 123

A.5 The perplexity of all target tokens plateaus after 2K prefix tokens for both
Routing Transformer and Local Transformer. The LT model is the one
released in 2021 summer. 124

A.6 Perplexity of all target tokens when evaluated with Local Transformer
released in 2021 summer. 125

A.7 Perplexity of all target tokens when evaluated with Local Transformer
derived from the RT checkpoint. 126

A.8 Suffix identification accuracy when evaluated with different prefix
length. 127

A.9 Left: Both models assign low perplexity if a duplicate sequence appears
within previous 512 tokens. Right: Adding context beyond 2K tokens
does not improve performance of suffix identification. Moreover, the
recently released LT performs worse than the one derived from the RT
checkpoint. 127

B.1 Performance of each SuffixLM variant. Detailed information about each
variant is included in Appendix B.3. 132

B.2 Evaluation results on both CHAPTERBREAKPG19 and
CHAPTERBREAKAO3. 133

B.3 Left: In-book vs. out-of-book. Right: SuffixLM performance when
evaluated with different suffix length. The variation in suffix length does
not explain the large gap between SuffixLM and token-level LMs. 134

C.1 Generic illustration of our evaluation setup. Given the article and question,
we prompt an LLM with PEARL to generate a long-form answer, which
is later mapped to one of QuALITY’s multiple-choice options by the
LLM itself. 138

C.2 Top-10 most frequently used actions by PEARL. 139

xviii

CHAPTER 1

INTRODUCTION

1.1 Overview

Language modeling is the task of assigning probabilities to sequences. At its core,

language modeling involves predicting the probability of the next token given its preceding

context, applying the chain rule of probability. J.R. Firth emphasizes the inseparability of

context and the process of deriving meanings, describing the latter as "a serial contextual-

ization of our facts, context within context, each one being a function, an organ of the bigger

context and all contexts finding a place in what might be called the context of culture." [58]

While it remains an ongoing discussion [14] as to whether language models can derive

"meaning" from context, the role of context is unmistakably crucial—it forms the basis for

predicting the next token in language modeling. Earlier approaches relied on short preceding

contexts, such as n-grams [18], to estimate sequence probability. Recent advancements in

hardware, optimization, and architectural design, exemplified by Transformer [187], now

enable pre-training of language models on thousands of tokens from scratch [74].

Significance of Modeling Long-range Context. Due to the lack of consensus on the

definition of long-range context, here we loosely define it as spanning at least several

thousand tokens. Recent advances in scaling language model pre-training [130, 6], and

successful application of reinforcement learning from human feedback (RLHF) [132] have

led to the development of many general AI assistant systems such as ChatGPT [131]. When

provided with appropriate prompts, these systems exhibit promising performance on many

short-context tasks [215, 201], such as generating code snippet [185, 223, 77], paraphrasing

[222, 93], and answering questions [130, 217]. Despite the promising results, recent works

1

show that, when dealing with long-context tasks, these models still face challenges, such

as inadequacy in resolving contextual nuances in document-level machine translation [81],

incoherence and content omission in book-level summarization [23], and ineffective context

utilization in multi-document QA [109].

One straightforward method to address long-context tasks is to augment language models

that have a limited context window with retrieval techniques [205, 211]. For example, when

answering a question about a long narrative, such as "How is Oscar related to Dana?"

regarding the movie Ghostbusters II, a relevant excerpt implying their relationship can be

extracted from the long movie script and inserted into the limited context window for the

language model to produce the final answer. This retrieval-augmented approach is effective

in dealing with simple queries and is also widely employed to answer open-domain questions

by retrieving information from sources like Wikipedia [104, 164].

While retrieval-based methods ease the challenge of processing long context in one shot,

they may not be suitable for cases where maintaining continuity in the context is crucial.

For instance, answering a question like “How does the tone change throughout the story?”

requires properly segmenting the narrative into salient plots, summarizing various sections,

and analyzing the tone transitions. Simple retrieval-based methods, therefore, may not be

immediately useful for processing the global dependencies mentioned previously. In addition

to continuity, long context also gives rise to various other complex global dependencies, such

as referencing previous examples/statements/lemmas in lengthy mathematical proofs and

later chapters of a textbook, processing code repositories of millions of lines of code, and

analyzing patterns and norms in accumulated log files. Processing all of these dependencies

requires effective modeling of the long-range context and is not immediately resolved

through retrieval-based methods.

Research questions. Having established the necessity of long-range context modeling,

we delve into two basic research questions that form the basis of this thesis:

• RQ #1: How do language models utilize long-range context?

2

• RQ #2: How can we improve the modeling of long-range context?

We provide an overview about RQ #1 in section 1.2, with more detailed evaluations and

analyses presented in Chapter 2 and Chapter 3. For RQ #2, we offer an overview in

section 1.3, and attempt to answer the question in Chapter 4 and Chapter 5.

Scope of this thesis. While various modalities of context exist (e.g., image, speech),

this thesis focuses on natural language context in textual form. We emphasize that mixing

multiple modalities of context is an exciting future direction in Chapter 6. Our results and

discussions primarily center around Transformer-based LMs given their superior perfor-

mance compared to other methods [18, 15, 120]. Recent years, new training objectives have

emerged, including masked loss [37] and denoising objective [103]. However, in this thesis,

our focus is solely on decoder-only causal language modeling [142].

1.2 Evaluation of Long-range Context Modeling

Since the introduction of Transformer [187], efforts to improve the efficiency of self-

attention [28, 35] have led to a proliferation of long-range Transformer language models.

While the initial models were trained mostly on short sequences such as 512 tokens [187, 38,

143], context window of more recent models can now reach up to the level of 100k tokens

by applying various acceleration techniques [25, 148, 74].

Limitation of Perplexity Evaluation. Despite the progress, the ways in which these

models take advantage of the long-range context remain unclear. In chapter 2, we perform

a fine-grained analysis of two long-range Transformer language models that accept input

sequences of up to 8K tokens, one of which achieves the best performance on PG-19

long-sequence LM benchmark in 2021. Our results reveal that providing distant long-range

context to these models only improves their predictions on a small set of tokens (e.g.,

those that can be copied from the distant context). This finding is directly manifested in

the marginal gains in perplexity when incorporating long-range context beyond the local

2K tokens. One implication of this finding is that perplexity may not be well-suited for

3

evaluating long-range context modeling. Perplexity, which involves averaging over all tokens

in a validation corpus, is dominated by the majority of tokens that can be well-predicted

with short-range local context. This can result in misleading model comparison on long

sequences, as the difference in perplexity can be largely explained by the effectiveness of

modeling local-context rather than long-range context. As such, we pivot to segment-level

evaluation, where the model needs to make predictions about a sequence of tokens rather

than a single next token.

Segment-level Evaluation of Long-context Modeling. In the latter part of Chapter 2 and

throughout Chapter 3, we delve into a novel task: in-book suffix identification. This segment-

level evaluation requires the model to differentiate the gold suffix segment from multiple

negatives extracted from the same book. Unlike single next-token prediction, each segment

comprises multiple tokens, carries more information, thereby making it more challenging to

predict compared to a single next token. We conjecture that, similar to next-token prediction,

accurate prediction of a future segment relies on the access to extended preceding segments.

In Chapter 3, we empirically verify this hypothesis with SuffixLM, a segment-level language

model specifically trained to predict gold suffixes. Our results indicate that incorporating

more preceding segments allows SuffixLM to achieve better performance in identifying gold

future segments. Moreover, on a challange dataset CHAPTERBREAK, which we propose to

evaluate long-range context modeling, SuffixLM also outperforms other (large) language

models trained with next-token prediction objective, including recent LLaMA-2 [183],

Mistral-7B [76] and state space model Mamba-2.8B [56].

1.3 Towards Effective Modeling of Long-range Context

In addition to the analyses in Chapter 2 and Chapter 3, several studies also demonstrate

the sub-optimal performance of long-context modeling in recent large language models [23,

109, 78]. This raises a natural question: how can we improve the modeling of long-range

context in language models? To answer this question, we propose methods from two distinct

4

directions – one focusing on a novel prompting framework, while the other modifies the

training objective of language models.

Prompting Large Language Models to Reason Over Long Context. The first direction

we explore depends on large pre-trained language models. These models demonstrate

promising reasoning capability on short-context tasks through the use of chain-of-thought

prompting [200, 127], which decomposes a complex task into intermediate steps. However, it

remains unclear how to apply such methods to reason over long documents, in which both the

decomposition and the output of each intermediate step are non-trivial to obtain. In Chapter 4,

we propose PEARL, a prompting framework to improve reasoning over long documents.

PEARL consists of three stages: action mining, plan formulation, and plan execution. More

specifically, given a question about a long document, PEARL decomposes the question into

a sequence of actions (e.g., SUMMARIZE, FIND_EVENT, FIND_RELATION) and then

executes them over the document to obtain the answer. Each stage of PEARL is implemented

via zero-shot or few-shot prompting of LLMs with minimal human input. We evaluate

PEARL on a challenging subset of the QuALITY dataset, which contains questions that

require complex reasoning over long narrative texts. Our result indicates that PEARL is a

promising first step towards leveraging LLMs to reason over long documents.

Training Language Model with Segment-level Signals. In Chapter 3, we demonstrate

the benefits of modeling context at the segment level with SuffixLM. Building on this insight,

in Chapter 5, we introduce a new training method, SuffixRL, which involves training a

token-level language model with segment-level signals. This method draws inspiration

from the recent RLHF framework [132], which helps align large language models with

human intents, and involves training models with proximal policy optimization (PPO) [157].

Given the resource-demanding nature of PPO training process, in the first part of Chapter 5,

we propose two experimental changes that permit us to train large language models with

limited resources. We validate our new experimental setup on AlpacaFarm [43] benchmark,

and show that applying low-rank adaptation [66] and an alternative regularization method

5

leads to better performance compared to strong baselines. With the validated setup, we

apply SuffixRL to LLaMA-1-7B models [182] and demonstrate its efficacy in enhancing

coherence in open-ended generation setting.

1.4 Future directions

Finally, in retrospect of the limitations of this thesis and other recent research, we

conclude by proposing three general future directions regarding long-range context modeling

that can be fruitful to explore in the future. These directions include (1) immediate follow-up

directions of SuffixRL, (2) exploration of alternative evaluation methods for long-context

tasks in the era of large language models, and (3) alternative architectural designs and

training practices for long-range foundation models. For each of the general directions, we

provide two to three concrete topics, detailing the current research status, as well as potential

obstacles and solutions.

1.5 Declaration of Collaborations

This thesis covers works from multiple papers, which were in collaboration with re-

searchers specified as below:

• Do Long-Range Language Models Actually Use Long-Range Context?

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-Micke, and Mohit Iyyer. Accepted

to EMNLP 2021.

• ChapterBreak: A Challenge Dataset for Long-Range Language Models

Simeng Sun, Katherine Thai, Mohit Iyyer. Accepted to NAACL 2022.

• PEARL: Prompting Large Language Models to Plan and Execute Actions Over Long

Documents

Simeng Sun, Yang Liu, Shuohang Wang, Chenguang Zhu, Mohit Iyyer. Accepted to

EACL 2024.

6

• Exploring the impact of low-rank adaptation on the performance, efficiency, and

regularization of RLHF

Simeng Sun, Dhawal Gupta, Mohit Iyyer. Preprint 2023 September.

7

CHAPTER 2

DO LONG-RANGE LANGUAGE MODELS ACTUALLY USE
LONG-RANGE CONTEXT?

2.1 Introduction

Understanding long documents requires modeling various discourse-level phenomena,

including anaphora [60, 55], argument structure [54], narrative scripts and trajectories [152,

98], and causal links between concepts [123]. Unfortunately, most language models (LMs)

are trained to predict the next word given only a small window of local context, which

prevents them from using long-range discourse structure to improve their predictions. Many

research efforts over the years have attempted to address this issue: for example, [147]

incorporated statistics from distant tokens to improve n-gram models, while [75] added

document-level context to neural LMs.

More recently, the Transformer LM [187], which forms the backbone of state-of-the-

art NLP systems [38, 20], has become the focus of numerous efforts to process longer

input sequences. Transformer LMs are constrained by the inefficiency of the self-attention

mechanism, whose complexity scales quadratically with the input sequence length. As such,

more efficient methods based on sparse attention [32] and cached memory [145] have been

proposed to increase the maximum sequence length, which has progressed from GPT-2’s

1024 tokens [143] to 4096 tokens [218] and finally 8192 tokens [149]. When evaluated on

the PG-19 benchmark dataset [145], which contains long documents in the public domain,

these “long-range” Transformer LMs also reach lower perplexities than baseline models on

held-out data.

8

How do “long-range” Transformer LMs make use of the long-range context?1 Do they

actually encode important discourse information to improve their predictions? In this chapter,

we conduct a series of fine-grained analysis experiments to answer these questions, several

of which are inspired by the context analysis of LSTM LMs conducted by [84]. We focus

specifically on analyzing the behavior of the state-of-the-art Routing Transformer and a

simpler baseline model in the presence of various perturbations (e.g., word shuffling, random

document replacement), and look closely at how different types of tokens are affected. Our

results show that:

• Providing long-range context (i.e., further than 2K tokens away) to these models has

negligible impact on the perplexity of tokens near the end of a sequence in aggregate.

However, a fine-grained analysis reveals that it does help a small set of tokens (tokens

within subword clusters and those that can only be copied from the distant context),

as well as particular types of books (fictional and continuous).

• Despite the aforementioned improvements on a fraction of tokens, significantly per-

turbing the long-term context with word shuffling and random replacement has no

notable impact on perplexity overall, suggesting that the evaluated models encode

long-range context superficially at best.

• Long-range context is not used for sequence-level prediction tasks that move outside

the teacher-forced setting of the previous experiments.

While modern LMs can process much longer input sequences than those of the past, we

conclude that they do not exploit the information available in the long-range context. We

recommend that future research on long-range LMs includes analysis experiments such as

those in our work to shed light on how and when they are using the distant context.

1In this chapter, we adopt a slightly constrained definition of long-range context, which denotes the context
start from the beginning of a long sequence and spanning up to several thousand tokens.

9

2.2 Background & Setup

In this section, we first provide an overview of the long-range language models analyzed

in this work (Local Transformer, Routing Transformer). Next, we describe the experimental

setup used in the remainder of this chapter to measure the impact of the long-term context.

2.2.1 Long-range Language Modeling

Given preceding context tokens w<i (the prefix), a language model (LM) computes the

probability distribution of the next token p(wi | w<i). LMs are commonly evaluated using

perplexity, which is the exponentiated negative log likelihood of a held-out corpus:

ppl = exp

(
− 1

N

N∑
i=1

log p(wi | w<i)

)

Modern LMs are most often implemented with Transformers [187], which compute

vector representations for every token in the prefix at multiple layers and combine them to-

gether using self-attention. Since self-attention requires scoring every token in the sequence

against every other token, it scales quadratically in both compute time and memory usage,

which limits its application to very long sequences.

Local Transformer A simple way to improve the efficiency of self-attention blocks

is to constrain the attention at each layer to a local window of the previous k tokens.

Such Transformers, which we refer to as Local Transformers, can be feasibly scaled up

to large input sequence lengths. The receptive field of a Local Transformer scales linearly

with the number of layers, as the lth layer of this model can access the previous k × l

tokens [116, 28, 173].

Routing Transformer The Routing Transformer [149] (RT) takes a more intelligent

approach to scaling self-attention. Specifically, the RT assigns keys and queries in self-

attention to k clusters, the centroids of which are learned during training. A routing attention

strategy computes attention A only over the queries Qi and keys Kj that belong to the same

cluster µ(Qi) (i.e., those whose centroid is closest to query Qi).

10

Xi =
∑

j:Kj∈µ(Qi),
j<i

AijVj

In contrast to the position-based local attention, this clustering-based attention takes

the content of the token representations into account. This sparse self-attention mechanism

reduces the complexity from O(N2) to O(N1.5) and has led to state-of-the-art results on

tasks such as long-form question answering [91].

2.2.2 Experimental setup

While the previously-described models can be trained with longer inputs than standard

Transformers, it remains unclear how they make use of the additional context tokens to

improve their predictions of the next word. To shed light on the behavior of long-range

Transformer LMs, we perform a series of experiments in which we manipulate the input

sequence (both length and content). For token-level experiments (§ 2.3, § 2.4), we only

evaluate the perplexity of k tokens near the end2 of an N token-long input sequence (k ≪ N)

to focus on the effect of long-range context.3

2.2.3 Dataset & Models

Dataset We conduct all of our analyses on the validation set of the PG-19 dataset [145].

This dataset contains ∼29K books from Project Gutenberg repository published before 1919

and was constructed specifically to evaluate long-range LMs (average document length

∼69K tokens). The validation set contains 50 books4 and ∼3 million tokens in total.

2An artifact exhibited by RT causes tokens at the very end of a sequence to have much higher losses than
the others; this phenomena does not exist with LT. After correspondence with the RT authors, we decide to
exclude the very last 40 tokens (whose losses are affected) from all of our evaluations. More details about this
artifact can be found in the Appendix.

3Language models are normally evaluated on non-overlapping sequences, with the begin and end sequence
tokens receiving different amount of context. In our setting, all target tokens have roughly the same amount of
context.

4We observe a significant gap of ∼10 perplexity between the PG-19 test and validation sets and discover
that this gap is largely due to the presence of an annotated edition of The Canterbury Tales and Other Poems.

11

Evaluating every token in the validation set with large prefix sizes (e.g. 8K tokens) is

computationally infeasible. On one RTX8000 GPU, it takes around 104h to evaluate the

entire PG-19 validation set with sequence length 8K and target sequence 10. Thus, we set

the number of target tokens per context k = 10 and sample a subset of 220K validation

tokens for our experiments, which is the same data size used in the LM analysis experiments

of [84]. Evaluating RT in this way yields slightly better perplexity on the validation set of

PG-19 than using the evaluation setting in the original RT paper (35.2 vs. 36.3). We ensure

that the number of tokens sampled from each validation book is proportional to the length

of that book.

Models: As training long-range Transformer LMs is also infeasible without immense

computational resources, we use publicly-available pretrained checkpoints for all of our

experiments. The Routing Transformer (RT) checkpoint contains 490M parameters and

processes sequences up to 8192 tokens long, achieving 33.2 perplexity on the PG-19 test

set. The released checkpoint, which was trained on 128 TPUv3 cores for several weeks,

has a subword vocabulary of ∼ 98K types, along with 8 attention heads in each of its 22

layers. We follow the RT paper [149] by scaling the loss by 1.248 before computing the

perplexity in order to match the word-level perplexity reported by [145]. The top two RT

layers include content-based clustering attention while the remaining are composed entirely

of local attention.

Our Local Transformer (LT) is derived from the same checkpoint as RT (and thus has

identical model size), except that all clustering heads are replaced with local attention heads.

It achieves slightly better perplexity on the PG-19 test set (38.3 vs. 39.3) compared to the

LT model trained from scratch by [149], possibly because the local attention heads learn a

better representation of the weight matrices by using the information from the clustering

This book intertwines line-by-line annotations with the main text, which causes the preprocessed version in the
dataset to be unreadable. We remove this book in all of our experiments, which decreases the test/validation
perplexity gap to ∼3.

12

2000 4000 6000 8000
prefix length

36

38

40

pe
rp

le
xi

ty

All target tokens

RT
LT

Figure 2.1: The perplexity of all target tokens plateaus after 2K prefix tokens for both
Routing Transformer (RT) and Local Transformer (LT), showing the negligible overall
impact of the long-range context.

heads. Note that the original fully trained LT checkpoint was not made publicly available

before the EMNLP submission deadline. 5 The attention heads in this model attend to

the previous 256 tokens, which results in an effective receptive field of ∼ 5K tokens. A

preliminary experiment verified that the clustering heads in the RT do attend to the long-

range context, beyond 5K tokens, demonstrating that it is at least theoretically incorporating

more context than the LT. While we would have also liked to analyze other long-range LMs

such as the Compressive Transformer [145] and Longformer [13], these models do not have

publicly-available PG-19 checkpoints; additionally, they differ from RT and LT in model

size, which makes it hard to perform controlled experiments.

2.3 The effect of longer context

How does the size of the prefix affect the perplexity of long-range Transformer LMs?

In this section, we evaluate our RT and LT checkpoints on the PG-19 validation set with

varied prefix length. We discover that although these models are theoretically able to encode

5The RT authors released a new LT checkpoint during the review period of this chapter. We also evaluate
this newly-released LT checkpoint and include the results in the Appendix A.6. Both the RT and the
LT checkpoints can be found at https://github.com/google-research/google-research/
tree/master/routing_transformer

13

https://github.com/google-research/google-research/tree/master/routing_transformer
https://github.com/google-research/google-research/tree/master/routing_transformer

2000

2200

2400
Infrequent tokens

2500 5000 7500
prefix length

1200

1400

2500 5000 7500
prefix length

25

26

27

28

pe
rp

le
xi

ty

Frequent tokens

RT
LT

Figure 2.2: RT perplexity of infrequent tokens continues to decrease until prefix length is
5K.

long sequences, increasing the prefix length beyond 2K tokens does not bring discernible

improvements in aggregate. However, we do identify small subsets of tokens that benefit

from long-range context. Additionally, we find that these models take advantage of long-

range context to different degrees on different types of books (e.g., continuous fictional

narratives vs. discontinuous magazine articles).

Validation perplexity does not improve when the prefix length grows beyond 2K tokens:

As shown in Figure 2.1, RT perplexity plateaus when evaluated with prefixes longer than

2K.6 In contrast, relative to RT, the perplexity curve for the more primitive LT starts flattening

earlier at around 1K tokens (note that its effective context size is only 5K). We conclude that

while RT’s clustering heads take better advantage of global context than LT, the long-range

context beyond 2K tokens is not helping overall. Surprisingly, the perplexity gap between

RT and LT is relatively consistent regardless of the prefix length, which indicates that much

of RT’s gains do not come from its increased ability to leverage long-range context but

rather from better modeling of local context.

6As a point of comparison, the perplexity of the much smaller LSTM language models evaluated by
[84] plateaus after 200 words. Additionally, [139] discover that the perplexity flattens after 1K for a smaller
standard Transformer LM.

14

18000

20000

22000
First subword token

2500 5000 7500
prefix length

7000
8000
9000

2500 5000 7500
prefix length

3.5

4.0

4.5

5.0

5.5
Rest of subword tokens

RT
LT

P
er

pl
ex

ity

Figure 2.3: RT perplexity of tokens inside subword clusters continues to decrease until a
prefix length of 5K.

Infrequent tokens can benefit from increased prefix length: While the overall perplex-

ity does not improve with increasing prefix length, we do observe different behavior when

filtering the target tokens by frequency, as shown in Figure 2.2. We define frequent tokens

to be the top 10% more frequently-occurring tokens in the subword vocabulary of PG-19

while the rest of tokens are classified as infrequent.7 While adding long-range context does

not improve either model’s predictions of frequent tokens, the RT’s perplexity of infrequent

tokens decreases from ∼ 1200 with a prefix length of 2K to 1180 with prefix length of 5K.

However, we do observe that infrequent token perplexity increases back to 1200 as the input

is further extended, suggesting that the additional context perhaps confounds the model.

Meanwhile, the LT is significantly worse than RT on infrequent token prediction, and its

perplexity increases as the prefix length is increased.8

Tokens inside a subword cluster benefit from longer contexts: One issue with the

previous experiment is that the frequency categorization was computed at a subword level

7Around 20K tokens in our target token set are classified as infrequent, which amounts to 9% of all target
tokens.

8This is likely an artifact due to the elimination of routing attention heads from the RT checkpoint, since
the LT trained from scratch does not exhibit such behavior. More details are included in Appendix A.6.

15

2500 5000 7500
prefix length

170

180

190

200

pe
rp

le
xi

ty

Occurs >2K tokens away

2500 5000 7500
prefix length

800

900

1000

Not in prefix

RT
LT

Figure 2.4: RT perplexity of target tokens whose last appearance is more than 2K tokens
away in the prefix keeps decreasing.

and so may not exactly correspond to word frequency, especially for infrequent words (e.g.,

entities) that are split into multiple subwords. We therefore do a follow-up experiment by

isolating all words that are split into multiple subwords, and then examining perplexity of

these tokens as a function of their position in the subword cluster. For example, the word

“Trocadero” is separated into three subword tokens “Tro”, “cade”, and “ro”. We specifically

distinguish between the first subword in the cluster (“Tro”) from the rest of the subwords

(“cade” and “ro”) in the plots shown in Figure 2.3. The perplexities are computed over 4.1K

first and 5.1K rest subword tokens. The first subword category exhibits the same curve shape

as those for infrequent tokens for both models, although the magnitude of the perplexities

is far higher. The rest of the subwords are far easier for both models to predict, but the RT

perplexity curve shows some positive impact from the long-range context until a prefix size

of 5K tokens.

Routing Transformers are able to copy tokens that occur in the long-range context:

Target subword tokens that can be copied from somewhere in the prefix form another inter-

16

2500 5000 7500
prefix length

34

35

36

37

38

pe
rp

le
xi

ty

fic. & non-fic.
fic
non-fic

2500 5000 7500
prefix length

35

36

37

cont. & discont.
cont.
discont.

Figure 2.5: RT takes better advantage of context beyond 2K tokens for fictional and continu-
ous books than non-fictional and discontinuous books, respectively.

esting group to analyze.9 While this is commonplace for frequent words (e.g., determiners,

pronouns), it also occurs for entities and rare words (e.g., character names in a novel);

sometimes, a word can occur several thousand tokens after its last occurrence. We focus

on the latter category of tokens, specifically using a prefix length of 2K tokens as a cutoff

to distinguish local and long-range context. Perplexities are computed over 22k tokens

which occur last time more than 2K tokens away, and 36K tokens that never appear in the

prefix. In particular, the left plot in Figure 2.4 shows the perplexity of tokens that cannot be

found in the previous 2K tokens, but occur somewhere in the long-range context (2K to 8K

tokens away). While the LT curve for such tokens plateaus after 2K tokens, indicating that

LT cannot take advantage of repeated words in the distant context, the RT curve steadily

decreases until 8K tokens. The right plot, which shows the subset of target tokens which do

not occur anywhere in the short or long-term context, decreases until about 5K tokens and

then plateaus. Overall, these results show that long-range context is helpful for tokens that

appear even several thousands tokens away.

9Note that there is some overlap between the token categories we have analyzed so far. We verify in the
Appendix A.3 Table A.1 that the overlap between these categories is not significant enough to confound the
results.

17

2500 5000 7500
prefix length

1.0

1.1

1.2

pe
rp

le
xi

ty

Rest of subword tokens

fic
non-fic

2500 5000 7500
prefix length

1.0

1.1

1.2

Rest of subword tokens

cont.
discont.

Figure 2.6: The majority of improvements on tokens inside subword clusters (i.e., excluding
the first token in subword clusters) from prefixes longer than 2K tokens comes from fictional
and continuous books.

Following patterns in the long-range context: Besides the token categories examined

above, we also qualitatively look at some examples that are too infrequent to analyze at

scale. Interestingly, we observe some simple patterns (slightly more complex than copying)

that the RT model picks up on. Specifically, it learns to increment chapter numbers even if

the previous chapter title appears more than 2K tokens away: for example, when predicting

“Chapter V” in the validation book Keith of the Border, modifying the previous chapter

title “Chapter IV”, which occurs 2300 tokens away, to “Chapter V” causes the loss of the

predicted token “V” to increase by over 10.

The impact of book type on the benefits of long-range context: PG-19 contains a

diverse array of topics, genres, and formats, not all of which equally benefit from long-range

context modeling. For example, while continuous narratives (e.g., novels) certainly build up

many high-level discourse structures over a long sequence of tokens, discontinuous text like

magazines, textbooks, or short story collections may require primarily local modeling. To

better understand the effect of the type of book on long-range LM perplexity, we annotate

18

0 2000 4000 6000 8000
perturbation length

36

38

40

42

pe
rp

le
xi

ty

Routing Transformer

RT-shuffle
RT-random
RT-8K

0 2500 5000

35.25
35.50

Figure 2.7: Perturbing up to 6K prefix tokens does not notably affect RT’s overall perplexity.
The corresponding plot for LT is included in Appendix A.4.

every book in PG-19’s validation set as either fiction or non-fiction and continuous10 or

discontinuous. We also annotate whether the work has been written by the same author or

various authors, which is presented in the Appendix. Out of 49 books we annotated, 30

are non-fiction, 31 are discontinuous, and 25 books are both non-fiction and discontinuous.

Note that some magazines contain short stories or poems interspersed with news articles

and essays; we count these as non-fiction in our analysis.

perturbed prefix unperturbed prefix Target

Max sequence length (8K)

x-axis

Figure 2.8: Generic illustration of the x-axis in all the perturbation analysis.

We observe in Figure 2.5 that the RT model takes better advantage of long-range context

for fictional and continuous books, as the perplexity for these books plateaus at around 5K

tokens. Figure 2.6 shows fictional and continuous books exploit better the long-range context

10We consider books with related but distinct sections (such as textbooks) to be discontinuous in our
annotation.

19

while predicting tokens within subword clusters. Overall, we find the improvement stems

largely from continuous and fictional books; more details are included in Appendix A.2.

2.4 The perturbation of long-range context

The experiments in the previous section show that incorporating long-range context

(further than 2K tokens away from the target) yields only marginal improvements to the

overall perplexities of RT and LT. However, the long-range context does have a notable

positive impact on a subset of tokens and book types. Do these improvements persist in the

presence of severe perturbations to the distant context? If so, this would indicate that they

are not encoding any complex discourse structure in the context but rather relying on surface

information (e.g., token presence) to make better predictions. In this section, we perform

a perturbation analysis to quantitatively measure the robustness of the state-of-the-art RT

model. Figure A.7 in the Appendix shows that the Local Transformer never uses context

beyond 3K. Due to this limitation, we only present results on RT for in this section.

Formally, assume we are given a prefix sequence P = (w0, w1, . . . , wn) with which we

want to predict target sequence (wn+1, wn+2, . . . , wn+k). We apply a perturbation ρ to the

first m tokens of the prefix (w0:m) to obtain the perturbed prefix

P̃ = (ρ(w0, . . . , wm), wm+1, . . . , wn).

We define the following three perturbation operations for ρ and report results averaged

over five runs for each of them.

• Sequence shuffling: Tokens within the perturbed window w0:m are shuffled across

the entire window (i.e., sentence boundaries are not respected).

• Random sequence replacement: w0:m is replaced with a random sequence from

another validation book that is m tokens long.

20

• Specific token drop: Specific tokens within w0:m (e.g., those that occur in the target)

are dropped and replaced with the padding token.

0 2000 4000 6000 8000
perturbation length

25

26

27

28

29

pe
rp

le
xi

ty
Frequent tokens

RT-shuffle
RT-random
RT-8K

0 2000 4000 6000 8000
perturbation length

1250

1500

1750

2000

2250

Infrequent tokens

0 5000

1200
1225

Figure 2.9: While perturbing up to 6K prefix tokens has little impact on frequent tokens, it
increases the perplexity of infrequent tokens.

0 2000 4000 6000 8000
perturbation length

8000

10000

12000

14000

16000

pe
rp

le
xi

ty

First subword token

RT-shuffle
RT-random
RT-8K

0 5000
7000

7500

0 2000 4000 6000 8000
perturbation length

3.6

3.8

4.0

4.2

Rest of subword tokens

Figure 2.10: Both shuffling and random replacement increase the perplexity of tokens inside
subword clusters, with the former having more negative impact.

Sequence-level perturbations further than 2K tokens from the target have minimal

impact on perplexity: We first apply sequence-level shuffling and random replacement

to the distant context. Both operations have minimal impact on the perplexity of all tokens

(Figure 2.7) as well as frequent/infrequent tokens (Figure 2.9) provided at least 2K tokens are

21

left unperturbed. However, these perturbations do have increasing impact as the perturbations

come closer to the target, especially for infrequent tokens. Zooming in on the long-range

context, we find that random replacement consistently results in higher perplexity than

shuffling, but also that shuffling distant context actually achieves slightly lower perplexity

than when the model is given completely unperturbed prefixes. Overall, these results

demonstrate that RT is insensitive to the word order of the long-range context.

Tokens inside subword clusters and tokens repeated in the distant context depend on

word order: Similar to the analysis in Section 2.3, the experiments above may hide

impacts on small subsets of tokens, which motivates us to do a more fine-grained analysis.

We find that tokens inside subword clusters (Figure 2.10) and those that can only be copied

from long-range context (Figure 2.11) are sensitive to both the order and the content of the

remote context. While random replacement is more harmful than shuffling for tokens that

can be copied in the distant context (172 shuffled vs 174 random replacement perplexity

when perturbing 6K tokens), shuffling is more detrimental for tokens inside subword clusters

(3.8 vs 3.7 perplexity when perturbing 6K tokens).

0 2000 4000 6000 8000
perturbation length

170

180

190

200

210

220

pe
rp

le
xi

ty

Occurs >2K tokens away

RT-shuffle
RT-random
RT-8K

0 5000

170

175

0 2000 4000 6000 8000
perturbed prefix length

800

850

900

950

1000

1050
Not in prefix

0 5000

780

790

Figure 2.11: Both perturbation operations increase the perplexity of target tokens whose last
appearance in the prefix is more than 2K tokens away.

Routing Transformer encodes token identity in the long-range context: While the

previous perturbations affected entire contiguous blocks of the prefix, we move now to

22

2000 4000 6000 8000
perturbation length

14.1

14.2

14.3

14.4

pe
rp

le
xi

ty

Occurs <2K tokens
drop-target
drop-random

2000 4000 6000 8000
perturbation length

167

168

169

170

171

172
Occurs >2K tokens away

Figure 2.12: Perplexity of target tokens whose last occurrence in the prefix is within previous
2K tokens (left) or more than 2K tokens away (right), when dropping either these target
tokens or random tokens in the perturbed range. The curve on the right indicates RT
memorizes token identity in the distant prefix to some extent.

more targeted perturbations. An interesting question to ask given the observation that RT

perplexity decreases on copied tokens as sequence length increases (§ 2.3) is how much that

perplexity decrease depends on word order and surrounding content. In response, we drop

tokens in the distant context whose next appearance is in the target sequence. As a control

experiment, we drop the same number of random tokens for each perturbation length.

As shown in the right plot of Figure 2.12, dropping the previous long-range occurrences

of target tokens increases the perplexity of those target tokens, which shows that RT indeed

memorizes token identity in the long-range context to some extent. The left plot shows that

dropping long-range duplicate tokens does not affect tokens that also occur within the local

context (i.e., the prior 2K tokens). The flat curve before 6K indicates the model relies only

on the most recent occurrences for prediction.

2.5 Sequence-level analysis

All of the previous experiments have focused on token-level perplexity, which is the

standard way in which LMs are evaluated. However, the prefixes in these evaluations consist

23

solely of ground-truth text, mirroring the “teacher-forcing” setup that LMs are trained

with. When these models are deployed practically to generate text, they have to rely on

their previous predictions instead of ground-truth text, and several prior works have noted

different behavior in this setting [191, 62, 202]. In this section, we shift from token-level

tasks to analyzing RT and LT performance on sequence-level tasks. In particular, we first

look at how well the models can memorize an exact sequence in the distant context, as

opposed to a single token as we did previously. Next, we examine the models’ ability

to identify which of six 128-token suffixes follows a given prefix, which examines their

behavior outside the standard teacher-forced setting.

0 2000 4000 6000 8000
distance of duplicate from target

15

20

25

30

35

40

pe
rp

le
xi

ty

Sequence copying

RT
LT

0 2000 4000 6000 8000
prefix length

0.30

0.35

0.40

0.45
ac

cu
ra

cy

Suffix identification

RT
LT

Figure 2.13: Left: Both models assign low perplexity if a duplicate sequence appears within
previous 512 tokens. Right: Both models have almost identical performance on our suffix
identification task. Adding context beyond 2K tokens does not improve performance of
either sequence-level prediction task.

Sequence-level copying: As a sequence-level analogue to the token-copying analysis

in the previous section, we examine both RT and LT’s ability to memorize a sequence that

occurs in the distant context. To test this ability, we copy the target sequence and paste it

into different positions of the prefix. The left plot in Figure 2.13 shows that both models

give a very low perplexity to the target sequence if its duplicate appears within the previous

512 tokens. However, both models lose their ability to take advantage of the copied

24

sequence if it occurs more than 2K tokens away. This confirms our previous discovery

that sequence order is in general not encoded in the long-range context.

Prefix . . . If the doctor’s prophecy is correct. . . (∼700 tokens) . . . "How
far is it to his place?""Oh, a mile at least.We can have a cab.""A mile?

Gold suffix: Then we shall see if there is any truth in what that swab of a doctor
said . . .

Negative 1: If I can see Mr.Elberry to-day we may let you have a cheque . . .
Negative 2: It was not until he had signed and sent it off that the full significance

of all. . .
Negative 3: He hurried in, fearing that she might have taken some turn for the

worse. . .
Negative 4: look!!!"Her voice had fallen suddenly to a quivering whisper and she

was. . .
Negative 5: Again the Admiral burst out cheering."There remains, therefore. . .

Table 2.1: An example of suffix identification task, the full version of this example is
included in Appendix A.5.

Suffix identification: To move beyond token-level experiments, we adopt a similar setting

as the multiple choice task in SWAG [219]. Specifically, a prefix is paired with the ground-

truth next 128 tokens (or suffix) as well as five randomly sampled sequences of length 128

that come from the same book and do not occur in the prefix or gold suffix. We constrain the

prefix to end at a full stop and each candidate suffix to start from a new sentence so that the

difference in perplexity is not due to ungrammaticality. An example is shown in Table 2.1.

We construct 7K examples and compute the accuracy of both models at correctly choosing

the correct suffix. The model makes a correct prediction when the gold suffix has lower

perplexity than all other suffixes. As shown in the right plot of Figure 2.13, increasing prefix

length beyond 2K does not improve suffix identification accuracy. Surprisingly, the LT and

RT model have almost identical (and poor) performance on this task. While evaluating on

the newly released LT checkpoint, the performance of LT is slightly worse, but the trend is

similar. Adding context beyond 2K tokens does not keep improving the suffix identification

accuracy. We direct reader to Appendix A.6 for more details. While RT is a significantly

better LM in terms of token-level perplexity, it does not appear to be superior in terms

of using long-range context to improve sequence prediction. Overall, both models often

25

predict obviously wrong negative suffixes: the full version of Table 2.1 together with RT’s

perplexity score for each suffix is included in Appendix A.5.

Combined with our previous token-level analysis, we conclude that the distant context

helps a subset of tokens in superficial ways; however, distant context is currently not helpful

for sequence-level prediction tasks.

2.6 Related work

Our work in this chapter examines recent advances in efficient Transformer variants [173,

87, 29, 179, 82, 193, 207] that accept longer sequences than prior approaches. Longer

effective context size is often achieved by sparse attention [28], recurrence [34], and cached

memory [204, 145]. Our work is also related to methods that incorporate long context [194]

as well as document-level tasks that inherently require modeling long-range context [220,

61, 221]. This section is also similar to other analysis of language models, especially for

long-range context. [84] analyze the usage of long-term context of smaller LSTM LMs.

[161] prove long-term context is not needed for HMM LM due to teacher forcing. [144]

conduct an analysis exclusively for the Transformer-XL [34] model. [145] show that

Compressive Transformer improves the performance of infrequent tokens. Our work also

relates to that of [99], who investigate the impact of context for pretrained masked LMs.

More recently, [139] also observe negligible benefits of long-term context; we step further

in this direction by exploring larger models with more fine-grained analysis.

2.7 Conclusion

In this chapter, we perform a fine-grained analysis of the impact of long-range context

to both token- and sequence-level improvements on two long-range Transformer language

models, using the PG-19 dataset as a testbed. Our results suggest these models rarely take

advantage of the long-term context, and when they do it is mostly in superficial ways (e.g,

26

by copying rare tokens from far away). With the proliferation of research in increasing the

input size of Transformer LMs, we hope that our research will lead to more meaningful

progress on integrating discourse information into these models.

Limitation

This work was conducted in 2021 spring, in retrospect, this work may now seem limited

given the long-range language models available nowadays. Recent advances such as more

efficient attention mechanisms, Flash-attention, state-space models and other hardware

acceleration techniques have led to models that can process much longer sequences (e.g.,

sequence of 100k tokens), making the Routing Transformer trained on 8k sequence a

relatively short-range language model. Moreover, the new paradigm of fine-tuning language

models to follow instructions have greatly expanded the task types that we can evaluate a

language model. A simple test for instruction fine-tuned language model is the in-context

fact retrieval. Due to limited model capability back in 2021, these tests were impossible to

test back then.

27

CHAPTER 3

CHAPTERBREAK: A CHALLENGE DATASET FOR LONG-RANGE
LANGUAGE MODELS

3.1 Introduction

Research on long-range language models (LRLMs) aims to process extremely long input

sequences by making the base Transformer architecture more efficient (e.g., through sparse

attention, recurrence, or cached memory). These modifications are commonly validated

by training LRLMs on PG-19 [145], a long-document language modeling dataset, and

demonstrating small perplexity decreases over shorter context models [148, 205]. However,

recent analysis experiments [176, 140], such as those in the previous chapter, show that

modern LRLMs rely mostly on local context (i.e., the immediately preceding 1-2K tokens)

and are insensitive to various perturbations applied to more distant context.

In this chapter, we move beyond token-level perplexity by evaluating LRLMs on a task

that requires a rich understanding of long-range dependencies. Our task is an instance of

suffix identification, in which a language model is given a long input sequence (or prefix)

and asked to disambiguate the next n-token segment from a set of hard negatives sampled

from the same narrative. To succeed at this task, an LRLM should assign high probability

to the ground-truth next segment and low probability to the negatives. To specifically test

long-range dependencies, we restrict our prefixes to end at chapter breaks of a longer

cohesive narrative (e.g., a novel).

We construct a challenge dataset, CHAPTERBREAK, by automatically detecting chapter

boundaries within both held-out PG-19 documents (in-domain for pretrained LRLMs) and

28

Billy Pilgrim could not sleep on his daughter's wedding
night. He was forty-four… [ground-truth start of ch. 4]

… Billy Pilgrim has come unstuck in time… he has no
control over where he is going… he first came unstuck in
time in 1944, long before his trip to Tralfamadore...
[6,608 words pass]

…he traveled in time to 1967 again—to the night he was
kidnapped by a flying saucer from Tralfamadore.

Billy Pilgrim says that the Universe does not look like a lot
of bright little dots to the creatures from Tralfamadore…

All the trains were slow. The coaches stunk of coal smoke
and rationed tobacco and rationed booze and the farts of
people eating wartime food.

...Right outside the window was Billy’s own Cadillac El
Dorado Coupe de Ville… The date on the license plate was
1967, which would make Billy Pilgrim forty-four years old…
[2,930 words pass, story shifts to World War II in 1944]
…locomotives began to move east… The war would end
in May. German prisons everywhere were absolutely
full... Billy Pilgrim's train… did not move for two days…
[251 words pass, ch. 3 ends by shifting back to 1967]

Figure 3.1: An illustrative example of our suffix identification task from Kurt Vonnegut’s
Slaughterhouse-Five, in which an LRLM needs to make connective inferences across
temporal and spatial shifts in a long prefix of the narrative to correctly disambiguate the
start of the next chapter from negative examples.

works of fan fiction published on the Archive of Our Own (out of domain).1 We perform

a detailed analysis of the types of chapter transitions in our dataset and discover a high

frequency of narrative shifts in point-of-view, location, and time, all of which require global

narrative understanding over long input sequences. For example, Figure 3.1 contains a

complex prefix in which the time-traveling Billy Pilgrim moves between World War II,

1960s suburban life, and an alien planet. Understanding the cliffhanger ending, in which

the narrative abruptly switches from a wartime scene to a 1967 alien abduction, requires

an LRLM to make connective inferences using details buried far back in the context (e.g.,

Billy’s age in 1967).

1https://archiveofourown.org

29

https://archiveofourown.org

We evaluate three LRLMs on CHAPTERBREAK, including BigBird [218], the Routing

Transformer [148], and its local attention variant, all pretrained or fine-tuned on PG-19. Our

experiments show that these LRLMs perform poorly at selecting the ground-truth suffix,

regardless of the length of the input sequence. As an upper bound, we train a small RoBERTa-

based segment-level language model on PG-19 and discover that it substantially outperforms

all LRLMs on CHAPTERBREAK, which suggests that LRLMs have considerable room

for improvement on this suffix identification task. Finally, we perform an analysis on the

instances for which all models struggle to choose the correct suffix, which shows that shifts

in location and events in focus are particularly challenging to disambiguate. Taken together,

these results suggest that CHAPTERBREAK is a useful benchmark for future research into

LRLMs.

3.2 The CHAPTERBREAK dataset

Authors often break long-form narratives into a sequence of discrete chapters to impose

“an order and shape over events in time” [168]. Henry Fielding writes in his novel Joseph

Andrews that the space between chapters is like “an Inn or Resting Place” for readers

to reflect on the preceding chapter [48]. Chapters come in many flavors: for example,

Murakami’s Kafka on the Shore uses chapter breaks to alternate between parallel narratives

focusing on the two protagonists, while cliffhanger endings such as the one in Figure 3.1 add

suspense. Making sense of the complex narrative shifts associated with chapter transitions

(e.g., changes in point-of-view, time, location, and theme) requires a deep understanding of

the entire text. To maintain global narrative coherence, [125] show that human readers tend

to reactivate memory about “backgrounded” information from the long-range context.

3.2.1 Task overview

Given that chapter transitions requires global context understanding, how can we turn

this into a task to evaluate LRLMs? A simple approach is to evaluate the token-level

30

perplexity of an LRLM only at chapter boundaries (i.e., on the first n tokens of each

chapter); however, the vast majority of tokens can be predicted using just local context [176]

under the teacher-forcing setup, which obscures an LRLM’s usage of long-range context as

we show in Section 3.3. We instead turn to the task of suffix identification, which closely

resembles existing datasets such as SWAG [219].

Each instance of our task is defined by a triplet (c, s+, s−i ∈ N), where c is a prefix

sequence of up to 8K tokens that ends at a chapter break, s+ is the gold suffix of length 128

tokens (i.e., the beginning of the next chapter), and s−i is a negative 128-token-long suffix

from a set N of five future chapter beginnings sampled from the same narrative. We use a

small number of negatives because it is time-consuming and resource-intensive to evaluate

the probabilities of long sequences with LRLMs. In Appendix B.5, we show that in-book

negatives are much harder than out-of-book negatives as they often contain the same named

entities and rare tokens as the gold suffix. Thus, disambiguating the correct suffix requires

a deep understanding of the context. All negatives are modified to begin with the same

chapter index (e.g., if the gold suffix begins with “Chapter III”, the chapter indices of all

negatives is set to “Chapter III”) to eliminate the effect found by [176] of language models

memorizing chapter indices in long contexts. We then evaluate whether an LRLM assigns

higher probability to the gold suffix P (s+|c) than to all negative suffixes P (s−i |c).

3.2.2 Dataset overview

Where do we get these triplets from? We collect a dataset, CHAPTERBREAK, with

two splits: CHAPTERBREAKPG19, which contains 241 examples extracted from the PG-19

validation set [145], and CHAPTERBREAKAO3, which contains 7,355 examples extracted

from an online dump2 of fanfiction posted on Archive of Our Own (AO3). We only collect

examples from validation set as two baseline models in the later sections are trained on PG-

19. We apply filtering to remove fanfiction works that are too short or not rated for general

2https://archive.org/download/AO3_story_dump_continuing

31

https://archive.org/download/AO3_story_dump_continuing

Category Definition Pct.

Events
Previous event ends and new event starts 76%
Previous event continues into next chapter 24%

Actors
Change of perspective or character in focus 36%
No change in POV or main character 64%

Locations
Change of location 68%
No change in location 32%

Continuity

Discontinuous but chronological 29%
Continuous 62%
Analepsis 2%
Parallel 6%

Table 3.1: Our human annotation on 300 chapter transitions randomly sampled from
CHAPTERBREAKAO3 shows the diversity and complexity of the dataset.

audiences. Each work contains on average 42K words and 21.5 chapters. We include more

preprocessing details and statistics in Appendix B.1. Even though the CHAPTERBREAKPG19

split is small, we include it because many LRLMs are pretrained on PG-19; the much larger

CHAPTERBREAKAO3 split is out-of-distribution for all models that we evaluate. To extract

chapters in PG-19, we match for lines beginning with the string “chapter”, while AO3 stories

already have chapter-level metadata.

To get a better sense of our dataset, we perform a fine-grained annotation of 300

randomly-selected chapter transitions from CHAPTERBREAKAO3. For each transition, we

annotate any changes in the following four aspects: events, actors (characters in focus),

locations, and continuity. To annotate continuity, we follow a simplified version of the

scheme proposed by [73], which considers five categories: continuous (the next chapter

occurs within a day of the previous chapter), discontinuous (the next chapter occurs more

than a day after the previous chapter), analepsis (the next chapter is a “flashback” to an

earlier point in the narrative), and parallel (the next chapter reverts to the time of a previous

chapter, switching the character or event in focus). To validate our continuity annotations,

we also annotate every chapter in Pride and Prejudice and obtain almost the same proportion

32

of continuous transitions (67%) as the number reported by the expert annotation of [73]

(72%). A more concrete annotation scheme is provided as follows:

• Events We define two subcategories based on whether (1) previous event ends in the

previous chapter and new event starts in the new chapter, (2) old event does not end

and continues into the next chapter.

• Actors We define two subcategories based on whether there is a shift in POV or main

character in focus.

• Location We define two subcategories based on whether the location described in the

prefix and in the new chapter is different.

• Continuity Following [73]’s work, we categorize the chapter transition by timeline

continuity into four subcategories:

– Discontinuous but chronological: Reusing the standard by [73], discontinuous

represents a gap in time forward for more than one night.

– Continuous: The time interval between chapters lasts for no more than one

night.

– Analepsis: Analepsis represents retrospective evocation of an event, or “flash-

back” to an earlier point in the narrative.

– Parallel: This includes timeline reverting back to the time of any previous

chapter, typically accompanied by switching character in focus or description of

a separate set of events independent of the last chapter. This category is a collapse

of “alternate phase”, “parallel phase” and “simultaneous phase” introduced

in [73].

The results, shown in Table 3.1, demonstrate that CHAPTERBREAK covers a diverse array

of transitions, including many that require global narrative understanding.

33

#Params Seq Len PPLPG19 AccPG19 AccAO3

LT 516M 8K 76.8 25% 24%
RT 490M 8K 72.3 22% 24%
Bigbird 128M 4K 56.2 27% 26%

GPT-2 1.5B 1K 78.2 23% 24%
GPT-3 175B 2K - 36%∗ 28%∗

SuffixLM 87M 10K - 52% 41%

Table 3.2: Summary of LRLMs (top), Transformer LMs (middle), and our SuffixLM
(bottom). All models are trained or fine-tuned on PG-19 except for GPT-2. The third column
shows the word-level perplexity of gold suffix in the PG-19 split. The last two columns show
the suffix identification accuracy of each model on the two CHAPTERBREAK splits when
evaluated at maximum input length. ∗ indicates results are on a subset of CHAPTERBREAK.

3.3 Experiments

We evaluate three different long-range language models on CHAPTERBREAK and

compare their results to those of standard Transformer language models as well as an upper

bound directly trained for suffix prediction.

Language models: We evaluate three LRLMs pretrained on PG-19: the Local Trans-

former [148], Routing Transformer (RT) [148] which are the main focus of last section in

this chapter, and BigBird [218]. The BigBird model is the decoder part of the released check-

point fine-tuned with causal LM objective on 14k books of PG-19 for 100k steps. We also

evaluate two standard Transformer language models, GPT-2 large [143] and GPT-3 [20].3

We summarize these models in Table 3.2, more details about each model are included in

Appendix B.2.

An upper bound directly trained for suffix identification: As authors often write stories

that are intended to surprise readers, it is possible that many examples in CHAPTERBREAK

are ambiguous by nature (i.e., the upper bound for suffix identification accuracy may not

be 100%). To obtain a reasonable upper bound, we also train a model (SuffixLM) directly

3Due to OpenAI’s API costs for GPT-3, we only evaluate in total a subset of 200 examples instead of the
full dataset.

34

256512 1K 2K 3K 4K 6K 8K

0.2

0.3

0.4

0.5
Su

ffi
x

Id
en

tif
ic

at
io

n
A

cc
. PG19

256512 1K 2K 3K 4K 6K 8K
0.20

0.25

0.30

0.35

0.40

0.45

AO3

SuffixLM
SuffixLMAO3
RT
LT
Bigbird
GPT-2
GPT-3

0.0 0.2 0.4 0.6 0.8 1.0

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: Suffix identification accuracy on both splits (PG-19 and AO3) of CHAPTER-
BREAK is much lower for LRLMs than our SuffixLM upper bound.

on the suffix identification task by scaling up the sentence-level language model proposed

by [72].Our SuffixLM can process up to 10K tokens, while the model of [72] supports only

up to ten sentences. We divide an input sequence into multiple segments, each of which

is embedded via the [CLS] vector of a small fine-tuned RoBERTa network [113]. Our

SuffixLM then performs “language modeling” atop the dense [CLS] vectors, predicting the

next segment representation given the representations of previous segments via contrastive

predictive coding [186]. Our SuffixLM is closely related to the model in [2], but differs

crucially by predicting the representation of next segment instead of summaries. Formally,

our SuffixLM minimizes the following loss:

Li = − log
exp(ẑi

⊤z+i)∑
zi∈{z+i ,Z−

i } exp(ẑi
⊤zi)

(3.1)

where ẑi is the predicted representation by SuffixLM, z+i is the gold suffix representation

obtained from a small encoder (RoBERTa), and Z−
i is the set of dense representations of the

negatives. More details about our SuffixLM are included in Appendix B.3.

35

256512 1K 2K 3K 4K 6K 8K
Sequence Length

0.4

0.5

0.6

0.7

0.8
Su

ffi
x

Id
en

tif
ic

at
io

n
A

cc
.

cause
dialogue
ch. breaks

256512 1K 2K 3K 4K 6K 8K
Sequence Length

50

60

70

80

90

Su
ffi

x
Pe

rp
le

xi
ty

RT
LT
Bigbird
GPT-2

Figure 3.3: Left: Prefixes ending at chapter breaks benefit more from long-range context
than other types of discourse boundaries. Right: Word-level perplexity of the gold suffix
does not correlate to accuracy (e.g., GPT-2 has high perplexity but outperforms RT on suffix
identification).

3.4 Results & Analysis

Overall, the results in Table 3.2 (rightmost two columns) confirm that all of the language

models studied in this chapter struggle on CHAPTERBREAK, especially when compared to

the SuffixLM upper bound, which outperforms the best LM by ∼25% absolute accuracy

when evaluated on the entire PG-19 split. We describe other interesting results and analysis

below:

Accuracy increases with longer prefixes: Figure 3.2 shows that as prefix sequence length

increases, some LRLMs (e.g., LT) barely improve, while others show modest improvements

(e.g., GPT-3 and fine-tuned BigBird). However, all LRLMs significantly underperform

our SuffixLM upper bound, even when the SuffixLM is given prefixes that are only 256

tokens long. Additionally, SuffixLM’s accuracy increases far more than those of LRLMs

when increasing the prefix length (from 31% at prefix length of 256 to 46% at 8K on the

AO3 split). We collected 13,682 fan-fictions posted on AO3 and fine-tuned our SuffixLM

on subset of this dataset to be the model SuffixLMAO3. More details about the filtered

36

AO3 works are included in Appendix B.1. This result suggests that the token-level LRLMs

evaluated in our work are not taking full advantage of information in the long-range context

to solve CHAPTERBREAK.

Perplexity does not always correlate with accuracy: Previous LRLM efforts use

validation perplexity (e.g., on PG-19) to compare against other models. However, we show

that perplexity is not by itself a predictor of suffix identification accuracy: As shown in

Table 3.2, GPT-2 achieves higher accuracy than RT despite yielding a word-level perplexity

of 78.2 on gold suffixes, compared to 72.3 for RT. As these models use different tokenizers,

we normalize the subword-level perplexities to the word level as suggested by [145]. More

details about this can be found in Appendix B.4. We advocate that future research on LRLMs

includes evaluation on suffix identification tasks like CHAPTERBREAK, as perplexity alone

does not reflect LRLMs’ capabilities to model long-range dependencies.

Why chapter breaks over other discourse boundaries? Other discourse markers,

including cause and dialogue, also often prompt human readers to reactivate memories of

global context [3]. We create suffix identification datasets for these two discourse markers

by string matching over corresponding cue phrases (‘because’, ‘due to’ for the cause subset

and text within quotation marks for dialogue). Appendix B.1 contains more details about

data for these two discourse markers.Figure 3.3 (left) shows that with prefixes of length

256 tokens, our SuffixLM is able to successfully disambiguate the correct suffixes for both

discourse markers more than 80% of the time, while the accuracy is much lower at chapter

boundaries. As the prefix length increases, accuracy only slightly increases for cause and

dialogue, especially compared to the robust improvement at chapter boundaries.

Short-context Transformers are comparable to LRLMs: Our results show that GPT-2,

despite its high perplexity on gold suffixes and short maximum sequence length (1024

tokens), achieves comparable performance to RT and LT on both splits. Meanwhile, GPT-3

achieves much higher performance on both CHAPTERBREAK at a sequence length of 2,048

37

tokens, and the increasing GPT-3 curve in Figure 3.2 is promising for future work scaling

LMs to longer sequence lengths.

Limitations of our work: While we have used the SuffixLM as an upper bound in this

chapter and demonstrated that it substantially outperforms LRLMs on CHAPTERBREAK,

a more compelling comparison would include human performance on our task at varying

prefix lengths, especially since some chapter transitions are specifically intended by their

authors to be unpredictable. However, obtaining reliable human performance numbers is

very difficult, as it requires in-depth comprehension of long narratives on the part of workers.

Due to the time-consuming nature of this task and its high cognitive demand, it is not

possible (within a reasonable budget) to use crowdsourcing, as ensuring that the annotators

fully read the prefix instead of skimming or ignoring it is a major challenge. These issues

also carry over to experiments performed with in-person subjects. As such, we leave a

thorough human evaluation on CHAPTERBREAK to future work.

3.5 Related Work

Efficient context scaling Our work in this chapter depends heavily on recent advances in

efficient Transformers [181] that process long sequences [145, 13, 218, 2, 148]. While most

recent research on hardware aware optimizations such Flash-Attention [35] has successfully

reduce memory consumption from O(L2) to O(L), the previously predominant approaches

to handling long sequences have been leveraging sparse attention [28] variants, employing

recurrence mechanism such as Transformer-XL [34, 71] and adding cache or memory [204,

205], and using retrieval techniques to retrieve relevant context from the history [205]

Other methods have also been proposed [162, 82, 57, 170, 216, 16, 59, 108] to make

the operation on long sequences more time/memory efficient. However, nowadays (as

of 2023), the common practice has been continually pre-training a short-range language

model on longer sequences [137]. These short-range language models tend to utilize

position encoding methods capable of extrapolating to unseen length to some extent, such

38

as AliBi [140] and rotary position embeddings (RoPE) [172]. Recent research, such as

Position interpolation [24] and NTK-aware [49] method have been applied to RoPE to make

the continual pre-training on long sequences more efficient and effective.

Retrieval, sparse attention, and effective long-range context modeling The retrieval-

based approach [205] involves encoding long context into separate representations and

retrieving relevant information for predicting future tokens. This method serves as a common

solution for overcoming the long sequence bottleneck. Recent work [211] demonstrates

the improved quality and faster inference speed of models by incorporating a retrieval

component. In this approach, retrieval module can be thought of as applying sparse attention

to the long context, with the salient part receiving the highest attention. One related finding

uncovers the induction head circuits [129] in the Transformer, where the pair of induction

attention heads can be responsible for copying and completing patterns/trigger pairs [147]

within the context. While models with induction circuits should ideally be capable of copying

patterns from any position in the context, tests like passkey retrieval [122] demonstrate

that these models still face challenges when dealing with in-context copying tasks, likely

due to the attention competition between irrelevant nearby tokens and relevant far-away

tokens. An earlier study [147] on language modeling suggests that substantial information is

present and distributed thinly across long-range context. As such, building a comprehensive

understanding of the long-range context can be of greater importance than simple in-context

retrieval. This can be achieved by collecting aggregated statistics of the long context or

applying more intricate methods that form a gestalt of in-context retrieval processes through

multi-layer contextualization.

Long context evaluation Besides perplexity, many extrinsic tasks for evaluating long-

range language models were developed recently , such as long-form QA [46, 135], document-

level summarization [94, 70], and machine translation [110]. More recently, benchmarks [159,

158, 4, 11] covering multiple domains and tasks have been introduced, while [180] propose

multimodal long sequence tasks. Another type of evaluation worthy of highlight is the in-

39

context retrieval task which has been tested in various formats and domains, such as passkey

retrieval [122], which we discuss in detail in section 3.6.2. The sequence-copying task

proposed in the previous chapter can also be thought as a preliminary version of such test.

However, more tasks need to be developed to evaluate not only the accuracy of extracting

short relevant excerpts from the long context, but also the capability of making non-trivial

inference, reasoning and synthesizing information, understanding the implicature within the

context, etc.

Discourse segmentation In this chapter, we use chapter break as a heuristic for detecting

coherence breaks. This approach is closely related to research on discourse segmentation,

where extended sequences are divided into smaller topically coherent discourse segments via

either linguistic cues [189, 136] or automated methods [119, 44, 198]. In this chapter, we

divide long sequences into prefixes and suffixes using chapter boundaries. We segment the

long prefixes using sentence boundaries and an upper length limit, however, without taking

into account the discourse structures in the prefixes. Thus, an interesting future analysis

involves probing the segment representations produced by SuffixLM to evaluate their

accuracy in predicting various topics, functions, eventualities, and discourse relations [199].

Limitation

We provide the evaluation of language models across various model sizes, architectures,

context sizes, and training objectives. However, a better result that complements our existing

results is the human performance on ChapterBreak. While the SuffixLM can serve as a soft

upper-bound for the attainable performance on ChapterBreak, it still may differ than human

performance by large margins. The reason why we did not provide human performance

is because (1) it is hard to properly control human behavior when reading long sequences

is involved, and (2) since we also require the human performance at various sequence

length, relegating the performance at different context sizes to different persons can be very

costly. We believe this is a promising research direction for both computer science and

40

cognitive science in the future. Another limitation of this chapter lies in the prefix length.

Recent progress in the efficient context scaling methods allow processing up to hundreds of

thousands of tokens in one shot with some proprietary models. The prefix of at most 8K

tokens in our dataset can be a bit short to recent large language models. Thus, it can be

promising to sample longer prefix from books and other narratives, and construct a longer

version of CHAPTERBREAK in the future.

Ethical Considerations

CHAPTERBREAK is constructed from two sources: public domain books published

prior to 1919 (from the held-out set of PG-19) and works of fanfiction extracted from an

online dump of stories posted on Archive of Our Own (AO3). We refer readers to [145]

for more details about PG-19. For AO3, we apply multiple filters to obtain long fanfiction

stories rated as suitable for “General Audiences”. We refer readers to Appendix B.1 for

more preprocessing details. More generally, this work focuses on long-range language

models, which could potentially be misused to generate offensive output. However, the

main purpose of this chapter is to present a dataset which provides a better evaluation of the

discourse-level capabilities of such models.

3.6 Long-range context modeling in the era of “large language models”

In Chapter 2 and the preceding sections of the current chapter, we have examined models

primarily consisting of millions of parameters and trained on constrained domains such

as PG-19. Recent advancements, exemplified by Flash-attention [35] and more powerful

hardwares, coupled with open-source and proprietary efforts at scaling model and context

window size have led to the burgeoning of “large language models” (LLMs). These models

have more parameters, are trained on carefully preprocessed web-scale data across diverse

domains, and some incorporate instruction fine-tuning and RLHF [132] to align with human

intents. In this section, we provide additional empirical evaluations of more recent “large

41

Prompt for evaluating OpenAI models on ChapterBreak

You are given a snippet and six possible continuations of the snippet. Please select

the most natural and coherent continuation of the given snippet. Please provide a
letter A, B, C, D, E, F in a separate line. Only one of the options is correct.

[Snippet]

{prefix}

[Option A]
{suffix A}

[Option B]
{suffix B}

...

[Answer]
(select from A, B, C, D, E, F):

Table 3.3: Prompts used to evaluate instruction fine-tuned large language models (e.g. GPT-4
and GPT-3.5-Turbo) on CHAPTERBREAK.

language models”, and engage in a general discussion on the evaluation of long-range

context modeling.

3.6.1 Evaluating large language models on CHAPTERBREAK

In this section, we evaluate the performance of recent large language models on CHAPTER-

BREAK. These results stand alone as a separate section due to the lack of direct comparability

between these models and those we examined before. Despite this, we believe it is still

beneficial to evaluate these recent LLMs to understand the limit of frontier language mod-

els. Our results indicate that these models, though scaling up across multiple factors, still

struggle with some examples in CHAPTERBREAK, and under-perform our segment-level

language model SuffixLM.

42

3.6.1.1 Models & Evaluation setup

For open-source models, we employ the same approach as in the previous sections,

i.e., computing the length-normalized probability of the gold suffix and negatives. For

proprietary models, since log probabilities of input tokens were not available with OpenAI

API by the time we evaluate these models, we frame each example as a multiple-choice

question and instruct the model to select the best suffix. We evaluate five open-source

language models, including four Transformer-based models (Mistral-1-7B [76], Mistral-1-

7B-instruct, 45 LLaMA-2-7B [183], and Cerebras-BTLM-8K [39]), and a selective state-

space model (Mamba-2.8B [56] trained on SlimPajama [163]). For all models, we use

A100 80GB GPUs for evaluation and evaluate with bfloat16 data type, with the exception

of Cerebras-BTLM-8K when evaluating on 8K-token sequences, where we load the model

with 4-bit due to memory constraints. We evaluate two proprietary models, gpt-4 and

gpt-3.5-turbo-16k, with the prompt shown in Table 3.3.

3.6.1.2 Results & Analysis

CHAPTERBREAK is still challenging for open-source LLMs. As shown in Figure 3.4,

in contrast to models evaluated in the previous sections, recent open-source LLMs exhibit

increasing trends with the increase of prefix length. Recall that models we have evaluated in

section 3.4 demonstrate either zero or only marginal gains when prefix length is extended.

Although recent open-source models demonstrate the notable improvement, they still lag be-

hind proprietary models and SuffixLM by large margins, suggesting less effective utilization

of long-range context.

GPT-4 outperforms SuffixLM but shows severe degradation when sequence is long.

For closed-source models, GPT-3.5-Turbo consistently underperforms SuffixLM, while

4https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

5While this version is instruction fine-tuned, we still evaluate with the length-normalized probability for
consistency with other models.

43

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

256 512 1K 2K 4K 8K

0.2

0.3

0.4

0.5

0.6

Su
ffi

x
Id

en
tif

ic
at

io
n

A
cc

. PG19

256 512 1K 2K 4K 8K

0.2

0.3

0.4

AO3

SuffixLM
GPT-4
GPT-3.5-Turbo-16K
LLaMA-2-7B
Mistral-1-7B
Mamba-2.8B-slimpj

0.0 0.2 0.4 0.6 0.8 1.0

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4: Suffix identification accuracy of recent open-source and proprietary language
models on CHAPTERBREAK. SuffixLM outperforms open-source language models (both
Transformer-based and state-space models) despite having 87M parameters. GPT-4 outper-
forms SuffixLM when prefix length is short, and displays degraded performance as prefix
length increases.

GPT-4 is the only model that outperforms SuffixLM, though improvement is not consistent.

Moreover, both models exhibit abrupt degradation when the prefix extends beyond 2K

tokens. This suggests limited base LM capabilities in identifying the correct continuation

given long prefix, and/or potential inadequacy of alignment process for tasks requiring

reasoning over long-range context. Indeed, obtaining high quality human preference data

on long sequences can be costly and challenging, and is of an interesting direction for

further exploration. Despite being the only model that outperforms SuffixLM, GPT-4’s peak

performance remains less satisfactory (less than 50% on AO3). Considering the performance

of open-source models, there is still significant room for improvement in recent LLMs on

CHAPTERBREAK.

Instruction fine-tuned Mistral exhibits a slight performance decline but the increasing

trend persists. Among all open-source models that we evaluated, Mistral-1-7B achieves

the best accuracy and displays the steepest increase in accuracy with extended prefix length.

In fact, it is the only model that shows increased suffix identification accuracy when prefix

becomes longer than 2K tokens. Will instruction fine-tuning erase the capability of long-

44

range context modeling and lead to declined accuracy as demonstrated in the proprietary

models? We conduct another experiment with the “chat” version of Mistral (Mistral-1-

7B-instruct). While this model can follow instructions, we still evaluate it with the length-

normalized log probability method for a consistent comparison with Mistral-1-7B. Figure 3.5

shows that instruction fine-tuning marginally degrades performance on CHAPTERBREAK,

but the overall upward trend is maintained, suggesting the instruction tuning phase does not

significantly change the underlying contribution from long-range context.

Mamba trails behind Transformer-based models on CHAPTERBREAK. Structured

state space models are popular new architectures for language modeling. The recurrent

structure in state space models (SSMs) theoretically allows for the processing of infinitely

long sequence; adding in the selection mechanism, the recent best performant SSM, the

Mamba model, demonstrates comparable performance to Transformer-based models on

relatively large scale training. However, our results show that the performance of Mamba-

2.8B-slimpj increases with the extension of prefix length only up to a certain context size,

and then decreases. As Mamba is significantly smaller than other open-source large language

models, to ablate the effect of model size, we also evaluate Cerebras-BTLM-3B [39], a

model that shares the same training data and model size with Mamba (∼3B). As shown in

Figure 3.6, Mamba-2.8B-slimpj consistently under-performs its Transformer counterpart.

Nevertheless, it remains unclear if the gap is primarily due to the architectural difference or

simply the differences of optimization process. Further experiments are necessary to fully

understand the cause of the performance gap.

Evaluation on passkey retrieval test. In-context retrieval, such as passkey retrieval [122],

is a common evaluation for long context modeling. To understand how retrieval-based

evaluation relates to or diverges from CHAPTERBREAK, we also evaluate the open-source

models on passkey retrieval test. Following previous works [122, 184], we insert a short

sequence containing the passkey information (“The pass key is {7-digit passkey}”) into a

random position in a long sequence. The input sequence consists of distraction alphanumeric

45

256 512 1K 2K 4K 8K
0.225

0.250

0.275

0.300

0.325

0.350

Su
ffi

x
Id

en
tif

ic
at

io
n

A
cc

. PG19

256 512 1K 2K 4K 8K

0.25

0.30

0.35

AO3

Mistral-1-7B
Mistral-1-7B-instruct

0.0 0.2 0.4 0.6 0.8 1.0

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.5: Instruction fine-tuning leads to slight degradation in suffix identification accuracy,
but the upward trend with the increase of prefix length persists.

256 512 1K 2K 4K 8K

0.20

0.25

0.30

0.35

Su
ffi

x
Id

en
tif

ic
at

io
n

A
cc

. PG19

256 512 1K 2K 4K 8K

0.20

0.25

0.30

AO3

Mamba-2.8B-slimpj
Cerebras-BTLM-8k-3B

0.0 0.2 0.4 0.6 0.8 1.0

Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.6: Comparison of Transformer-based model (Cerebras-BTLM-8k-3B) and state-
space model (Mamba-2.8B-slimpj) on CHAPTERBREAK. Both models are trained on SlimPJ
dataset, and are of similar sizes.

46

512 1k 2k 4k 6k 8k
Sequence length

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Passkey retrieval

LLaMA-2-7B
Mistral-1-7B
Mamba-2.8B-slimpj
Cerebras-BTLM-8k-3B

Figure 3.7: Comparison of open-source models on the passkey retrieval task. Model
performance on passkey retrieval does not correlate with performance on CHAPTERBREAK.

strings and ends with “The pass key is”, which prompts the models to generate the passkey

inserted in the context. We evaluate the exact match accuracy between the generated passkey

and gold passkey while varying the sequence length.

As shown in Figure 3.7, all models exhibit varying degrees of accuracy degradation,

with the LLaMA-2-7B completely fails the retrieval when sequence length is longer than its

pre-training window size. On the other hand, Mistral-7B is able to handle the retrieval better

due to its context size. Cerebras-BTLM-3B also undergoes training on 8K tokens and demon-

strates the smallest degradation when increasing sequence length. Lastly, while Mamba

demonstrates impressive performance in selective copying task under toy settings [56], the

Mamba-2.8B-slimpj model exhibits significant degradation for sequences longer than 2K

tokens, suggesting further room to improve the selection mechanism in current model.

Passkey retrieval performance does not correlate with CHAPTERBREAK. As shown

in Figure 3.7, Transformer-based models demonstrate near-perfect passkey retrieval when

the sequence is shorter than 4k token. However, these models underperform SuffixLM by

large margin on CHAPTERBREAK regardless of the sequence length. Moreover, the ranking

47

of these models in passkey retrieval test does not correlate with that in the CHAPTERBREAK

evaluation. For instance, Mistral underperforms BTLM in passkey retrieval when the

sequence is long, whereas it either outperforms or achieves comparable results to BTLM

in the CHAPTERBREAK evaluation. The disparity in model comparisons indicates that the

two tasks evaluate different aspects of context modeling. Passkey retrieval, a retrieval-based

evaluation, and CHAPTERBREAK, a prediction-based evaluation, require different context

modeling capabilities. Evaluating the model on both fronts can offer complementary insights

into its overall ability to handle diverse contextual tasks.

3.6.2 General discussion on the evaluation of long-range language models

Token-level evaluation Chapter 2 section 2.3 has challenged the suitability of perplexity

alone for evaluating long-range language models; here we discuss a few followup works that

echo our observation and two recommended token-level evaluation setups. Consistent with

our findings, Perceiver AR [59] also demonstrates that gains from having context longer than

2K tokens are negligible on PG-19; Memorizing Transformer [205] aligns with our findings

in section 2.4 that when having longer context, a small subset of tokens obtains significant

gains, which are offset by other tokens to which the model has degraded predictability.

In additional to these empirical evidence, other operational factors also make perplexity

no longer a suitable intrinsic metric. As discussed in section 2.3, without evaluating at

various context sizes, the gains in perplexity can be misleadingly attributed to the incorpo-

ration of long-range context, when in fact, they are the consequence of better modeling of

local short-range context. Employing an improper evaluation setup, e.g., non-overlapping

evaluation, may also falsely suggest drop in perplexity, when the true cause is the reduction

of “early token curse” [138]. A more suitable approach to evaluating language model is

thus the sliding window method – fixing context window of size c and sliding by x (x < c)

tokens every step, allowing the evaluated x tokens to have sufficiently long prefix of size

(c − x). Another potentially helpful token-level evaluation practice is to fit the context

48

scaling power law function. According to a recent study [209], the loss l of a token can be

modeled as a function of its position t in the context: l = (α
t
)β + γ, where α, β, γ are power

law parameters. The tangent of the power law function at various positions is indicative of

the utilization of long-range context (counting from the beginning of the sequence) at those

points, therefore it can be a more comprehensive evaluation than sliding window approach

with a single fixed context size.

Sequence-level evaluation Besides the sequence-copying and in-book suffix identification

task introduced in section 2.5 and enhanced in Chapter 3, recent works have advocated

various sequence-level evaluations. One common task is the passkey retrieval test [122],

wherein the model needs to extract a key from long distracting text. A similar in-context

retrieval task, also known as “needle in the hay” test [78] involves inserting a sentence

into a long narrative and evaluating the accuracy recalling the information of the inserted

sentence at various insertion positions in the context. More recently, Anthropic has adopted

this method to evaluate their models with context size of 200k tokens [7]. Similar kind

of retrieval task is also systematically examined by a recent study [109] as a real natural

language task of multi-document QA. An interesting phenomenon of “lost in the middle”

suggests that models can retrieve facts more accurately when they appear in the beginning

and end of the sequence compared to the middle. While further evidence is necessary,

this phenomenon can potentially be explained by the recently discovered attention sink

phenomenon [208], which states that tokens at the beginning of the sequence receive larger

attention weights.

While in-context retrieval is a promising method to stress test a model’s maximum

effective context size, it restricts the evaluation to block retrieval, which can be better tackled

if a retrieval module is augmented to the langauge model. An alternative and still under-

developed evaluation setup demands comprehensive understanding of long-range context.

This includes synthetic tasks such as parity prediction [228] and variable assignment [5] as

49

well as real natural language tasks like CHAPTERBREAK and the long document QA task

QuALITY [135], which we dive into details in the next chapter.

Overall, both in-context retrieval and long-range understanding are indispensable for

a thorough evaluation of long-range context modeling. In the latter part of 2023, several

benchmarks focused on long-context modeling have been introduced [11, 4]. Despite these

advancements, numerous challenges persist within this domain, including issues related to

data contamination [40] and the need for large-scale, high-quality human annotation [105]

and evaluation. We conjecture that human-machine collaborative evaluation will be par-

ticularly helpful for evaluating long-context LMs, and will discuss as a future direction in

section 6.2.

50

CHAPTER 4

PEARL: PROMPTING LARGE LANGUAGE MODELS TO PLAN
AND EXECUTE ACTIONS OVER LONG DOCUMENTS

4.1 Introduction

Performing complex reasoning over long input documents often requires forming high-

level abstractions of the text (e.g., plots and themes in a narrative) and then conducting a

variety of inferences on top of those abstractions [53]. Consider the following question

about the story “Breakaway” from the QuaLITY dataset [134]:

What part of the final scene best connects to the story’s opening conversa-
tion?

To answer this question, we need to gather and synthesize information from across the story,

which motivates decomposing the question into a plan of actions, as in:

1. Identify all participants in initial conversation.

2. Summarize the initial conversation.

3. Summarize events and themes of final scene.

4. Summarize roles of conversation participants in final scene.

5. Identify and rank connections between conversation and final scene.

Each action in the above plan varies in complexity, from simple lookup-style actions (Step

1) to more challenging query-focused summarization (Steps 2-4) and conceptual linking

(Step 5) actions that require deep narrative understanding.

Given the rapidly advancing capabilities of large language models (LLMs), how can we

use them to answer questions like these? While we could directly prompt LLMs to generate

the answer, prior work on simpler reasoning-based tasks shows that this method is inferior

51

Mine helpful actions from training set questions
DEFINE(X), COMPARE(X,Y), FIND_EMOTION(X),...

Action Mining

Execute the plan step-by-step
Plan Execution

open_conv = "In the initial conversation, Phil
Conover is excited about his upcoming mission
to be the first man to see the other side of
the moon"

Given a question, generate plan of mined actions
Plan Generation

Question: What part of the final scene best connects to the
story's opening conversation?
1.open_conv = FIND_ELEMENT(CTX,"opening conver..")

2.final_scene = SUMMARIZE_X(CTX, "final_scene")

3.reflection = FIND_RELATION(init_conv, final_scene)

Figure 4.1: High-level overview of our framework PEARL. Each stage in PEARL is achieved
via zero-shot or few-shot prompting of an LLM (in our work, GPT-4). We also provide
example outputs from each stage.

to chain-of-thought prompting [200], which encourages the LLM to provide step-by-step

explanations and intermediate outputs before producing the answer. Unfortunately, CoT is

not well-suited for tasks involving complex reasoning over long input documents, as both

the decomposition of the original question and the intermediate outputs of each step are

non-trivial to obtain, as in the above example.

Given the difficulty of obtaining plans and intermediate explanations for long documents,

one potential solution is to delegate this task to smaller executable modules instead of

forcing the LLM to come up with all of them at once. In this work, we introduce PEARL,

52

Prompting Methods
Explicit

plan
Iterative

prompting
Does not rely on

external tools
Long

documents

Chain-of-Thought [200] ✗ ✗ ✓ ✗

Program-of-Thought [26] ✗ ✗ ✗ ✗

Self-Ask [141] ✗ ✓ ✗ ✗

Toolformer [153] ✗ ✗ ✗ ✗

ReAct [213] ✗ ✓ ✗ ✗

Plan-and-Solve [192] ✓ ✗ ✓ ✗

PEARL (this work) ✓ ✓ ✓ ✓

Table 4.1: Comparison of PEARL to other recently-proposed prompting techniques. PEARL

is the only one designed for and evaluated on tasks that require complex reasoning over long
documents.

a framework that combines Planning with Executable Actions for Reasoning over Long

documents. Each stage of PEARL — action mining, plan decomposition, and plan execution

— is implemented by applying zero-shot or few-shot prompting to an LLM. The stages

(Figure 4.1) can concisely be described as follows:

1. Action mining: An LLM is prompted to come up with simple actions that can help solve

questions from an input training dataset. Unlike predefined “toolboxes” in methods such

as Toolformer [153] or ReACT [213], the action set in PEARL is also generated by an

LLM.

2. Plan generation: Given an input test question, an LLM generates an executable plan

consisting of a series of actions selected from the action set produced in the previous

stage. The plan is formatted as a simple program in which the execution result of one

action can serve as an argument to future actions, which enables complex composition.

3. Plan execution: The LLM executes the plan action-by-action via a prompt template that

includes an action and the long-form input document. Note that this is the only stage that

includes the document, as the other stages operate over just questions.

We demonstrate PEARL’s effectiveness on a challenging subset of QuALITY [134],

a reading comprehension dataset that contains questions about long-form articles. While

53

QuALITY is originally a multiple-choice dataset, we reformulate it into a generation task:

given a question and an article, an LLM is asked to generate a free-form answer. As a

proxy for measuring answer correctness, we adopt a similar approach to [190] by asking the

LLM to map its generated answer to one of the multiple choice options, which allows us to

compute its accuracy.

Prompting LLMs with PEARL yields more accurate and comprehensive answers than

those generated by directly prompting the LLM to answer the question, particularly for

questions that require reasoning over the full long document. This result is particularly

impressive given the potential for error propagation in the PEARL framework: as each stage

is implemented via an LLM, errors in plan formulation or execution can significantly affect

the output answer. To further verify the integrity of the plans, we perform human evaluation

by asking annotators to provide feedback and ratings; annotators generally find the plans

to be reasonable, although a small percentage contain unnecessary actions or omit critical

actions. Overall, we hope PEARL further opens the door towards using LLMs for complex

reasoning over long documents.

4.2 Related work

Our work builds on recent LLM prompting research and also connects to work on

reasoning over long documents. Before describing PEARL, we first survey related papers

to contextualize our work within this fast-moving field. Prompting methods: Re-

cently, the capabilities of large language models [19, 224, 182] have significantly increased

as a result of learning from instructions or feedback [169, 132, 30] to better align their

outputs to human preferences. When provided with well-crafted prompts, such as chain-

of-thought [200] explanations, these state-of-the-art models exhibit impressive reasoning

abilities. A plethora of new prompting techniques (Table 4.1) has been recently introduced

to unlock more capabilities of LLMs via leveraging exteral tools [26, 153, 115], problem

54

decomposition [141, 42, 85, 213], self-reflection and self-refinement [67, 165, 118, 86],

planning [212, 192, 114], and other techniques [217, 195, 227].

Reasoning over long documents: Large language models have showcased remarkable

reasoning capabilities [68], including mathematical reasoning [31], commonsense reason-

ing [177], and symbolic reasoning [128]. Most of these tasks do not involve long context

inputs, and thus they are able to benefit from few-shot in-context CoT prompting. In this

chapter, we primarily focus on tasks that contain long input contexts [88, 36, 160, 174],

specifically generative question answering based on long input articles. To address the

absence of reliable evaluation for long-form QA [92], [167] proposes automatic metrics

for evaluating the correctness of the answer, whereas in this work, we use LLM-based

evaluation by taking advantage of the multiple-choice setup of existing QA dataset. Prior

to the shift to prompting-based methods, approaches including contrastive learning-based

sequence-level objectives [22], iterative hierarchical attention [175], and joint modeling of

machine reading and answer generation [171] have been employed to enhance long-context

question answering.

4.3 PEARL: Planning and Executing Actions for Reasoning over Long

Documents

We are interested in using LLMs to solve tasks that require complex reasoning over long

documents.1 In this chapter, we focus on the task of answering questions about long-form

narratives. Most prompting strategies that aim to improve the reasoning abilities of LLMs

(e.g., CoT) are not applicable to this task due to the length and complexity of the input

document. In this section, we specify our PEARL framework, which consists of three LLM-

implemented stages that mine actions from a training corpus, formulate plans to answer

held-out questions, and then execute the resulting plans to obtain answers.

1As there is no consensus on what is “long”, we consider it to mean documents of several thousands of
tokens in length.

55

Prompt Sketch for Action Mining
Seed actions:
{Human-written seed set of actions}
SUMMARIZE(CTX):Provides a general summary about given CTX
FIND_REASON(CTX, X): Find cause of X in given CTX

Instructions and demonstrations:
{Natural language instructions}

{Human-written few-shot demonstrations}

Given a question about a long document and the seed
action set, come up with new actions that could help to
answer the question...

Output:
FIND_MISSION(CTX, X) : Find the mission of character X
from the input context CTX...

Input question:
{Question from training set}
What is the alien's mission?

Figure 4.2: Prompt sketch for action mining. It comprises human-written seed actions set
and instructions, as well as question for which LLM will extract action(s) from. Finally, we
also present an example mined action. More details can be found in the Appendix C.6.

4.3.1 Action mining

In many prior prompting techniques such as ReACT and Toolformer, the LLM is

able to query external APIs (e.g., Wikipedia search or a calculator) to solve a given task.

Unlike these works, which assume a predefined action space, PEARL mines actions directly

from data of similar distribution (in our case, training set questions of QuALITY). As

shown by prior research [53], answering complex queries over long documents requires

specific reasoning techniques; as further evidence, [210] demonstrate the presence of various

discourse structures in good answers to long-form questions on Reddit. Learning dataset-

56

{Natural language instructions}

{Human-written and model-generated few-shot demonstrations}

Prompt Sketch for Plan Generation

Input question:

Output:

Mined actions:
{Mined actions from previous stage}
FIND_EVENT(CTX, X): Find the event involving X from input
SUMMARIZE(CTX, X): Provide a summary about X given input

Instructions and demonstrations:

Given a question about a long document and the list of
mined actions, come up with a plan for addressing the
question below ...

{Question from evaluation set}
Why does Simon look for a bottle of aspirin?

1. aspirin_event = FIND_EVENT(CTX,"look for...") : Find
and summarize the event where...
2. aspirin_reason = FIND_BEHAVIOR_REASON(CTX,
aspirin_event): Find the reason why ...

Figure 4.3: Prompt sketch for plan generation. In the prompt, we include the list of actions
mined from previous stage in-context, natural language detailing the task, and few-shot
examples guiding the plan generation.

specific actions enables PEARL to scale to different domains and tasks, as user queries may

differ considerably in terms of complexity. Moreover, mining actions from training set can

reduce human efforts in designing new actions. In this work, we define an “action” as a

basic unit for long document reasoning. To obtain these actions, we first manually create

a small set of seed actions to use as demonstrations.2 Then, as shown in Figure 4.2, given

an example question, we feed it along with the seed actions and instructions to the LLM to

2See prompt for QuALITY action mining in Appendix C.6

57

generate more task-specific actions. Each ACTION is formatted as a programmatic function

with input arguments and is followed by a model-generated function definition in natural

language. Below is an example action generated by the LLM:
ANALYZE(CTX, X, Y) # Analyze the relationship, attitude, or feelings between X

and Y given the input context CTX

After a full pass over example questions in the training data, we obtain a final set of actions

and their corresponding definitions which are then incorporated into the prompt of the

next stage after model-based filtering and simplification (more details about filtering in

Section 4.4.1).

4.3.2 Plan generation

A plan serves as the guiding framework or outline for answering complex questions that

may involve multi-step reasoning and/or global understanding of long documents. Given

a question, as shown in Figure 4.3, we prompt an LLM to generate a plan based on the

previously-mined action set. The plan is formatted as a program, and can be thought of as a

more flexible generalization of the program for summarization [150]. Each step of the plan

is formatted as
output = ACTION(arg1, arg2, . . .),

where the output variable stores the result of the current ACTION , and the arguments

can be (1) the input document, (2) a string, or (3) an output variable from previous steps

of the plan. When generating the plan, we do not show the LLM the entire document as

input, which provides ample space for incorporating few-shot in-context examples. Similar

to the seed actions in the previous stage, we provide a seed set of plans and allow the

model to generate more demonstrations automatically, which we provide more details in

Section 4.3.4.

4.3.3 Plan execution

In the previous stage, the LLM generates a plan that serves as a blueprint for producing

a response. To execute each step in the plan, we prompt the LLM with a template filled

58

Prompt Sketch for Plan Execution
Long input document:
Phil Conover pulled the zipper of his flight
suit up the front of his ...

aspirin_event = "In the beginning of the story, Simon, a
private investigator, was looking for ..."

{Argument value assignment}

{One-sentence explanation}
Find the reason behind Simon's behavior of looking ...

FIND_BEHAVIOR_REASON(CTX, aspirin_event)
{Action of current step}

FIND_BEHAVIOR_REASON(CTX, X): Find the reason behind
the behavior X given the input CTX

{Mined action and its definition}

Instructions:

Output:
...he is suffering from a severe hangover due to
excessive consumption of Marzenbräu beer during ...

Figure 4.4: Prompt sketch for plan execution. This prompt contains multiple {placeholders}
that will be filled with output from previous stages.

with output from previous stages. Concretely, as shown in Figure 4.4, to execute the action

FIND_BEHAVIOR_REASON, the model fills in the prompt template with (1) the planned

action and definition, (2) current action with specific input argument (e.g., aspirin_event)

, (3) assignment of argument name with output from previous stage (e.g., aspirin_event

= “in the beginning of the story, ...”), and (4) a one-sentence instruction for

the current step, all of which are generated by LLM. As the long article is involved in this

stage, the prompt is executed in a zero-shot manner.

59

4.3.4 Self-correction and self-refinement

LLM-generated plans can have two major issues: (1) they can be syntactically-invalid,

which prevents execution; and (2) they can semantically irrelevant to the question. To address

these issues, we prompt the LLM to “debug” its own generated plans via self-correction and

self-refinement, inspired by Reflexion [165]. Self-correction of syntax errors: Given

a held-out question, we first generate a plan via an LLM and then pass it into a simple

parser3 that returns relevant error messages when the plan does not conform to the defined

format. Then, we feed the LLM the question, plan, and error messages, and we ask it

to correct the errors in the plan, repeating the process until the parser returns no errors.4

Self-refinement of demonstrations: Since we use LLM-generated plans from training

questions as few-shot demonstrations (Section 4.3.2), it is important for these plans to be

semantically meaningful. To ensure the quality of these demonstrations, we validate them by

executing the plan and verifying whether they output the correct answer (see Section 4.4.1).

If the answer is wrong, we pass the plan to the LLM for further self-refinement and repeat

until the execution result is correct; only then do we include the plan as a demonstration.

4.4 Experiments

Dataset selection: We focus on the QuALITY QA dataset [134], which is a multiple-

choice QA task in the SCROLLS benchmark [160]. While we would love to experiment on

more datasets, this area remains unexplored: QuALITY is the only known dataset that has

verified human annotations on whether the usage of long contexts is critical to answering a

question. Other QA datasets such as NaturalQuestions [96] and NarrativeQA [88], which

take long documents as inputs, are not relevant for our work as the vast majority of answers

3The simple parser checks the format of the plan, and returns errors such as No ’=’ found in one of the
actions, etc.

4It is possible for the LLM to fail to generate a syntactically-valid plan even after multiple retries. In such
cases, we revert to the zero-shot baseline (i.e., without PEARL). This happens for only 4 out of 1K examples in
our experiments, so it is not a major issue.

60

QUALITY
LONG

QUALITY
SHORT

ALL p-val

PROMPTING METHODS
GPT-4 zero-shot 64.3 79.1 68.8 -
GPT-3.5 zero-shot (text-davinci-003) 45.5 56.3 48.8 0.000
GPT-4 zero-shot chain-of-thought 65.9 77.2 69.3 0.766
GPT-4 PEARL 70.9 77.8 73.0 0.005

Ablations of GPT-4 PEARL
w/o plan execution 67.3 77.2 70.3 0.295
w/o self-refinement of plan demonstrations 67.0 78.8 70.6 0.245

Table 4.2: We present baseline and PEARL as well as ablation results on our generative
subset of QuALITY questions. Long denotes the split where the questions require reasoning
over long contexts to answer accurately. As we only evaluate on a subset, we also provide
p-values to verify statistical significance against the zero-shot GPT-4 baseline.

can be located by retrieving short excerpts without processing long-range dependencies

within the context.

In total, we extract a dataset of 1K examples from QuALITY divided into two splits,

one of which requires long context understanding to answer and the other of which doesn’t.

Each QuALITY question contains a human-annotated score of how much context is required

to answer it, which ranges from 1 (only a sentence or two of context is needed) to 4 (most

or all of the passage for context is needed). The two splits are (1) Long, which consists of

330 examples from the QuALITY dev set and 368 examples from training set marked with

a context score ≥ 3, and (2) Short, which has 302 examples from the dev set that do not

require long contexts to answer (context score < 3). The latter is a control dataset to make

sure our methods do not overly worsen performance on simpler questions.

Evaluation: While QuALITY is a multiple-choice dataset, we reframe it into a generative

task in which an LLM does not have access to the choices and must instead generate a

long-form answer. We do this for two reasons: (1) transforming the task to a novel setting

reduces the risk of data leakage, and (2) the generative task better resembles the usage of

LLMs in real world. In our generative setup, we automatically map the long-form answer

61

generated by the models back to one of the choices with an LLM to evaluate the accuracy.5

The accuracy of mapped answers serves as a proxy for assessing the correctness of the

provided answer.

However, to better simulate LLMs usage in real-world scenarios, we turn this dataset into

a generative task6 in which an LLM does not have access to the choices and must instead

generate a long-form answer. Then, we automatically map the generated answer back to one

of the choices with an LLM to evaluate the accuracy.7 The accuracy of mapped answers

serves as a proxy for assessing the correctness of the provided answer. QuALITY contains a

diverse variety of questions, each of which is annotated with the amount of context needed

to answer the question.

Focusing on long-document reasoning: In contrast to questions that can be correctly

answered with local context once a piece of information is located, as in “Who found Retief

and Magnan in the trees?”, we are more interested in questions that require reasoning over

long context, as in “How would you describe the changes in tone throughout the passage?”. These

questions constitute an interesting and difficult subset that, unlike more straightforward

information seeking questions, require global understanding and reasoning over the doc-

ument to provide accurate answers. Therefore, we select a subset of questions marked by

the QuALITY creators as requiring long contexts to answer. In total, we create a dataset

of 1K examples divided into two splits:8 (1) Long: 330 examples from the dev set, 368

examples from training set, and (2) Short: 302 examples from dev set that do not require

5We provide a generic illustration of the evaluation process in Figure C.1. In Appendix C.4, we con-
firm through human evaluation that GPT-4, the model we test, demonstrates considerable—but not per-
fect—agreement with human annotators for the answer mapping stage.

6We provide the performance of GPT-4 with standard multi-choice setup on the full dev set in Appendix C.3.

7We provide a generic illustration of the evaluation process in Figure C.1. In Appendix C.4, we con-
firm through human evaluation that GPT-4, the model we test, demonstrates considerable—but not per-
fect—agreement with human annotators for the answer mapping stage.

8Human annotation score on the required context ranges from 1 to 4. Questions in the long split have
average human annotation score ≥ 3, and the short split scores < 3.

62

long contexts to answer. The latter forms a control dataset to make sure our methods do not

overly worsen performance on simpler questions.

4.4.1 Experimental setup

As each of the stages in PEARL has critical hyperparameters and implementation details,

we describe our specific configurations here.

Action mining: We provide an LLM with seven seed actions and two in-context examples

to demonstrate the required format for generating new actions.9 We collect new actions by

passing all training set questions into the model, excluding those questions in our evaluation

set. Ultimately, we obtain 407 actions and corresponding definitions, of which several are

duplicates or overly specific, and in total exceeds GPT-4’s maximum context window of

8K tokens. We thus instruct GPT-4 to simplify and abstract over existing actions to reduce

the total number of actions. After repeating this process twice,10 the number of actions is

reduced to 81, forming the final action set for PEARL.

4.4.2 Baselines

As existing sophisticated prompting methods require few-shot examples in-context,

which is not feasible when long document is involved, we compare PEARL with simple

zero-shot baselines (GPT-4 [130] and GPT-3.5 [132]), where we directly prompt the model

to provide a detailed free-form answer. Additionally, we also evaluate zero-shot CoT

prompting for GPT-4 by adding “Let’s think step-by-step,” to the prompt.

9We present the prompt template in Appendix C.6

10After one round, the actions reduced to ∼140, and after four rounds to ∼20. We provide ablations on the
number of actions in Section 4.5.

63

Short Long Longer
Required context

50

55

60

65

70

75

80

M
ap

pe
d

A
ns

w
er

 A
cc

ur
ac

y

GPT-4 zero-shot
GPT-4 PEARL

Figure 4.5: Accuracy by the amount of required context to answer, as annotated by humans
in QuALITY. The short, long, and longer splits correspond to average annotation scores on
the amount of required context [1, 3), [3, 3.5), and [3.5, 4), respectively.

1 20 80 140
Number of Actions

64

66

68

70

A
cc

ur
ac

y

QuALITY Long

Figure 4.6: PEARL accuracy given in-context action sets of various sizes. Having too few or
too many actions impairs the performance.

64

4.5 Main results

We discover that PEARL significantly outperforms competing prompting methods on

questions that require reasoning over long contexts, which demonstrates the utility of the

planning module. We also observe a small drop in accuracy on questions that require

only short contexts, possibly because the plans end up over-complicating what is a simple

reasoning process. In this section, we dig deeper into the main results of our experiments,

which are presented in Table 4.2.

PEARL improves accuracy on long-document QA: Overall, PEARL’s accuracy is

higher than that of all competing methods, particularly for the QuALITY split annotated by

humans as requiring long contexts to answer (Long). Furthermore, we observe in Figure 4.5

that for questions marked by QuALITY workers as requiring the longest possible context,

PEARL improves substantially compared to the zero-shot GPT-4 baseline (72.4% vs 61.9%).

Our method’s slightly diminished performance on the short split is likely due to both

“overthinking” these simpler questions, as well as error propagation from plan execution

steps as highlighted in Section 4.6. Finally, we point out that all methods achieve higher

accuracies on the Short split compared to the Long split, indicating the challenging nature

of this set of questions.

Number of actions impacts performance: In Figure 4.6, we show that the size of the

action set is an important factor in PEARL’s performance. With just a single action (i.e.,

EXECUTE a free-form natural language instruction),11 PEARL’s accuracy on the Long subset

drops to 64%. With too many actions (140 in the plot), its accuracy also degrades, likely

because the action space is too fine-grained for the model to properly execute all actions. We

note that the optimal number of actions likely differs from task to task, so it is an important

hyperparameter to consider when tuning PEARL.

11We additionally preserve the CONCAT action in this setting due to its necessity when aggregating
execution results.

65

Count GPT-4
PEARL

GPT-4
zero-shot

Why/reason 316 0.79∗ 0.71∗

Person 216 0.75∗ 0.66∗

Event 199 0.69 0.68
Not/except 118 0.70∗ 0.53∗

Table 4.3: Accuracy by reasoning types. ∗ denotes statistically significant improvement with
p-val < 0.005. We provide other reasoning types in Appendix C.2.

Action execution is necessary: Do we actually need to execute the generated plans to

answer these questions? Feeding just the generated plan to the model along with the question

(minus any execution results) may still encourage the LLM to follow the plan’s reasoning

steps and generate a better answer. However, we observe that removing the execution results

from the model’s input reduces absolute accuracy by around 3 points, which suggests that it

is important to perform multiple passes over the document to execute each action before

answering the original question. With that said, we do observe a modest improvement over

the GPT-4 zero-shot and CoT baselines (∼ 2 absolute points), which suggests that the plan

itself is also valuable.

Self-refinement improves performance: To reduce human input, the majority of the

plan generation demonstrations are generated by the LLM with self-refinement. We observe

that self-refinement is critical to performance: without it, the overall accuracy drops nearly

3 absolute points (ablations in Table 4.2), which highlights the importance of high-quality

few-shot examples for plan generation.

4.6 Analysis

In this section, we analyze the behavior of PEARL by diving into the composition of its

generated plans, its most preferred actions, and what types of questions it improves most on.

We also offer a qualitative error analysis as well as a human evaluation on the correctness of

the generated plans.

66

Plan statistics: Plans are roughly 4 actions long on average, with around 3.4 unique

actions per plan. The most commonly used actions are shown in Figure C.2 in Appendix C.2.

Apart from the string concatenation action CONCAT, the most frequently used action is

FIND_CHARACTER, which can be convenient for understanding long literary text. Other

less often used actions cover both those that can transfer across domains, e.g., COMPARE,

and those specific to narrative understanding, e.g., FIND_EMOTION.

Accuracy by reasoning types: Since QuALITY questions require different reasoning

strategies to solve, what types of reasoning does PEARL help improve the most? To this

end, we further evaluate questions based on the type of reasoning required to answer them.12

Table C.2 shows that PEARL significantly improves three reasoning types: why questions

(reasoning about a cause), person questions (reasoning about the person(s) involved in an

event), and not/except questions (e.g., “which of the following is not a reason for...”).

PEARL is significantly slower than zero-shot prompting: The improved performance

of PEARL comes at the cost of longer running time and cost: PEARL requires 4.4 times

more tokens in the prompt, and it needs to generate 1.3 times more tokens owing to the

intermediate steps.13

Specific examples where PEARL helps: To better understand PEARL, we qualitatively

analyze 40 examples for which zero-shot GPT-4 generates incorrect answers while PEARL

answers correctly. This analysis reveals two key advantages of PEARL. First, while zero-shot

prompting is reasonably good at finding salient information from the input document, its

generative answers tend to be based only on local context around this information. For

instance, when asked about the number of wives the character “Dan Merrol” has, the baseline

successfully identifies six names that appear to be Dan’s wives. However, PEARL takes into

account the revelation that these names “ were actually memories from the brain donors

12We prompt GPT-4 with the definition of each reasoning type presented in the Appendix [134] and ask it to
label each question with up to two reasoning types.

13These multiples were estimated from a small run of 30 examples.

67

whose parts were used to reconstruct his brain” and thus correctly reasons that Dan only has

one wife. Second, PEARL generates more detailed and thorough answers. For instance, given

the question “Why is Kumaon a good region for potential forest preservation?”, the zero-

shot answer considers only one aspect of the reason, whereas PEARL elaborates on multiple

aspects, allowing PEARL’s answer to be mapped to the correct option (“ All other choices”),

while the zero-shot answer maps to the option that describes the single aspect.

Where does PEARL go wrong? We additionally examine 40 examples for which

PEARL answers incorrectly, and group the errors into three categories (detailed examples in

Appendix C.2 Table C.3):

• True negatives: Questions for which PEARL’s generative answer is mapped to the wrong

option. This category can be further divided into two subcategories: (1) cases where the

plan has critical issues, and (2) cases where the plan is satisfactory but the intermediate

execution produces incorrect output. Out of the 40 examples, 29 are true negatives, with 7

plan errors and 22 execution errors.

• False negatives: Questions for which PEARL’s generative answers are correct but incor-

rectly mapped to the wrong option. This kind of error is unavoidable as we use LLM for

automatic answer mapping. Out of the 40 examples, 5 are false negatives.

• Other: Some QuALITY questions are heavily dependent on the options; that is, the

correct answer can only be determined after examining all the options. For instance,

Table C.3 presents a question asking who would enjoy the story the most of the given

options. Although PEARL offers an answer based on the story’s genre—which is not

incorrect—it is not as accurate as the gold label. Furthermore, there are instances where

the model’s free-form answers lack sufficient details and can thus be mapped to more than

one option or no options at all. We classify these responses as a separate category. Out of

40 examples, 6 fall into this Other category.

68

Human evaluation of model-generated plans: The quality of plans generated by PEARL

is critical, as they serve as the basis for the plan execution stage. To gain further insight on

the quality of these plans, we perform a human evaluation by hiring annotators on Upwork14

to provide feedback on the generated plans.15 Concretely, we ask annotators to assess (1) the

correctness of the plans (binary choice), assuming error-free execution at each step, and (2)

provide free-form feedback on any flaws or potential improvements. On average, annotators

regard over 97% of all plans as correct, with over 94% confidence, although these numbers

are inflated because the annotators do not have access to the long story when making these

judgments. More interestingly, after aggregating their feedback over common themes (more

details in Table C.1 Appendix C.2), we find that the primary issue with existing plans is the

presence of unnecessary steps (10% of the total annotated plans). Annotators also notice

that GPT-4 can be inattentive to subtle details while generating plans. For example, given

the question “Do you think it would be fun to live in the universe in which this story takes

place?”, the model decides to “ evaluate the pros and cons of living in the universe based

on the features found in the input article”. However, human annotator argues that “just

because something is positive doesn’t necessarily mean it is “fun”. Any pros on the list

might outweigh the dangers noted, resulting in an incorrect answer of ’yes’...".

4.7 Conclusion

In this work, we introduce PEARL, a framework for tackling complex reasoning over

long documents. To answer a question, PEARL first proposes a plan based on a set of actions

mined from a training set, and then it executes the plan step by step via prompting itself

with a template filled with output from previous stages. We demonstrate the effectiveness

of PEARL on a challenging subset of QuALITY. Experiments and analysis show that

14We pay the annotators at the rate of $25/h.

15We provide a few examples in Appendix C.7.

69

prompting GPT-4 with PEARL yields more accurate and comprehensive answers than zero-

shot and chain-of-thought prompting, and human annotators judge the generated plans to be

reasonable.

Limitations

While PEARL shows promising results for long document reasoning, there are several

limitations to our approach. Like other prompting methods, PEARL is susceptible to gener-

ating misinformation or hallucinations. It is also more time-consuming and computationally

costly than the baseline approach of directly prompting an LLM to answer the question.

Moreover, PEARL may over-complicate simple questions that only need superficial rea-

soning over long-form narratives. Due to our limited budget and the cost of API access

to proprietary LLMs, we did not stress test the framework with extensive variations in the

prompt aside from the ablations mentioned in this chapter. Finally, PEARL is still bounded

by the maximum context window size of the LLMs, and we have not tested it on less

powerful LLMs. Overall, prompting on document-level with continuous dependencies is

still an under-explored area, and we hope our work spur future research in this space (e.g.,

new datasets, modules, stage refinements).

Ethics Statement

PEARL relies heavily on closed-source large language models, which while tuned to align

with human preferences, are still susceptible to generating hallucination and misinformation.

The documentation of these models is opaque, and it is difficult to know to what extent

the copyrighted data is used during pre-training. We use these models for purely research

purposes. We hope our method can shed light on mitigating similar issues when an LLM

needs to process long document. Finally, human annotators are paid hourly, and the

evaluation process was deemed exempt from IRB review.

70

CHAPTER 5

SUFFIXRL: TRAIN LANGUAGE MODELS WITH
SEGMENT-LEVEL SIGNALS

5.1 Introduction

In the previous chapter, we introduced a prompting framework to improve the capability

of large language models in reasoning over long-range context. However, the efficacy of

the prompting-based approach relies heavily on pre-trained language models with robust

instruction-following capabilities. Language model alignment is an evolving area on its own.

To untangle potential complexities and delve deeper into the training process of language

modeling, we shift our focus in this chapter towards a more fundamental aspect – modifying

the training objective. We propose a new training objective for language modeling based off

of the insights we discussed in Chapter 3.

In Chapter 3, we demonstrated that SuffixLM, a segment-level language model, achieves

superior performance on the suffix identification task CHAPTERBREAK compared to many

open-source large language models trained with next-token prediction objective. Unlike

conventional models, SuffixLM operates at a coarser granularity, predicting the represen-

tation of the entire future segment instead of predicting the most likely next token. By

conditioning on the predicted representation of the future segment, we posit that models

can generate continuations that are more coherent and logically connected to the prefix

compared to leveraging only the tokens in the previous context, as in standard autoregressive

language models. However, SuffixLM cannot be used for token-by-token decoding due to its

segment-level training objective. This prompts a new research question: how can we train a

language model with segment-level signals while still capable of generating token-by-token?

71

Recall that SuffixLM is trained with a contrastive loss (Eq. 3.1), where the predicted

representation is rewarded when it is close to the gold representation and penalized when it

is more similar to the negatives. This contrastive loss can be viewed as a generalized version

of Bradley-Terry [17] model, which is commonly used to model pairwise preferences, and

is now widely used for training reward model in the alignment stage of large language

models [132, 33, 100, 45]. Drawing a connection between the SuffixLM training objective

and the reward modeling in recent popular RLHF paradigm, we propose SuffixRL – a

training method that allows model to leverage segment-level signals while still maintaining

the autoregressive decoding capability.

In the proposed SuffixRL training, unlike conventional reward modeling in RLHF

framework, which relies on large amounts of high quality human preference data, SuffixRL

operates in a more self-supervised manner, eliminating the need for any form of human

feedback data. SuffixRL consists of two stages:

• Reward modeling: In this initial stage, we train a reward model using Bradley-Terry

model by contrasting gold continuation sampled from human-written documents and

model generated continuation, given the same prefix.

• Reinforcement learning: After we get a robust reward model, we train the policy

with Proximal Policy Optimization (PPO) [157] against the reward model.

Due to the large memory consumption and resource-demanding nature of PPO training,

we introduce two changes to conventional experimental setup and validate our changes on a

recent large language model evaluation benchmark AlpacaFarm [43]. In our experiments,

we adopt low-rank adaptation [66] to bypass the large memory consumption in the fine-

tuning large language models, and adopt Jensen-Shannon divergence regularizer which we

empirically find to perform better than standard KL regularizer during the RL stage in our

LoRA setting. With a validated setup, we then verify if the model trained with SuffixRL

can lead to more coherent output. We employ an LLM-based evaluation which has been

72

demonstrated to correlate well with human judgements [43, 111]. Our experimental results

indicate that models trained with SuffixRL can indeed yield more coherent continuations

compared to models trained with standard next-token prediction.

5.2 SuffixRL

Reward modeling Consistent with recent works on RLHF, we employ the standard

Bradley-Terry model to train a reward model. Specifically, let x be the prefix, yw be the gold

continuation of the prefix x, and yl be the continuation generated by the model which we

will fine-tune in the second stage. The training objective of the reward model is:

L = − log σ(r(x, yw)− r(x, yl)).

Intuitively, models trained with this objective learn to assign higher score to the winning

(gold) continuation in the presence of a losing (generated) continuation. An underlying

assumption in this stage is that gold continuations are consistently better than model-

generated ones. However, in reality, many recent large language models can generate output

that is fluent, and at first glance, of high quality and indistinguishable from human generated

output. Recent works uncover that, despite the good quality when examined superficially,

these models still lack robustness [69, 41] and are susceptible to incoherence [126] and

hallucination [214]. We posit that a reward model trained on pairs where surface-level

impressions are indistinguishable from each other, should learn to make the preference

judgments based on more nuanced aspects such as coherence and relevance. In section 5.6,

we will verify this hypothesis with fine-tuned LLaMA-1-7B models.

Reinforcement learning In this stage, we optimize the policy (language model to be

fine-tuned) with proximal policy optimization algorithm (PPO). PPO training [157] iterates

between a rollout phase and an optimization phase. (1) Rollout: In rollout, πθ, the policy

being optimized, generates responses to a batch of input instructions. Each response is

73

then assigned a scalar score by the reward model, which we trained in the previous stage.

This score is then used to estimate the advantage1 for optimization in the next phase.

(2) Optimization: The policy is optimized to maximize a surrogate objective using the

advantage estimated during rollout. Then, the newly-optimized policy is used to generate

responses in the next rollout phase. The surrogate objective in the optimization phase has

the form

J (θ) = E[min(r(θ)Âθold , clip(r(θ), 1− ϵ, 1 + ϵ)Âθold)], (5.1)

where r(θ) = πθ(y|x)
πθold (y|x)

denotes the output probability ratio between the current policy πθ

and the policy πold from the previous rollout step, computed on responses y sampled during

the previous rollout. Â denotes the estimated advantage [156], which depends on the reward

value; we refer readers to other materials [156, 203] for understanding advantage estimation.

The clipped output probability ratio stabilizes training by preventing large policy updates,

thus discouraging πθ from deviating too much from πold during optimization.

5.3 Efficient training and regularization for SuffixRL

5.3.1 Low-rank Adaptation

Full-model fine-tuning large language models with PPO is resource demanding due to

the need of loading multiple large models into GPU memory and storing necessary optimizer

states. For instance, full-model fine-tuning 7-billion level LLaMA with PPO requires 8

A100 80GB GPUs [43]. Due to a lack of enough compute resources, we employ parameter-

efficient fine-tuning (PEFT) method for all experiments in this chapter. A common PEFT

method gaining popularity recently is low-rank adaptation [66] (LoRA). In LoRA, an input

hidden state hin ∈ Rd is projected to hout ∈ Rd via a weight matrix W ∈ Rd×d and two

1A positive advantage suggests that when πθ generates token y given a certain prefix, it receives a reward
higher than the average reward expected from generating other tokens in the vocabulary given the same prefix.

74

… Floyd tried to duck out of the booth, but it was too late; he had already been
spotted. Bearing down on him through the Soviet Section exit was Dr. Dimitri
Moisevitch, of the U.S.S.R. Academy of Science. Dimitri was one of Floyd's best

Prefix:

… A hundred million miles beyond Mars, in the cold loneliness where no man
had yet traveled, Deep Space Monitor 79 drifted slowly among the tangled
orbits of the asteroids. For three years it reason, he was the last person he

Gold suffix:
The Russian astronomer was tall, slender, and blond, and his unlined face belied
his fifty-five years - the last ten of which had been spent building up the giant
radio observatory on the far side of the Moon,

Reward
Model

Stage 1: Reward modeling

Stage 2: Reinforcement Learning

Reward
Model

“We're fine,” Floyd replied warmly, but with a slightly distracted air. “We often talk
about the wonderful time you gave us last summer.” He was sorry he could not
sound more sincere”

Model generated suffix:

MACRO-CRATER PROVINCE: Extends S from near center of visible face of moon, E
of Central Crater Province. Densely pocked with impact craters; many large, and …

Policy rollout:

Optimized Policy

Policy

0.42
Reward
Value

Prefix:

RL training data

Training step i
begins

Training step i
ends

Figure 5.1: An illustration of SuffixRL pipeline. In the first stage (reward modeling),
synthetic pairs consisting of gold suffix and model generated suffix are used to train a reward
model. In the second stage, the policy is trained against the reward model derived from
the first stage with proximal policy optimization (PPO). The second stage iterates between
rollout and optimization. During rollout the policy is frozen and generates suffixes which
combined with corresponding prefixes are then passed into the reward model to get reward
signals. During optimization, the policy model is unfrozen and trained on the reward signals
collected during rollout.

75

low-rank decomposition matrices A ∈ Rk×d and B ∈ Rd×k, where k is the rank of the

low-rank matrices (k ≪ d) and α is a scaling hyperparameter:

hout = (W +
α

k
BA)hin (5.2)

During LoRA training, W is kept frozen while the decomposition matrices A and B are

trained.

5.3.2 KL regularization

While the clipped ratio in Equation 5.1 constrains the extent to which πθ can change

from a recent policy πold, πθ can still reach a sub-optimal region by “reward hacking” [133]

after enough rollout-optimization steps. To avoid this, a KL regularization term is added to

penalize πθ when it deviates too far from a reference policy πref during PPO training; the

reference policy is usually set to the output of the first stage of RLHF, i.e., a model that has

gone through supervised fine-tuning.

Formally, let x be an instruction and y be a corresponding response of L tokens sampled

during rollout. While the reward model produces a scalar value r(x,y) ∈ R given the pair

(x,y), the total reward r(x,y) of the response y is a vector of dimensionality RL due to the

KL penalty:

r(x,y) =

[
0 0 . . . r(x,y)

]⊤
− βKL(πθ(y | x), πref(y | x)) (5.3)

Here, KL(·, ·) denotes the KL divergence [95] between πθ and πref at each position (token)

of y, and the scalar reward r is added to the last position of the KL term. The shaped reward

r is then used to estimate the advantage, which is at the core of PPO.

76

As it is memory-consuming to compute the KL divergence over the entire vocabulary

at each timestep,2 prior work approximates the KL term via Monte-Carlo estimation [155].

Does the form of this approximation make an impact when implementing RLHF with LoRA?

In this thesis, we compare the following divergence estimators based on win rate:

• KL divergence: Given the distributions over the vocabulary predicted by both

the current policy πθ and the reference policy πref at token y of the response, the

Kullback-Leibler divergence is defined as KL(πθ(y), πref(y)) =
∑

y∈V πθ(y) log
πθ(y)
πref(y)

.

By minimizing the KL divergence, we effectively add an entropy regularizer that

diversifies the generated tokens while also maintaining high likelihood under the

reference policy. In practice (and in many open-source implementations), the true KL

divergence is approximated as log πθ(y)− log πref(y), which saves memory as only

the probability of the generated token y is stored instead of the entire distribution.

While this estimator is unbiased, it also suffers from high variance [154]; to enforce

non-negativity, the AlpacaFarm implementation clamps the minimum value to zero,

which reduces variance at the cost of biasing the estimator.

• Alternative divergence approximations: Past work [154] proposes two alternative

KL approximations that have lower variance. The first takes the form of squared

error between log πθ(y) and log πref(y), which is biased and approximates a different

f -divergence measure.3 The second one is the Bregman divergence BF(
πref(y)
πθ(y)

, 1)

associated with the convex function F(x) := − log x, which is an unbiased KL

2Computing the true KL requires summing over the entire vocabulary, which is not economical if done for
every token in the sequence.

3f(x) := 1
2 (log x)

2

77

estimator.4 Both alternatives are shown to reduce variance and bias in a toy setting

by [154]; in this section, we verify their effectiveness on real natural language tasks.

• Jensen-Shannon divergence: We also experiment with the Jensen-Shannon di-

vergence, which is the average of the KL divergence for both πref and πθ against the

intermediate distribution πm(y) =
1
2
(πref(y) + πθ(y)). Note that the responses are

sampled from πθ instead of πref. Similar to the AlpacaFarm implementation, the mini-

mum value is clamped to zero for stabilized training. We fully specify the estimator

in Table 5.1.

• No KL regularization: Finally, to evaluate whether KL regularization is necessary

under the LoRA setup, we also discard KL penalty entirely in two of our configurations,

one with dropout [166] and the other without.

5.4 Validation of efficient training and alternative regularization on

AlpacaFarm

5.4.1 Validation setup

To validate the feasibility and correctness of our experimental setup, we conduct evalua-

tion on AlpacaFarm [43]. AlpacaFarm collates existing open-source instruction-following

datasets [197, 9, 27, 51] to form an evaluation dataset of 805 diverse instructions. To evalu-

ate two models against each other on this dataset, we first collect responses generated by

both models for all 805 instructions. Then, a pool of large language models (GPT-4-0314,

GPT-3.5-turbo, text-davinci-003) are prompted to provide preference judg-

ments (i.e., which model’s output is better for a given instruction) by simulating human

4It is an unbiased estimator of KL because

Ey∼πθ
[
πref(y)

πθ(y)
− 1− log

πref(y)

πθ(y)
] = −1 +

∑
y∈V

πθ(y)
πref(y)

πθ(y)
−

∑
y∈V

πθ(y) log
πref(y)

πθ(y)

78

Adaptation
method

Regularization Divergence estimator Win rate

Publicly-released supervised fine-tuning (SFT-10k) checkpoint from [43]
Full model tuning - - 37.0

Publicly-released PPO checkpoint from [43]
Full model tuning Clamped KL max(0, log πθ(y)− log πref(y)) 46.7

Our PPO models trained with LoRA
LoRA Clamped KL max(0, log πθ(y)− log πref(y)) 47.5± 0.2

LoRA KL log πθ(y)− log πref(y) 46.7± 0.02

LoRA Bregman πref(y)
πθ(y)

− 1− log πref(y)
πθ(y)

49.0± 0.1

LoRA Squared error 1
2 (log πθ(y)− log πref(y))

2 47.1± 0.1

LoRA Jensen-Shannon 1
2 max(0, log πθ(y)− log 1

2 (πθ(y) + πref(y)))+ 49.8± 0.3
1
2 max(0, log πref(y)− log 1

2 (πθ(y) + πref(y)))

LoRA No regularization - 48.2± 0.1

LoRA Dropout only (p=0.5) - 48.4± 0.2

Table 5.1: Our experiments demonstrate that (1) LoRA is a competitive parameter adaptation
method to full-model fine-tuning for PPO training in RLHF; and (2) PPO training with
LoRA does not require any additional regularization (KL or otherwise) to succeed. We
evaluate the win rate of each model in the table against text-davinci-003 on the
AlpacaFarm evaluation data. Preference judgments to calculate win rate are simulated by
a pool of automated LLM annotators (e.g., GPT-4). We evaluate the public AlpacaFarm
checkpoints in the top two rows (SFT-10k and PPO); for each of the remaining rows, we
perform three runs of PPO optimization with LoRA and the corresponding regularizer, and
we report the mean and standard error with bootstrap sampling.

79

annotators, which allows us to compute the win rate of one model over the other. The

LLM-based simulated workflows were shown to highly correlate with human raters in

system-level comparison with a Spearman correlation of 0.98 [43]. As in the original

codebase, we compute the win rate of each of our model configurations against OpenAI’s

text-davinci-003.

Baselines AlpacaFarm release checkpoints for the SFT-10K step (stage 1 of RLHF), the

reward model trained on human preference (stage 2), and the PPO-optimized stage 3 check-

point. Their SFT-10K model5 reaches a win rate of 37% against text-davinci-003,

while the PPO-optimized checkpoint6 has a win rate of 47%. We use their released SFT-10K

and PPO-optimized models as full-model tuning baselines.

5.4.2 Results & analysis

We observe several interesting phenomena while varying the regularization estimator

within our LoRA RLHF setup. First and perhaps most notably, completely removing the

KL regularization penalty does not affect win rate (it actually increases from 47.5% to

48.2% given same amount of compute). Of the alternative estimators, the Jensen-Shannon

divergence yields the highest overall win rate (49.8%). We also compare the quality of the

estimator against the true KL divergence computed over the full distributions and discover

that win rate is not necessarily correlated with low KL divergence.

KL regularization is not critical when using LoRA. While previous work [132, 169]

include the KL regularization penalty during PPO training, it is not necessary to achieve a

high win rate within our LoRA-based experimental setup. In fact, as shown in Table 5.1, a

LoRA configuration without any KL regularization outperforms the released AlpacaFarm

PPO checkpoint (48.2 vs 46.7). We conjecture that LoRA provides implicit regularization

by freezing most of the parameters (e.g., feed-forward layers, layernorm, and embeddings),

5https://huggingface.co/tatsu-lab/alpaca-farm-sft10k-wdiff

6https://huggingface.co/tatsu-lab/alpaca-farm-ppo-human-wdiff

80

https://huggingface.co/tatsu-lab/alpaca-farm-sft10k-wdiff
https://huggingface.co/tatsu-lab/alpaca-farm-ppo-human-wdiff

20 40 60 80 100 120 140 160 180
PPO steps

0.00

0.05

0.10

0.15

0.20

0.25

To
ke

n-
le

ve
l t

ru
e

K
L

di
ve

rg
en

ce

KL divergence

KL
No regularization
Dropout only
Jensen-Shannon
Bregman
Squared Error
AlpacaFarm PPO

20 40 60 80 100 120 140 160 180
PPO steps

80

100

120

140

160

180

Av
g.

 re
sp

on
se

 le
ng

th

Average response length

KL
No regularization
Dropout only
Jensen-Shannon
Bregman
Squared Error
AlpacaFarm PPO

Figure 5.2: (Left): Regardless of the estimator, the true KL divergence (measured on 28K
tokens sampled from AlpacaFarm) steadily increases as training proceeds. The standard
KL estimator is predictably the most effective regularizer in terms of reducing true KL
divergence. (Right): Response length increases until about 100 PPO steps, after which it
plateaus or drops for most configurations.

which already discourages large deviations from the reference policy in parameter space.

Previous work on other parameter-efficient fine-tuning methods [65] such as prompt tun-

ing [102, 188] and prefix tuning [107] also demonstrate less overfitting in low-data regimes,

which corroborates our hypothesis. One major caveat in our experiments is that properly

verifying the regularization effect of LoRA requires a comparison to full-model fine-tuning

without the KL penalty, for which we do not have adequate resources.

Other divergence estimators outperform the standard KL estimator. Table 5.1

shows that the KL estimator used in open-source RLHF implementations such as TRLX

underperforms alternative estimators. KL estimator does benefit from clamping (46.7 vs.

47.5 when clamped), but it is still worse than Jensen-Shannon regularizer (46.7 vs. 49.8) at

step 100. The Jensen-Shannon estimator consistently outperforms all other estimators after

step 60 in our experiments, and thus appears to be a promising alternative for future RLHF

work. This finding aligns with previous work [52], who also show that the Jensen-Shannon

divergence outperforms other divergence measures when fine-tuning language models to

approximate energy-based models.

81

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Token-level true KL divergence

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

W
in

 ra
te

Win rate

KL
No regularization
Dropout only
Jensen-Shannon
Bregman
Squared Error
Negative KL

0.1 0.2 0.3 0.4 0.5 0.6 0.7

KL(, ref)

0.6

0.8

1.0

1.2

1.4

R
ew

ar
d

KL(, ref) vs. Reward

KL
No regularization
Dropout only
Jensen-Shannon
Bregman
Squared Error
Negative KL

Figure 5.3: (Left): We plot the win rate vs. token-level true KL divergence for the check-
points from steps 20, 40, 60, 80, 100, 140, and 180 of multiple configurations and multiple
runs. In general win rates sharply increases and then more gradually decreases as the true KL
divergence increases. (Right): The linear relationship between

√
KL(πθ, πref) and reward,

observed in prior work, also holds in our LoRA implementation within a certain regime.

We observe high win rates even when the KL divergence is moderately large. RLHF

uses Monte-Carlo estimates of the KL divergence, and it is unclear how good these estimates

are of the actual KL divergence (i.e., when computed over the entire distribution). To

understand the effectiveness of minimizing the true KL, we sample 28K tokens from the

AlpacaFarm evaluation data and plot the KL divergence in Figure 5.2 (left). Regardless of

the estimator used, the KL divergence increases as the training proceeds. The choice of

regularizer impacts the speed in which KL grows: KL divergence increases faster without

any regularization (“No regularization”) or when using the Bregman divergence,7 it grows

slower when regularized by the standard KL and the squared error estimators. While

removing KL penalty entirely leads to larger KL (e.g., 6 times that of the standard KL

estimator at step 180), the resulting model still reaches win rates of 47% ∼ 49%, which are

higher than that of the released AlpacaFarm PPO checkpoint. That said, the best win rates

7In the Bregman divergence penalty, πref(y)
πθ(y)

is minimized, which encourages πθ(y) to be large when πref(y)
is small despite the entropy bonus.

82

are achieved when the KL divergence from the reference policy is neither small nor large

(on our evaluation set, around 0.05 to 0.12 per token).

A linear relationship between
√

KL(πθ, πref) and reward exists in our LoRA setup.

Previous work [9, 50] demonstrates an approximately linear relationship between
√

KL(πθ, πref)

and reward, which suggests that πθ stays within a small region relative to πref (i.e., πref+δπref)

during PPO training. In Figure 5.3 (right), we confirm that this linear relationship also holds

in our LoRA setup. To go beyond the δπref region, we also experiment with a configuration

that maximizes KL during training. We find that this “negative KL” estimator leads to a

region where the linear relationship breaks (
√

KL(πθ, πref) > 0.4 in our experiments). In

this region, reward either plateaus or starts decreasing instead of linearly increasing. This

suggests that the ratio between
√

KL(πθ, πref) and the reward can be a useful metric to

monitor for over-optimization during training.

We observe positive correlations between rewards, win rates, response length, and KL

in certain regimes. In addition to rewards, we find that win rates and response length

also positively correlate with KL within a certain regime (step < 100 and KL < 0.12 in

our experiments). Going beyond this region, the average response length does not change

much as KL divergence keeps increasing (Figure 5.2, right), whereas win rates start to

drop significantly (Figure 5.3, left). This has practical implications on PPO training – early

stopping leads to better performance while also saving compute.

PPO training has a larger negative impact on factuality with full model fine-tuning than

with LoRA. To quantify the effects of PPO training on the factuality of LLM-generated

text, we evaluate several checkpoints using the FActScore metric [121]. FActScore evaluates

the factual precision of a language model by breaking a long-form response into a collection

of atomic facts and then computing the precision of these atomic facts.8 Table 5.2 shows

that the SFT10k model (without any PPO training) obtains a higher FActScore than any

8We use the ChatGPT+retrieval configuration of FActScore. The prompt for all of our experiments is “Tell
me a bio of X”, and we perform all evaluations on the labeled split of 183 people entities released by [121].

83

Configuration FActScore (↑) # facts per response # tokens per response

Publicly-released AlpacaFarm checkpoints from [43]

AlpacaFarm SFT10k 39.7% 19.3 121.1
AlpacaFarm PPO 34.5% 37.1 247.9

Our PPO models trained with LoRA

LoRA PPO w/ KL 39.4% 26.7 170.8
LoRA PPO w/ Jensen-Shannon 38.2% 30.7 199.1
LoRA PPO w/o regularization 38.4% 33.9 217.5

Table 5.2: Evaluation on the FActScore labeled split [121], which requires each model
to generate a biography of 183 people entities. Models fine-tuned with the PPO training
objective consistently underperform the SFT10k checkpoint in terms of factual precision.
Implementing PPO training with LoRA somewhat mitigates the negative impact on factuality
of model-generated text.

checkpoint trained with PPO. Meanwhile, the released AlpacaFarm PPO checkpoint with

full-model fine-tuning achieves the lowest FActScore (34.5%), with all of our LoRA-based

implementations outperforming it (39.4% for the most comparable configuration). This

result suggests that while PPO training can effectively steer the output to those preferred

by humans for stylistic reasons (e.g., by increasing response length), it also may hurt the

factuality of the generated text, and perhaps LoRA’s regularization properties mitigates this

effect to some extent.

5.4.3 Discussion

In this section, we conduct an empirical analysis of the last stage of RLHF (PPO training)

when implemented with low-rank adaptation, a parameter-efficient fine-tuning method. Our

LoRA-based implementation reduces the required hardware from eight to two A100 GPUs.

Besides reduced memory consumption, we also observe that LoRA provides an implicit

regularization effect during PPO training – good performance can be achieved even when

the KL regularization term in the PPO objective is removed. Additionally, we find that

alternative regularizers to the standard KL divergence estimator (e.g., Jensen-Shannon

divergence) lead to higher win rates. Overall, results demonstrated in this section validate

84

the correctness of our experimental setup and provide solid base for further application of

SuffixRL on the LLaMA-1 models.

5.5 SuffixRL experimental setup

Data We leverage the PG-19 [145] dataset to fine-tune LLaMA-1-7B [182] with SuffixRL.

Specifically, we randomly sample 10000 books that have at least 30K tokens from PG-19

training set. Among these sampled books, we further randomly sample 8K (prefix, suffix)

pairs to train the reward model, and 10K prefixes for the reinforcement learning stage. When

preprocessing the training data for reward modeling, we exclude examples that contain the

word “gutenberg” in any of the prefix, gold suffix, and model generated suffix. Following

the setup in AlpacaFarm, we use nucleus sampling [63] with the hyperparameter p = 0.9

to produce model generated suffixes. We also control the gold and model generated suffix

to have the same length by truncating from right. These two filters prove to be helpful in

our preliminary experiments. Without these filters, the policy can quickly learn to hack the

reward model by generating output that overfits to dataset biases.

Models & Evaluation For the reward model, we initialize with LLaMA-1-7B and set

LoRA rank to 8 and LoRA α to 64. Training on the filtered examples described above for one

epoch with batch size 32 and learning rate 5e− 6 takes around 21 minutes on a single A100

80GB GPU. On a validation set of reward modeling, the final reward model achieves ∼ 0.62

accuracy9 at differentiating gold and model generated continuation. For the reinforcement

learning stage, we evaluate two policy models: LLaMA-1-7B and AlpacaSFT10K, the latter

being the LLaMA-1-7B model fine-tuned on 10K instruction following examples from the

Alpaca dataset [178], which we used in the previous section. For both models, we run PPO

for 100 steps with rollout batch size 256, optimization batch size 128, LoRA rank 8 and α

9While this is not a sufficiently good accuracy, our results show that a weak reward supervisor like this can
still result in significant gains in policy, echoing the recent finding of weak-to-strong generalization [21], i.e.,
strong capabilities can be elicited with weak supervision (reward) signals.

85

Model setting slen=16 slen=32 slen=64 slen=128

LLaMA-1-7B + SFT on PG-19 51.2 52.4 51.6 49.7
LLaMA-1-7B + SuffixRL on PG-19 51.8 52.0 52.6 54.4
AlpacaSFT10K 56.0 58.0 60.8 62.2
AlpacaSFT10K + SuffixRL on PG-19 57.4 59.4 62.8 64.6

Table 5.3: Applying SuffixRL leads to more coherent output compared to SFT on the PG-19
data. The gains are consistent and also improve with the increase of suffix length. Instruction
fine-tuning (AlpacaSFT10k) also yields coherent and natural continuation; however, it does
not saturate the performance, and can be further improved by applying SuffixRL.

64, dropout 0.1, and learning rate 1e − 5, KL coefficient β equals to 0.02. Running 100

PPO steps on two 80GB A100 GPUs takes around 40 hours when the per step batch size

during rollout equals to 8. Training time can be significantly reduced when setting a larger

rollout step batch size. To evaluate the output quality, we adopt an LLM-based evaluation

which have been shown to correlate with human judgements [225, 43]. We evaluate on 800

examples sampled from PG-19 without overlap with any of the reward modeling and PPO

training data. Concretely, we instruct OpenAI GPT-3.5-turbo-16K to select a “more natural

and coherent continuation given the prefix”.

5.6 Results & Analysis

Data control for rewarding modeling. Before showing the final performance of SuffixRL

on the PG-19 coherence evaluation, we briefly discuss the harmfulness of not carefully

controlling the data quality for reward modeling. Figure 5.4 presents the reward and loss

curves throughout the PPO training stage, when training against two reward models, one

with proper control of reward modeling data, and one without. The reward model trained on

unfiltered data is easily hacked by the policy, as illustrated in the sudden jump in reward

between 0 and 20 steps in Figure 5.4 left. While this model converges faster and achieves

a smaller loss (Figure 5.4 right), the quality of the policy output deteriorates significantly.

Since neither the reward score nor the loss alone can accurately reflect the gains from PPO

86

0 20 40 60 80 100
PPO steps

0.2

0.4

0.6

0.8

1.0
R

ew
ar

d

Reward curve during PPO training

w/ reward data filtering
w/o reward data filtering

0 20 40 60 80 100
PPO steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Lo
ss

Loss curve during PPO training

w/ reward data filtering
w/o reward data filtering

Figure 5.4: The change of reward (Left) and loss (Right) over the course of PPO training.
When the reward model is trained on data without applying any preprocessing filters, the
policy can quickly “hack” the reward model, achieving sudden jump in reward scores and
decline in losses, whereas significantly degenerated output quality.

training stage, more empirical studies are necessary to further explore, strengthen, and

stabilize the RL training stage.

SuffixRL leads to more coherent continuation than supervised fine-tuning. We

evaluate the win rate of all models against LLaMA-1-7B at varying continuation lengths

(slen in Table 5.3) to verify if the gains are consistent and robust. Note that a LLaMA-1-7B

model comparing against itself yields a roughly 50% win rate. After supervised fine-tuning

on PG-19 (Table 5.3, LLaMA-1-7B + SFT on PG-19), there exists a marginal improvement

in win rate against LLaMA-1-7B; however, the improvement only peaks at the length of 32

tokens. Beyond this point, the performance degrades as the continuation becomes longer. In

contrast, applying SuffixRL leads to consistent improvements over LLaMA-1-7B; moreover,

the improvement also increases as the length of generated suffixes extends.

SuffixRL yields additional gains after supervised fine-tuning. Another observation

is that supervised fine-tuning on instruction following data can significantly improve the

coherence. During the instruction fine-tuning stage, the model is trained to generate long

and coherent answers given short instructions. This behavior likely generalizes to less

constrained open-ended generation adopted in our evaluation setup. After applying SuffixRL

87

on this better performant model, we observe additional gains. Moreover, the gains, similar

to what we observed before, also increases with the increase of suffix length. This suggests

that the performance gains achieved through SFT did not reach a saturation point, and that

SuffixRL can lead to further improvements atop the gains obtained through supervised

fine-tuning.

Qualitative comparison of SuffixRL and supervised fine-tuning. While LLM-based

win rate evaluation is simple and efficient, it may not reflect the nuances exhibited in the

long-form generation. As such, we also qualitatively examine the output of these models,

and present a randomly picked example in Table 5.4. The prefix of this example ends with a

question regarding the way the bird maintaining stability while descending a tree. LLaMA-1

without any fine-tuning generates a continuation that does not immediately address the

question; additionally, it provides a description of “climbing up” the tree, which disrupts

the logical connection with the prefix. The two SFT-ed versions (LLaMA-1-7B + SFT and

AlpacaSFT10k) exhibit better logical connection to the prefix, whereas they tend to generate

hallucinations or simply decline to provide a helpful description in the continuation (as

highlighted in red in the table). The two SuffixRL versions not only produce more coherent

continuations (e.g., emphasizing the descending process and coming up with plausible

causes), but also exhibit a better stylistically consistency with the provided prefix.

5.7 Related work

In this chapter, we propose a new training method SuffixRL, inspired by recent works

on aligning large language models (LLMs) to human intents via instruction-following

methods [132]. Instruction-following methods can be broadly categorized into (1) those

that just perform supervised fine-tuning and (2) those that additionally apply reinforcement

learning.

Methods based on upervised fine-tuning. Methods in the first category differ in how

they source instruction-following data for supervised fine-tuning. The instruction-response

88

Prefix ... Surely it is worth one’s while to hie early to the haunts of the birds to hear such a
tumult of song. One spring I made up my mind to make a closer study than ever of
the dainty creeping warbler, wishing to know just how he contrives to scuttle up and
down the boles and branches of the trees with so much ease and grace. He is the only
warbler we have in eastern North America that makes a habit of scaling the tree trunks
and descending them head downward. How does he do this? The muscles of his legs and
pelvis are as elastic as India rubber, so that he can twist and twirl about in a marvelous
way, pointing his head one moment to the east and the next, without losing his hold, in
the opposite direction. He is able to swing himself around almost as if he were hung on a
pivot. But how does he hold himself on his shaggy wall as he hitches head downward?

LLaMA-1-7B The muscles of his legs are like springs, but his feet are too small to grasp the bark. He
has to have a foot-hold, and he finds it in the form of a round projection on a tree trunk,
a few inches in diameter, and about as high as his head. This is a natural protuberance
formed in the wood by the pruning of the outer bark; and the bird takes advantage of it
as a foothold, just as we do in climbing a ladder, we take hold with our hands and feet,
but the tree-climber takes hold with his feet and hands....

LLaMA-1-7B +
SFT

This is the really marvelous part of his performance. He has a kind of sucker-foot on the
sole of each of his hind feet, something like the sucker-foot of the frog, and with this he
can adhere to the trunk as well as a leech. But there is still another method by which
he is able to ascend and descend the tree trunks, and that is by means of his outer toe,
which has a powerful hook on its end. This is the toe, I believe, that is sometimes called
the "hooligan toe."

LLaMA-1-7B +
SuffixRL

His claws are very strong, and the muscles of his legs, back, and breast are flexible. In
some cases he has a second claw on each toe, which helps him to hold on. But the most
important part of the secret is that he is able to grasp the bark with his toes so as to feel
every little bump and hollow, and thus he knows just when to grasp with his feet and
when to let go and spring up. It is a wonderful thing to watch a bird climbing a tree with
his feet, but it is still more wonderful to watch a bird descending a tree with his feet. He
feels his way by means of his toes, ...

AlpacaSFT10k He has two powerful claws on the ends of each foot; and, so adjusted, he can cling to
the smallest twig or the smallest knot in the wood. It is difficult to understand how he
can do this, for his claws are not curved like those of the chickadee, and his toes are not
strong enough to grasp a hold. But he makes himself useful in many ways. He picks
up the leaves and twigs, which fall before the storm, and carries them to the ground. In
short, he is one of the most useful birds in the woods.

AlpacaSFT10k +
SuffixRL

With the claws of his strong feet, which are furnished with sharp, curved nails. He can
easily grasp the bark, and with his toes he can spread himself fairly well, so as to be able
to steady himself. He does not hang by his claws, but by the web between them, which
is so strong that it is almost impossible to tear it away. And so the dainty warbler makes
his way through the branches with the most wonderful ease and grace, never making a
false step, and always keeping his song going. He has the reputation of being a shy bird,
but I have never found this to be the case.

Table 5.4: Randomly sampled example from the PG-19 coherence evaluation set. Spans that
do not contribute to the coherence of the continuation are highlighted in red, while those
contributing to coherence are highlighted in teal.

89

pairs can be generated from existing (close-sourced) models [178, 64, 124, 197], curated by

humans [97, 226], or even curated by LLMs [106]. Open-source models, when fine-tuned

on high quality [226] and diverse data [196], can compete with blackbox LLMs on certain

evaluations.

Methods based on reinforcement learning. RL-based methods [229, 132] align LLMs

via online policy rollout and optimization. In contrast to SFT-based methods, RL incorpo-

rates feedback collected from either humans [169, 132] or AI [10, 101]. These judgments

are distilled into a preference (reward) model for evaluating responses during online pol-

icy rollout with (sparse) rewards [206], and the whole process is more involved than the

single-stage teacher-forced training used in SFT. While most RL-based methods depend

on pairwise preference judgments [43], feedback can take other forms including natural

language [151, 47]. Recently, [12] show that human feedback protocol (e.g., rating or

ranking) has significant impact on the evaluation of aligned LLMs. RL-based methods are

typically regularized by a distributional term (e.g., a KL divergence penalty) to avoid degen-

eration caused by large deviations from a reference model. Previous work [90] shows that

KL-regularized RL can be viewed as Bayesian inference. Minimizing KL divergence is also

related to distribution matching (DM) methods [83], where the target optimal distribution

is available. Recently, [89] introduced KL-regularized RL from the perspective of DM,

and [52] propose a framework that unifies KL-regularized RL, DM, and other f -divergence

minimization methods.

LLM-based evaluation. In this chapter, instead of using human evaluation, which can

be costly and time-consuming to obtain, we adopt LLM-based evaluation. This evaluation

approach involves leveraging large language models fine-tuned with human feedback to

provide judgments for the given text. Recent studies [43, 225, 112] have shown a high

correlation between LLM-based evaluation and human judgments, suggesting that models

tuned with human feedback data can effectively capture human values, and reflect them

in simple evaluation tasks. However, it is important to note that existing LLMs, when not

90

adequately calibrated, may still exhibit biases, including position/ordering bias, length bias,

and self-enhancement bias [225]. Another limitation of LLM-based evaluation arises in its

validation primarily on short sequence tasks. Chapter 3 and recent studies [109, 23] provide

evidence on the limitations of LLMs when evaluating on long sequences. Experiments in

this chapter, however, are restricted to short sequences due to limited compute budget, so

the evaluation falls within the valid range of LLMs’ instruction-following capability.

5.8 Conclusion

In this chapter, inspired by the connection between SuffixLM and recent RLHF frame-

work, we introduce a new fine-tuning paradigm SuffixRL to improve generation quality.

SuffixRL consists of two stages: reward modeling and reinforcement learning. Experiments

on PG-19 shows that models trained with SuffixRL can generate more coherent continuation

compared to models trained with standard supervised fine-tuning. Due to limited compute

resources, we apply low-rank adaptation to train the models of 7B parameters, and constrain

the sequence length to be at most 512. More experiments should be done to verify if the

improvement is consistent when scaling up the model size and context size, and when

employing full-model fine-tuning. Overall, this is an exciting new direction that allows

training of autoregressive language models with segment-level signals.

Limitation

Due to constraints in compute resources, we only report the LoRA-based fine-tuning

results without experimenting with full-model fine-tuning. It remains to be seen if alternative

regularization approach is necessary for achieving better performance with full-model fine-

tuning using the SuffixRL objective. Another limitation pertains to the model and context

size. Despite being more than twenty times larger than models we explored in Chapter 2,

models with 7B parameters fall still on the smaller end of the spectrum, e.g., compared to

models of 70 billion parameters. Additionally, limited GPU memory prevented us from

91

training SuffixRL with longer sequences beyond 512 tokens. Nevertheless, SuffixRL is a

promising new method that enables training token-level language models with segment-level

signals, the prediction of which has been shown to depend more on long-range context

compared to single subword token in Chapter 3. Therefore, scaling the context size for

SuffixRL with more recent sequence parallelism [74] can be an interesting direction to

explore in the future. Finally, in this chapter, we only focus on PPO training objective.

A few recent works propose simplified variants such as DPO [146] and IPO [8]; further

experimental exploration is required to determine if SuffixRL can be applied to these

alternative variants.

Ethics Statement

In this section, we deal with more powerful large language models than previous chapters.

These models not only are of larger sizes but also have undergone alignment processes.

These models, when not properly aligned, can generate harmful content, disinformation,

and information which can be exploited for malicious uses. While this chapter primarily

delves into the algorithmic and experimental aspects of language models, it is crucial to pay

attention to the potential risks and take necessary precautions. In the era of large language

models, the amount of compute as well as the carbon footprint of total experimental setup

can be alarming. While this chapter is experimentally heavy, we would like to emphasize

that the low-rank adaptation method and alternative regularization method both contribute

to more efficient fine-tuning with faster convergence, thereby aiding the reduction of energy

consumption.

92

CHAPTER 6

FUTURE DIRECTIONS

Thus far, we have scrutinized the utilization of long-range context in language models

(Chapter 2), demonstrated the benefits of segment-level language models (Chapter 3),

introduced a new prompting framework for reasoning over long documents(Chapter 4), and

a new method to train token-level language model with segment-level signals (Chapter 5).

In this chapter, we provide three general directions and seven concrete directions that can be

fruitful to explore in the future.

6.1 Follow-up works of SuffixRL

Scaling up context size In Chapter 5, due to memory constraints, we only apply SuffixRL

on short sequences. An immediate future direction of SuffixRL thus involves scaling up the

context size. As shown in Chapter 3, segment-level signals prove to be especially helpful

for tasks that require reasoning over long-range context. Therefore, it is natural to ask if

applying SuffixRL, a training method based on segment-level signals, would bring further

gains on tasks such as CHAPTERBREAK when the context size is increased. Apart from the

substantial compute required, one obstacle for this direction is the inherently sparse signals

that the policy obtains from the reward model. This issue becomes severe as the suffix

becomes longer – a single reward signal for a long suffix segment may not be informative

enough for steering the policy to the desired direction. As such, potential solutions such as

fine-grained reward signals can be especially promising to explore in the future.

Applying SuffixRL to improve factuality Recall that in SuffixRL, the reward model

is trained to favor the gold suffix while dispreferring the model generated output. While

93

large language model nowadays can generate text indistinguishable from human written text,

they are prone to hallucinations [69], and often generate output not grounded in existing

facts [126] or information given in the context. SuffixRL can potentially help alleviate

this issue by allowing models to disprefer its own unfaithful output. Previous research has

shown that model tends to hallucinate more frequently about long-tail knowledge even if it

is present in the pre-training data [79]. Thus, it would be interesting to apply SuffixRL to

data covering the long-tail knowledge, and encourage the model to disprefer its potentially

hallucinated output during PPO training. This experiment is not costly, because unlike the

standard RLHF, SuffixRL does not require the access to expensive, high-quality human

feedback data.

6.2 Better evaluations of long-range language models

Long-form instruction following dataset As discussed briefly in Chapter 3, existing

evaluation of long-range language models are flawed: tests such as passkey and needle

in the hay retrieval only evaluate block-level retrieval from context, while tasks such as

CHAPTERBREAK, which do rely on comprehensive understanding of long context, are too

“short” for some of nowadays large language models. With the development of instruction

fine-tuning, it can be rewarding to develop instruction following datasets tailored for long-

context, long-form generation tasks. An ideal long-form instruction following dataset should

(1) cover diverse domains and task types (i.e., both short context retrieval and full context

comprehension), (2) have sufficient length, and (3) involve more complex instructions than

existing short instruction-following datasets. While it is tempting to distill proprietary

models for constructing such a dataset, it is however safer to cleverly use human-written

data, and perform instruction back-translation [106] considering that the proprietary models

still have upper-limit when dealing with extremely complex instructions.

Human-machine collaborative evaluation of long sequence task Human evaluation

has traditionally been the gold standard for evaluating language generation tasks due to its

94

reliability. However, human evaluation can be costly and may not be reliable enough [80]

with regard to long-form generation. Given recent developments in LLM-based evaluation, it

is intriguing to delve into human-machine collaborative evaluation, or machine-guided eval-

uation of long sequence task for reduced cost. Many open questions remain to be answered,

such as: “What is the optimal approach for dividing the evaluation task between machine

and humans, and how can the results from each component be effectively integrated?”, “How

reliable and consistent is the human-machine collaborative evaluation?” and “How does the

calibration of LLMs and the dynamic interaction between human and machine affect the

validity and fairness of the evaluation?”. Resolving these problems can be instrumental for

building standardized long-context language model evaluation benchmarks [4, 105], where

obtaining large scale high-quality annotation data is currently very expensive and sometimes

unreliable.

6.3 Better training and architectures for long-range foundation models

Including other modalities of context As mentioned in Chapter 1, this thesis mainly

focuses on textual context, which, in its current form, conveys quite limited information.

Including other types of textual context and other modalities of context can potentially

enhance the capability of recent large foundation models. Examples of alternative textual

contexts include spatiotemporal co-ordinates associating with the main event in the docu-

ment, preceding and subsequent activities, language-events taking place in the vicinity [117],

etc. Other modalities such as speech, image, and video content can not only help resolve

ambiguities in unimodal context but also provide more instances for the LMs to associate

and ground concepts. Adding these additional form of contexts requires the model to handle

even larger context window, and is impossible without long-range foundation models. An

immediate challenge in developing such models is properly mixing signals from various

modalities. Recent research has delved into such topic [1], but there is still a long way to

95

go to create a powerful model capable of consuming diverse types of data similar to how

humans do.

Learned position embeddings Recent research on long-range language models usually

adjusts position embeddings, e.g., position interpolation [24] or adjust base frequency [209]

in rotary position embeddings (RoPE), before fine-tuning a short-range language model into

a long-range one. However, as the sequence length increases, the long-term decay effect

in RoPE makes the attention competition between irrelevant nearby tokens and relevant

far-away tokens more severe. A straightforward approach to alleviating this issue is to

adopt a RoPE-based learned position embedding. Alongside recent progress in sequence

parallellism [74], the learned position embeddings can be promising to explore with context

sizes on the order of millions of tokens.

Combining SuffixRL with hierarchical architectures and curriculum learning Suf-

fixLM, as proposed in Chapter 3, uses a hierarchical structure, segmenting long sequences

into smaller chunks and encoding each chunk using an encoder. This hierarchical inductive

bias can be complementary and more conducive to the utilization of segment-level signals,

when scaling the context to hundreds of thousands of tokens. Additionally, another underex-

plored direction in long-range context modeling is curriculum learning, where the model

progressively learns to incorporate longer effective context ranges during training. However,

it remains an open question whether this training approach can ease the fine-tuning from

short to long-range language models.

96

BIBLIOGRAPHY

[1] Aghajanyan, Armen, Huang, Bernie, Ross, Candace, Karpukhin, Vladimir, Xu, Hu,
Goyal, Naman, Okhonko, Dmytro, Joshi, Mandar, Ghosh, Gargi, Lewis, Mike, and
Zettlemoyer, Luke. Cm3: A causal masked multimodal model of the internet, 2022.

[2] Ainslie, Joshua, Ontanon, Santiago, Alberti, Chris, Cvicek, Vaclav, Fisher, Zachary,
Pham, Philip, Ravula, Anirudh, Sanghai, Sumit, Wang, Qifan, and Yang, Li. Etc:
Encoding long and structured inputs in transformers, 2020.

[3] Albrecht, Jason E., and Myers, Jerome L. Role of context in accessing distant
information during reading. Journal of experimental psychology. Learning, memory,
and cognition 21 6 (1995), 1459–68.

[4] An, Chenxin, Gong, Shansan, Zhong, Ming, Zhao, Xingjian, Li, Mukai, Zhang, Jun,
Kong, Lingpeng, and Qiu, Xipeng. L-eval: Instituting standardized evaluation for
long context language models, 2023.

[5] Anil, Cem, Wu, Yuhuai, Andreassen, Anders Johan, Lewkowycz, Aitor, Misra,
Vedant, Ramasesh, Vinay Venkatesh, Slone, Ambrose, Gur-Ari, Guy, Dyer, Ethan,
and Neyshabur, Behnam. Exploring length generalization in large language models.
In Advances in Neural Information Processing Systems (2022), Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, Eds.

97

[6] Anil, Rohan, Dai, Andrew M., Firat, Orhan, Johnson, Melvin, Lepikhin, Dmitry,
Passos, Alexandre, Shakeri, Siamak, Taropa, Emanuel, Bailey, Paige, Chen, Zhifeng,
Chu, Eric, Clark, Jonathan H., Shafey, Laurent El, Huang, Yanping, Meier-Hellstern,
Kathy, Mishra, Gaurav, Moreira, Erica, Omernick, Mark, Robinson, Kevin, Ruder,
Sebastian, Tay, Yi, Xiao, Kefan, Xu, Yuanzhong, Zhang, Yujing, Abrego, Gus-
tavo Hernandez, Ahn, Junwhan, Austin, Jacob, Barham, Paul, Botha, Jan, Bradbury,
James, Brahma, Siddhartha, Brooks, Kevin, Catasta, Michele, Cheng, Yong, Cherry,
Colin, Choquette-Choo, Christopher A., Chowdhery, Aakanksha, Crepy, Clément,
Dave, Shachi, Dehghani, Mostafa, Dev, Sunipa, Devlin, Jacob, Díaz, Mark, Du, Nan,
Dyer, Ethan, Feinberg, Vlad, Feng, Fangxiaoyu, Fienber, Vlad, Freitag, Markus,
Garcia, Xavier, Gehrmann, Sebastian, Gonzalez, Lucas, Gur-Ari, Guy, Hand, Steven,
Hashemi, Hadi, Hou, Le, Howland, Joshua, Hu, Andrea, Hui, Jeffrey, Hurwitz,
Jeremy, Isard, Michael, Ittycheriah, Abe, Jagielski, Matthew, Jia, Wenhao, Kenealy,
Kathleen, Krikun, Maxim, Kudugunta, Sneha, Lan, Chang, Lee, Katherine, Lee,
Benjamin, Li, Eric, Li, Music, Li, Wei, Li, YaGuang, Li, Jian, Lim, Hyeontaek, Lin,
Hanzhao, Liu, Zhongtao, Liu, Frederick, Maggioni, Marcello, Mahendru, Aroma,
Maynez, Joshua, Misra, Vedant, Moussalem, Maysam, Nado, Zachary, Nham, John,
Ni, Eric, Nystrom, Andrew, Parrish, Alicia, Pellat, Marie, Polacek, Martin, Polozov,
Alex, Pope, Reiner, Qiao, Siyuan, Reif, Emily, Richter, Bryan, Riley, Parker, Ros,
Alex Castro, Roy, Aurko, Saeta, Brennan, Samuel, Rajkumar, Shelby, Renee, Slone,
Ambrose, Smilkov, Daniel, So, David R., Sohn, Daniel, Tokumine, Simon, Valter,
Dasha, Vasudevan, Vijay, Vodrahalli, Kiran, Wang, Xuezhi, Wang, Pidong, Wang,
Zirui, Wang, Tao, Wieting, John, Wu, Yuhuai, Xu, Kelvin, Xu, Yunhan, Xue, Linting,
Yin, Pengcheng, Yu, Jiahui, Zhang, Qiao, Zheng, Steven, Zheng, Ce, Zhou, Weikang,
Zhou, Denny, Petrov, Slav, and Wu, Yonghui. Palm 2 technical report, 2023.

[7] Anthropic. Long context prompting for claude 2.1, 2023.

[8] Azar, Mohammad Gheshlaghi, Rowland, Mark, Piot, Bilal, Guo, Daniel, Calandriello,
Daniele, Valko, Michal, and Munos, Rémi. A general theoretical paradigm to
understand learning from human preferences, 2023.

[9] Bai, Yuntao, Jones, Andy, Ndousse, Kamal, Askell, Amanda, Chen, Anna, DasSarma,
Nova, Drain, Dawn, Fort, Stanislav, Ganguli, Deep, Henighan, Tom, Joseph, Nicholas,
Kadavath, Saurav, Kernion, Jackson, Conerly, Tom, El-Showk, Sheer, Elhage, Nelson,
Hatfield-Dodds, Zac, Hernandez, Danny, Hume, Tristan, Johnston, Scott, Kravec,
Shauna, Lovitt, Liane, Nanda, Neel, Olsson, Catherine, Amodei, Dario, Brown, Tom,
Clark, Jack, McCandlish, Sam, Olah, Chris, Mann, Ben, and Kaplan, Jared. Training
a helpful and harmless assistant with reinforcement learning from human feedback,
2022.

98

[10] Bai, Yuntao, Kadavath, Saurav, Kundu, Sandipan, Askell, Amanda, Kernion, Jackson,
Jones, Andy, Chen, Anna, Goldie, Anna, Mirhoseini, Azalia, McKinnon, Cameron,
Chen, Carol, Olsson, Catherine, Olah, Christopher, Hernandez, Danny, Drain, Dawn,
Ganguli, Deep, Li, Dustin, Tran-Johnson, Eli, Perez, Ethan, Kerr, Jamie, Mueller,
Jared, Ladish, Jeffrey, Landau, Joshua, Ndousse, Kamal, Lukosuite, Kamile, Lovitt,
Liane, Sellitto, Michael, Elhage, Nelson, Schiefer, Nicholas, Mercado, Noemi, Das-
Sarma, Nova, Lasenby, Robert, Larson, Robin, Ringer, Sam, Johnston, Scott, Kravec,
Shauna, Showk, Sheer El, Fort, Stanislav, Lanham, Tamera, Telleen-Lawton, Timothy,
Conerly, Tom, Henighan, Tom, Hume, Tristan, Bowman, Samuel R., Hatfield-Dodds,
Zac, Mann, Ben, Amodei, Dario, Joseph, Nicholas, McCandlish, Sam, Brown, Tom,
and Kaplan, Jared. Constitutional ai: Harmlessness from ai feedback, 2022.

[11] Bai, Yushi, Lv, Xin, Zhang, Jiajie, Lyu, Hongchang, Tang, Jiankai, Huang, Zhidian,
Du, Zhengxiao, Liu, Xiao, Zeng, Aohan, Hou, Lei, Dong, Yuxiao, Tang, Jie, and Li,
Juanzi. Longbench: A bilingual, multitask benchmark for long context understanding,
2023.

[12] Bansal, Hritik, Dang, John, and Grover, Aditya. Peering through preferences: Unrav-
eling feedback acquisition for aligning large language models, 2023.

[13] Beltagy, Iz, Peters, Matthew E., and Cohan, Arman. Longformer: The long-document
transformer, 2020.

[14] Bender, Emily M., and Koller, Alexander. Climbing towards NLU: On meaning, form,
and understanding in the age of data. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (Online, July 2020), Association for
Computational Linguistics, pp. 5185–5198.

[15] Bengio, Yoshua, Ducharme, R., Vincent, Pascal, and Janvin, Christian. A neural
probabilistic language model. J. Mach. Learn. Res. 3 (2003), 1137–1155.

[16] Borgeaud, Sebastian, Mensch, Arthur, Hoffmann, Jordan, Cai, Trevor, Rutherford,
Eliza, Millican, Katie, Driessche, George van den, Lespiau, Jean-Baptiste, Damoc,
Bogdan, Clark, Aidan, et al. Improving language models by retrieving from trillions
of tokens. arXiv preprint arXiv:2112.04426 (2021).

[17] Bradley, Ralph Allan, and Terry, Milton E. Rank analysis of incomplete block designs:
I. the method of paired comparisons. Biometrika 39, 3/4 (1952), 324–345.

[18] Brown, Peter F., Della Pietra, Vincent J., deSouza, Peter V., Lai, Jenifer C., and
Mercer, Robert L. Class-based n-gram models of natural language. Computational
Linguistics 18, 4 (1992), 467–480.

99

[19] Brown, Tom, Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan, Jared D,
Dhariwal, Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish, Askell,
Amanda, Agarwal, Sandhini, Herbert-Voss, Ariel, Krueger, Gretchen, Henighan, Tom,
Child, Rewon, Ramesh, Aditya, Ziegler, Daniel, Wu, Jeffrey, Winter, Clemens, Hesse,
Chris, Chen, Mark, Sigler, Eric, Litwin, Mateusz, Gray, Scott, Chess, Benjamin,
Clark, Jack, Berner, Christopher, McCandlish, Sam, Radford, Alec, Sutskever, Ilya,
and Amodei, Dario. Language models are few-shot learners. In Advances in Neural
Information Processing Systems (2020), H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., pp. 1877–1901.

[20] Brown, Tom B, Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan,
Jared, Dhariwal, Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish,
Askell, Amanda, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[21] Burns, Collin, Izmailov, Pavel, Kirchner, Jan Hendrik, Baker, Bowen, Gao, Leo,
Aschenbrenner, Leopold, Chen, Yining, Ecoffet, Adrien, Joglekar, Manas, Leike,
Jan, Sutskever, Ilya, and Wu, Jeff. Weak-to-strong generalization: Eliciting strong
capabilities with weak supervision, 2023.

[22] Caciularu, Avi, Dagan, Ido, Goldberger, Jacob, and Cohan, Arman. Long context
question answering via supervised contrastive learning. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Seattle, United States, July 2022),
Association for Computational Linguistics, pp. 2872–2879.

[23] Chang, Yapei, Lo, Kyle, Goyal, Tanya, and Iyyer, Mohit. Booookscore: A systematic
exploration of book-length summarization in the era of llms, 2023.

[24] Chen, Shouyuan, Wong, Sherman, Chen, Liangjian, and Tian, Yuandong. Extending
context window of large language models via positional interpolation, 2023.

[25] Chen, Tianqi, Xu, Bing, Zhang, Chiyuan, and Guestrin, Carlos. Training deep nets
with sublinear memory cost, 2016.

[26] Chen, Wenhu, Ma, Xueguang, Wang, Xinyi, and Cohen, William W. Program
of thoughts prompting: Disentangling computation from reasoning for numerical
reasoning tasks. arXiv preprint arXiv:2211.12588 (2022).

[27] Chiang, Wei-Lin, Li, Zhuohan, Lin, Zi, Sheng, Ying, Wu, Zhanghao, Zhang, Hao,
Zheng, Lianmin, Zhuang, Siyuan, Zhuang, Yonghao, Gonzalez, Joseph E., Stoica,
Ion, and Xing, Eric P. Vicuna: An open-source chatbot impressing gpt-4 with 90%*
chatgpt quality, March 2023.

[28] Child, Rewon, Gray, Scott, Radford, Alec, and Sutskever, Ilya. Generating long
sequences with sparse transformers, 2019.

100

[29] Choromanski, Krzysztof Marcin, Likhosherstov, Valerii, Dohan, David, Song,
Xingyou, Gane, Andreea, Sarlos, Tamas, Hawkins, Peter, Davis, Jared Quincy,
Mohiuddin, Afroz, Kaiser, Lukasz, Belanger, David Benjamin, Colwell, Lucy J, and
Weller, Adrian. Rethinking attention with performers. In International Conference
on Learning Representations (2021).

[30] Chung, Hyung Won, Hou, Le, Longpre, Shayne, Zoph, Barret, Tay, Yi, Fedus,
William, Li, Yunxuan, Wang, Xuezhi, Dehghani, Mostafa, Brahma, Siddhartha,
Webson, Albert, Gu, Shixiang Shane, Dai, Zhuyun, Suzgun, Mirac, Chen, Xinyun,
Chowdhery, Aakanksha, Castro-Ros, Alex, Pellat, Marie, Robinson, Kevin, Valter,
Dasha, Narang, Sharan, Mishra, Gaurav, Yu, Adams, Zhao, Vincent, Huang, Yanping,
Dai, Andrew, Yu, Hongkun, Petrov, Slav, Chi, Ed H., Dean, Jeff, Devlin, Jacob,
Roberts, Adam, Zhou, Denny, Le, Quoc V., and Wei, Jason. Scaling instruction-
finetuned language models, 2022.

[31] Cobbe, Karl, Kosaraju, Vineet, Bavarian, Mohammad, Chen, Mark, Jun, Heewoo,
Kaiser, Lukasz, Plappert, Matthias, Tworek, Jerry, Hilton, Jacob, Nakano, Reiichiro,
Hesse, Christopher, and Schulman, John. Training verifiers to solve math word
problems, 2021.

[32] Correia, Gonçalo M., Niculae, Vlad, and Martins, André F. T. Adaptively sparse trans-
formers. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP) (Hong Kong, China, Nov. 2019), Association
for Computational Linguistics, pp. 2174–2184.

[33] Coste, Thomas, Anwar, Usman, Kirk, Robert, and Krueger, David. Reward model
ensembles help mitigate overoptimization, 2023.

[34] Dai, Zihang, Yang, Zhilin, Yang, Yiming, Carbonell, Jaime, Le, Quoc, and Salakhut-
dinov, Ruslan. Transformer-XL: Attentive language models beyond a fixed-length
context. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics (Florence, Italy, July 2019), Association for Computational
Linguistics, pp. 2978–2988.

[35] Dao, Tri, Fu, Daniel Y., Ermon, Stefano, Rudra, Atri, and Ré, Christopher. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness, 2022.

[36] Dasigi, Pradeep, Lo, Kyle, Beltagy, Iz, Cohan, Arman, Smith, Noah A., and Gardner,
Matt. A dataset of information-seeking questions and answers anchored in research
papers. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Online,
June 2021), Association for Computational Linguistics, pp. 4599–4610.

101

[37] Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. BERT:
Pre-training of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers) (Minneapolis, Minnesota, June 2019), Association for Computational
Linguistics, pp. 4171–4186.

[38] Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. Bert:
Pre-training of deep bidirectional transformers for language understanding, 2019.

[39] Dey, Nolan, Soboleva, Daria, Al-Khateeb, Faisal, Yang, Bowen, Pathria, Ribhu,
Khachane, Hemant, Muhammad, Shaheer, Zhiming, Chen, Myers, Robert, Steeves,
Jacob Robert, Vassilieva, Natalia, Tom, Marvin, and Hestness, Joel. Btlm-3b-8k: 7b
parameter performance in a 3b parameter model, 2023.

[40] Dong, Zican, Tang, Tianyi, Li, Junyi, Zhao, Wayne Xin, and Wen, Ji-Rong. Bamboo:
A comprehensive benchmark for evaluating long text modeling capacities of large
language models, 2023.

[41] Du, Mengnan, He, Fengxiang, Zou, Na, Tao, Dacheng, and Hu, Xia. Shortcut learning
of large language models in natural language understanding, 2023.

[42] Dua, Dheeru, Gupta, Shivanshu, Singh, Sameer, and Gardner, Matt. Successive
prompting for decomposing complex questions. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing (Abu Dhabi, United
Arab Emirates, Dec. 2022), Association for Computational Linguistics, pp. 1251–
1265.

[43] Dubois, Yann, Li, Xuechen, Taori, Rohan, Zhang, Tianyi, Gulrajani, Ishaan, Ba,
Jimmy, Guestrin, Carlos, Liang, Percy, and Hashimoto, Tatsunori B. Alpacafarm: A
simulation framework for methods that learn from human feedback, 2023.

[44] Eisenstein, Jacob. Hierarchical text segmentation from multi-scale lexical cohesion. In
Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics (Boulder,
Colorado, June 2009), Association for Computational Linguistics, pp. 353–361.

[45] Eisenstein, Jacob, Nagpal, Chirag, Agarwal, Alekh, Beirami, Ahmad, D’Amour,
Alex, Dvijotham, DJ, Fisch, Adam, Heller, Katherine, Pfohl, Stephen, Ramachandran,
Deepak, Shaw, Peter, and Berant, Jonathan. Helping or herding? reward model
ensembles mitigate but do not eliminate reward hacking, 2023.

[46] Fan, Angela, Jernite, Yacine, Perez, Ethan, Grangier, David, Weston, Jason, and Auli,
Michael. Eli5: Long form question answering, 2019.

[47] Fernandes, Patrick, Madaan, Aman, Liu, Emmy, Farinhas, António, Martins, Pe-
dro Henrique, Bertsch, Amanda, de Souza, José G. C., Zhou, Shuyan, Wu, Tong-
shuang, Neubig, Graham, and Martins, André F. T. Bridging the gap: A survey on
integrating (human) feedback for natural language generation, 2023.

102

[48] Fielding, Henry. The History of the Adventures of Joseph Andrews.., vol. 1. J. Fr.
Valade, 1779.

[49] flozi00. Ntk-aware scaled rope allows llama models to have extended (8k+) context
size without any fine-tuning and minimal perplexity degradation.

[50] Gao, Leo, Schulman, John, and Hilton, Jacob. Scaling laws for reward model overop-
timization. In Proceedings of the 40th International Conference on Machine Learning
(23–29 Jul 2023), Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett, Eds., vol. 202 of Proceedings of Machine
Learning Research, PMLR, pp. 10835–10866.

[51] Geng, Xinyang, Gudibande, Arnav, Liu, Hao, Wallace, Eric, Abbeel, Pieter, Levine,
Sergey, and Song, Dawn. Koala: A dialogue model for academic research. Blog post,
April 2023.

[52] Go, Dongyoung, Korbak, Tomasz, Kruszewski, Germán, Rozen, Jos, Ryu, Nahyeon,
and Dymetman, Marc. Aligning language models with preferences through f-
divergence minimization. arXiv preprint arXiv:2302.08215 (2023).

[53] Graesser, Arthur C, Singer, Murray, and Trabasso, Tom. Constructing inferences
during narrative text comprehension. Psychological review 101, 3 (1994), 371.

[54] Grimshaw, Jane. Argument structure. the MIT Press, 1990.

[55] Grosz, Barbara J., Joshi, Aravind K., and Weinstein, Scott. Centering: A framework
for modeling the local coherence of discourse. Computational Linguistics 21, 2
(1995), 203–225.

[56] Gu, Albert, and Dao, Tri. Mamba: Linear-time sequence modeling with selective
state spaces, 2023.

[57] Gupta, Ankit, and Berant, Jonathan. Gmat: Global memory augmentation for trans-
formers. arXiv preprint arXiv:2006.03274 (2020).

[58] Haas, W. J.r. firth: Papers in linguistics, 1934–1951. xii, 233 pp., 11 plates. london,
etc.: Oxford university press, 1957. 35s. Bulletin of the School of Oriental and
African Studies 21, 3 (1958), 668–671.

[59] Hawthorne, Curtis, Jaegle, Andrew, Cangea, Cătălina, Borgeaud, Sebastian, Nash,
Charlie, Malinowski, Mateusz, Dieleman, Sander, Vinyals, Oriol, Botvinick, Matthew,
Simon, Ian, et al. General-purpose, long-context autoregressive modeling with
perceiver ar. arXiv preprint arXiv:2202.07765 (2022).

[60] Hobbs, Jerry R. Coherence and coreference. Cognitive science 3, 1 (1979), 67–90.

[61] Hofstätter, Sebastian, Zamani, Hamed, Mitra, Bhaskar, Craswell, Nick, and Hanbury,
Allan. Local self-attention over long text for efficient document retrieval, 2020.

103

[62] Holtzman, Ari, Buys, Jan, Du, Li, Forbes, Maxwell, and Choi, Yejin. The curious case
of neural text degeneration. In International Conference on Learning Representations
(2020).

[63] Holtzman, Ari, Buys, Jan, Du, Li, Forbes, Maxwell, and Choi, Yejin. The curious
case of neural text degeneration, 2020.

[64] Honovich, Or, Scialom, Thomas, Levy, Omer, and Schick, Timo. Unnatural instruc-
tions: Tuning language models with (almost) no human labor, 2022.

[65] Houlsby, Neil, Giurgiu, Andrei, Jastrzebski, Stanislaw, Morrone, Bruna, De Larous-
silhe, Quentin, Gesmundo, Andrea, Attariyan, Mona, and Gelly, Sylvain. Parameter-
efficient transfer learning for nlp. In International Conference on Machine Learning
(2019), PMLR, pp. 2790–2799.

[66] Hu, Edward J., Shen, Yelong, Wallis, Phillip, Allen-Zhu, Zeyuan, Li, Yuanzhi, Wang,
Shean, Wang, Lu, and Chen, Weizhu. Lora: Low-rank adaptation of large language
models, 2021.

[67] Huang, Jiaxin, Gu, Shixiang Shane, Hou, Le, Wu, Yuexin, Wang, Xuezhi, Yu,
Hongkun, and Han, Jiawei. Large language models can self-improve. arXiv preprint
arXiv:2210.11610 (2022).

[68] Huang, Jie, and Chang, Kevin Chen-Chuan. Towards reasoning in large language
models: A survey, 2022.

[69] Huang, Lei, Yu, Weijiang, Ma, Weitao, Zhong, Weihong, Feng, Zhangyin, Wang,
Haotian, Chen, Qianglong, Peng, Weihua, Feng, Xiaocheng, Qin, Bing, and Liu,
Ting. A survey on hallucination in large language models: Principles, taxonomy,
challenges, and open questions, 2023.

[70] Huang, Luyang, Cao, Shuyang, Parulian, Nikolaus, Ji, Heng, and Wang, Lu. Efficient
attentions for long document summarization. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Online, June 2021), Association for Computational
Linguistics, pp. 1419–1436.

[71] Hutchins, DeLesley S., Schlag, Imanol, Wu, Yuhuai, Dyer, Ethan, and Neyshabur,
Behnam. Block-recurrent transformers. ArXiv abs/2203.07852 (2022).

[72] Ippolito, Daphne, Grangier, David, Eck, Douglas, and Callison-Burch, Chris. Toward
better storylines with sentence-level language models. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics (Online, July 2020),
Association for Computational Linguistics, pp. 7472–7478.

[73] Ireland, KR. Towards a grammar of narrative sequence: The model of the french
lieutenant’s woman. Poetics today 7, 3 (1986), 397–420.

104

[74] Jacobs, Sam Ade, Tanaka, Masahiro, Zhang, Chengming, Zhang, Minjia, Song,
Shuaiwen Leon, Rajbhandari, Samyam, and He, Yuxiong. Deepspeed ulysses: System
optimizations for enabling training of extreme long sequence transformer models,
2023.

[75] Ji, Yangfeng, Cohn, Trevor, Kong, Lingpeng, Dyer, Chris, and Eisenstein, Jacob.
Document context language models. arXiv preprint arXiv:1511.03962 (2015).

[76] Jiang, Albert Q., Sablayrolles, Alexandre, Mensch, Arthur, Bamford, Chris, Chaplot,
Devendra Singh, de las Casas, Diego, Bressand, Florian, Lengyel, Gianna, Lample,
Guillaume, Saulnier, Lucile, Lavaud, Lélio Renard, Lachaux, Marie-Anne, Stock,
Pierre, Scao, Teven Le, Lavril, Thibaut, Wang, Thomas, Lacroix, Timothée, and
Sayed, William El. Mistral 7b, 2023.

[77] Jiang, Xue, Dong, Yihong, Wang, Lecheng, Fang, Zheng, Shang, Qiwei, Li, Ge, Jin,
Zhi, and Jiao, Wenpin. Self-planning code generation with large language models,
2023.

[78] Kamradt, Greg. Needle in a haystack. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack, 2023.

[79] Kandpal, Nikhil, Deng, Haikang, Roberts, Adam, Wallace, Eric, and Raffel, Colin.
Large language models struggle to learn long-tail knowledge, 2023.

[80] Karpinska, Marzena, Akoury, Nader, and Iyyer, Mohit. The perils of using Me-
chanical Turk to evaluate open-ended text generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing (Online and Punta
Cana, Dominican Republic, Nov. 2021), Association for Computational Linguistics,
pp. 1265–1285.

[81] Karpinska, Marzena, and Iyyer, Mohit. Large language models effectively leverage
document-level context for literary translation, but critical errors persist, 2023.

[82] Katharopoulos, Angelos, Vyas, Apoorv, Pappas, Nikolaos, and Fleuret, Francois.
Transformers are rnns: Fast autoregressive transformers with linear attention. In
Proceedings of the 37th International Conference on Machine Learning (2020).

[83] Khalifa, Muhammad, Elsahar, Hady, and Dymetman, Marc. A distributional approach
to controlled text generation. In International Conference on Learning Representa-
tions (2021).

[84] Khandelwal, Urvashi, He, He, Qi, Peng, and Jurafsky, Dan. Sharp nearby, fuzzy
far away: How neural language models use context. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers) (Melbourne, Australia, July 2018), Association for Computational Linguis-
tics, pp. 284–294.

105

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

[85] Khot, Tushar, Trivedi, Harsh, Finlayson, Matthew, Fu, Yao, Richardson, Kyle, Clark,
Peter, and Sabharwal, Ashish. Decomposed prompting: A modular approach for
solving complex tasks, 2023.

[86] Kim, Geunwoo, Baldi, Pierre, and McAleer, Stephen. Language models can solve
computer tasks. arXiv preprint arXiv:2303.17491 (2023).

[87] Kitaev, Nikita, Kaiser, Lukasz, and Levskaya, Anselm. Reformer: The efficient
transformer. In International Conference on Learning Representations (2020).

[88] Kočiský, Tomáš, Schwarz, Jonathan, Blunsom, Phil, Dyer, Chris, Hermann,
Karl Moritz, Melis, Gábor, and Grefenstette, Edward. The NarrativeQA reading com-
prehension challenge. Transactions of the Association for Computational Linguistics
6 (2018), 317–328.

[89] Korbak, Tomasz, Elsahar, Hady, Kruszewski, Germán, and Dymetman, Marc. On
reinforcement learning and distribution matching for fine-tuning language models
with no catastrophic forgetting. In Advances in Neural Information Processing
Systems (2022), Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, Eds.

[90] Korbak, Tomasz, Perez, Ethan, and Buckley, Christopher. RL with KL penalties is
better viewed as Bayesian inference. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022 (Abu Dhabi, United Arab Emirates, Dec. 2022),
Association for Computational Linguistics, pp. 1083–1091.

[91] Krishna, Kalpesh, Roy, Aurko, and Iyyer, Mohit. Hurdles to progress in long-form
question answering. In North American Association for Computational Linguistics
(2021).

[92] Krishna, Kalpesh, Roy, Aurko, and Iyyer, Mohit. Hurdles to progress in long-
form question answering. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (Online, June 2021), Association for Computational Linguistics,
pp. 4940–4957.

[93] Krishna, Kalpesh, Song, Yixiao, Karpinska, Marzena, Wieting, John Frederick, and
Iyyer, Mohit. Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense. In Thirty-seventh Conference on Neural Information Processing
Systems (2023).

[94] Kryściński, Wojciech, Rajani, Nazneen, Agarwal, Divyansh, Xiong, Caiming, and
Radev, Dragomir. Booksum: A collection of datasets for long-form narrative summa-
rization.

[95] Kullback, Solomon, and Leibler, Richard A. On information and sufficiency. The
annals of mathematical statistics 22, 1 (1951), 79–86.

106

[96] Kwiatkowski, Tom, Palomaki, Jennimaria, Redfield, Olivia, Collins, Michael, Parikh,
Ankur, Alberti, Chris, Epstein, Danielle, Polosukhin, Illia, Devlin, Jacob, Lee, Ken-
ton, Toutanova, Kristina, Jones, Llion, Kelcey, Matthew, Chang, Ming-Wei, Dai,
Andrew M., Uszkoreit, Jakob, Le, Quoc, and Petrov, Slav. Natural questions: A
benchmark for question answering research. Transactions of the Association for
Computational Linguistics 7 (2019), 452–466.

[97] Köpf, Andreas, Kilcher, Yannic, von Rütte, Dimitri, Anagnostidis, Sotiris, Tam,
Zhi-Rui, Stevens, Keith, Barhoum, Abdullah, Duc, Nguyen Minh, Stanley, Oliver,
Nagyfi, Richárd, ES, Shahul, Suri, Sameer, Glushkov, David, Dantuluri, Arnav,
Maguire, Andrew, Schuhmann, Christoph, Nguyen, Huu, and Mattick, Alexander.
Openassistant conversations – democratizing large language model alignment, 2023.

[98] Labov, William, and Waletzky, Joshua. Narrative analysis: Oral versions of personal
experience.

[99] Lai, Yi-An, Lalwani, Garima, and Zhang, Yi. Context analysis for pre-trained
masked language models. In Findings of the Association for Computational Linguis-
tics: EMNLP 2020 (Online, Nov. 2020), Association for Computational Linguistics,
pp. 3789–3804.

[100] Lambert, Nathan, and Calandra, Roberto. The alignment ceiling: Objective mismatch
in reinforcement learning from human feedback, 2023.

[101] Lee, Harrison, Phatale, Samrat, Mansoor, Hassan, Lu, Kellie, Mesnard, Thomas,
Bishop, Colton, Carbune, Victor, and Rastogi, Abhinav. Rlaif: Scaling reinforcement
learning from human feedback with ai feedback, 2023.

[102] Lester, Brian, Al-Rfou, Rami, and Constant, Noah. The power of scale for parameter-
efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021).

[103] Lewis, Mike, Liu, Yinhan, Goyal, Naman, Ghazvininejad, Marjan, Mohamed, Abdel-
rahman, Levy, Omer, Stoyanov, Veselin, and Zettlemoyer, Luke. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (Online, July 2020), Association for Computational
Linguistics, pp. 7871–7880.

[104] Lewis, Patrick, Perez, Ethan, Piktus, Aleksandra, Petroni, Fabio, Karpukhin, Vladimir,
Goyal, Naman, Küttler, Heinrich, Lewis, Mike, Yih, Wen-tau, Rocktäschel, Tim,
Riedel, Sebastian, and Kiela, Douwe. Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Information Processing Systems (2020),
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, Eds., vol. 33, Curran
Associates, Inc., pp. 9459–9474.

[105] Li, Jiaqi, Wang, Mengmeng, Zheng, Zilong, and Zhang, Muhan. Loogle: Can
long-context language models understand long contexts?, 2023.

107

[106] Li, Xian, Yu, Ping, Zhou, Chunting, Schick, Timo, Zettlemoyer, Luke, Levy, Omer,
Weston, Jason, and Lewis, Mike. Self-alignment with instruction backtranslation,
2023.

[107] Li, Xiang Lisa, and Liang, Percy. Prefix-tuning: Optimizing continuous prompts for
generation. arXiv preprint arXiv:2101.00190 (2021).

[108] Li, Yucheng. Unlocking context constraints of llms: Enhancing context efficiency of
llms with self-information-based content filtering, 2023.

[109] Liu, Nelson F., Lin, Kevin, Hewitt, John, Paranjape, Ashwin, Bevilacqua, Michele,
Petroni, Fabio, and Liang, Percy. Lost in the middle: How language models use long
contexts, 2023.

[110] Liu, Siyou, and Zhang, Xiaojun. Corpora for document-level neural machine trans-
lation. In Proceedings of the 12th Language Resources and Evaluation Conference
(Marseille, France, May 2020), European Language Resources Association, pp. 3775–
3781.

[111] Liu, Yang, Iter, Dan, Xu, Yichong, Wang, Shuohang, Xu, Ruochen, and Zhu, Chen-
guang. G-eval: Nlg evaluation using gpt-4 with better human alignment, 2023.

[112] Liu, Yang, Iter, Dan, Xu, Yichong, Wang, Shuohang, Xu, Ruochen, and Zhu, Chen-
guang. G-eval: NLG evaluation using gpt-4 with better human alignment. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing (Singapore, Dec. 2023), Houda Bouamor, Juan Pino, and Kalika Bali,
Eds., Association for Computational Linguistics, pp. 2511–2522.

[113] Liu, Yinhan, Ott, Myle, Goyal, Naman, Du, Jingfei, Joshi, Mandar, Chen, Danqi,
Levy, Omer, Lewis, Mike, Zettlemoyer, Luke, and Stoyanov, Veselin. Roberta: A
robustly optimized bert pretraining approach, 2019.

[114] Long, Jieyi. Large language model guided tree-of-thought, 2023.

[115] Lu, Pan, Peng, Baolin, Cheng, Hao, Galley, Michel, Chang, Kai-Wei, Wu, Ying Nian,
Zhu, Song-Chun, and Gao, Jianfeng. Chameleon: Plug-and-play compositional
reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023).

[116] Luong, Thang, Pham, Hieu, and Manning, Christopher D. Effective approaches to
attention-based neural machine translation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (Lisbon, Portugal, Sept. 2015),
Association for Computational Linguistics, pp. 1412–1421.

[117] Lyons, John. Semantics. Cambridge University Press, 1977.

[118] Madaan, Aman, Tandon, Niket, Gupta, Prakhar, Hallinan, Skyler, Gao, Luyu, Wiegr-
effe, Sarah, Alon, Uri, Dziri, Nouha, Prabhumoye, Shrimai, Yang, Yiming, Welleck,
Sean, Majumder, Bodhisattwa Prasad, Gupta, Shashank, Yazdanbakhsh, Amir, and
Clark, Peter. Self-refine: Iterative refinement with self-feedback, 2023.

108

[119] Malioutov, Igor, and Barzilay, Regina. Minimum cut model for spoken lecture
segmentation. In Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics
(Sydney, Australia, July 2006), Association for Computational Linguistics, pp. 25–32.

[120] Mikolov, Tomáš, Kombrink, Stefan, Burget, Lukáš, Černockỳ, Jan, and Khudanpur,
Sanjeev. Extensions of recurrent neural network language model. In 2011 IEEE
international conference on acoustics, speech and signal processing (ICASSP) (2011),
IEEE, pp. 5528–5531.

[121] Min, Sewon, Krishna, Kalpesh, Lyu, Xinxi, Lewis, Mike, Yih, Wen-tau, Koh,
Pang Wei, Iyyer, Mohit, Zettlemoyer, Luke, and Hajishirzi, Hannaneh. FActScore:
Fine-grained atomic evaluation of factual precision in long form text generation.
arXiv preprint arXiv:2305.14251 (2023).

[122] Mohtashami, Amirkeivan, and Jaggi, Martin. Landmark attention: Random-access
infinite context length for transformers. In Workshop on Efficient Systems for Founda-
tion Models @ ICML2023 (2023).

[123] Mooney, Raymond J, and DeJong, Gerald. Learning schemata for natural language
processing. In IJCAI (1985), pp. 681–687.

[124] Mukherjee, Subhabrata, Mitra, Arindam, Jawahar, Ganesh, Agarwal, Sahaj, Palangi,
Hamid, and Awadallah, Ahmed. Orca: Progressive learning from complex explanation
traces of gpt-4, 2023.

[125] Myers, Jerome, O’Brien, Edward, Albrecht, Jason, and Mason, Robert. Maintaining
global coherence during reading. Journal of Experimental Psychology: Learning,
Memory, and Cognition 20 (07 1994), 876–886.

[126] Mündler, Niels, He, Jingxuan, Jenko, Slobodan, and Vechev, Martin. Self-
contradictory hallucinations of large language models: Evaluation, detection and
mitigation, 2023.

[127] Nye, Maxwell, Andreassen, Anders Johan, Gur-Ari, Guy, Michalewski, Henryk,
Austin, Jacob, Bieber, David, Dohan, David, Lewkowycz, Aitor, Bosma, Maarten,
Luan, David, Sutton, Charles, and Odena, Augustus. Show your work: Scratchpads
for intermediate computation with language models, 2022.

[128] Nye, Maxwell, Tessler, Michael Henry, Tenenbaum, Joshua B., and Lake, Brenden M.
Improving coherence and consistency in neural sequence models with dual-system,
neuro-symbolic reasoning. In Advances in Neural Information Processing Systems
(2021), A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, Eds.

109

[129] Olsson, Catherine, Elhage, Nelson, Nanda, Neel, Joseph, Nicholas, DasSarma,
Nova, Henighan, Tom, Mann, Ben, Askell, Amanda, Bai, Yuntao, Chen, Anna,
Conerly, Tom, Drain, Dawn, Ganguli, Deep, Hatfield-Dodds, Zac, Hernandez,
Danny, Johnston, Scott, Jones, Andy, Kernion, Jackson, Lovitt, Liane, Ndousse,
Kamal, Amodei, Dario, Brown, Tom, Clark, Jack, Kaplan, Jared, McCandlish,
Sam, and Olah, Chris. In-context learning and induction heads. Transformer Cir-
cuits Thread (2022). https://transformer-circuits.pub/2022/in-context-learning-and-
induction-heads/index.html.

[130] OpenAI, :, Achiam, Josh, Adler, Steven, Agarwal, Sandhini, Ahmad, Lama, Akkaya,
Ilge, Aleman, Florencia Leoni, Almeida, Diogo, Altenschmidt, Janko, Altman, Sam,
Anadkat, Shyamal, Avila, Red, and Igor Babuschkin, et al. Gpt-4 technical report,
2023.

[131] OpenAI. Chatgpt: A language model by openai.

[132] Ouyang, Long, Wu, Jeff, Jiang, Xu, Almeida, Diogo, Wainwright, Carroll L., Mishkin,
Pamela, Zhang, Chong, Agarwal, Sandhini, Slama, Katarina, Ray, Alex, Schulman,
John, Hilton, Jacob, Kelton, Fraser, Miller, Luke, Simens, Maddie, Askell, Amanda,
Welinder, Peter, Christiano, Paul, Leike, Jan, and Lowe, Ryan. Training language
models to follow instructions with human feedback, 2022.

[133] Pan, Alexander, Bhatia, Kush, and Steinhardt, Jacob. The effects of reward misspeci-
fication: Mapping and mitigating misaligned models. In International Conference on
Learning Representations (2022).

[134] Pang, Richard Yuanzhe, Parrish, Alicia, Joshi, Nitish, Nangia, Nikita, Phang, Jason,
Chen, Angelica, Padmakumar, Vishakh, Ma, Johnny, Thompson, Jana, He, He, and
Bowman, Samuel. QuALITY: Question answering with long input texts, yes! In
Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Seattle, United
States, July 2022), Association for Computational Linguistics, pp. 5336–5358.

[135] Pang, Richard Yuanzhe, Parrish, Alicia, Joshi, Nitish, Nangia, Nikita, Phang, Jason,
Chen, Angelica, Padmakumar, Vishakh, Ma, Johnny, Thompson, Jana, He, He, and
Bowman, Samuel R. Quality: Question answering with long input texts, yes!, 2021.

[136] Passonneau, Rebecca J., and Litman, Diane J. Discourse segmentation by human and
automated means. Computational Linguistics 23, 1 (1997), 103–139.

[137] Peng, Bowen, Quesnelle, Jeffrey, Fan, Honglu, and Shippole, Enrico. Yarn: Efficient
context window extension of large language models, 2023.

[138] Press, Ofir, Smith, Noah, and Lewis, Mike. Train short, test long: Attention with
linear biases enables input length extrapolation. In International Conference on
Learning Representations (2022).

110

[139] Press, Ofir, Smith, Noah A., and Lewis, Mike. Shortformer: Better language modeling
using shorter inputs, 2020.

[140] Press, Ofir, Smith, Noah A., and Lewis, Mike. Shortformer: Better language modeling
using shorter inputs. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers) (Online, Aug. 2021), Association for
Computational Linguistics, pp. 5493–5505.

[141] Press, Ofir, Zhang, Muru, Min, Sewon, Schmidt, Ludwig, Smith, Noah A., and Lewis,
Mike. Measuring and narrowing the compositionality gap in language models, 2022.

[142] Radford, Alec, and Narasimhan, Karthik. Improving language understanding by
generative pre-training.

[143] Radford, Alec, Wu, Jeffrey, Child, Rewon, Luan, David, Amodei, Dario, and
Sutskever, Ilya. Language models are unsupervised multitask learners. OpenAI
blog 1, 8 (2019), 9.

[144] Rae, Jack, and Razavi, Ali. Do transformers need deep long-range memory? In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics
(Online, July 2020), Association for Computational Linguistics, pp. 7524–7529.

[145] Rae, Jack W., Potapenko, Anna, Jayakumar, Siddhant M., Hillier, Chloe, and Lilli-
crap, Timothy P. Compressive transformers for long-range sequence modelling. In
International Conference on Learning Representations (2020).

[146] Rafailov, Rafael, Sharma, Archit, Mitchell, Eric, Ermon, Stefano, Manning, Christo-
pher D., and Finn, Chelsea. Direct preference optimization: Your language model is
secretly a reward model, 2023.

[147] Rosenfeld, Roni. A maximum entropy approach to adaptive statistical language
modeling.

[148] Roy, Aurko, Saffar, Mohammad, Vaswani, Ashish, and Grangier, David. Efficient
content-based sparse attention with routing transformers. Transactions of the Associ-
ation for Computational Linguistics 9 (2021), 53–68.

[149] Roy, Aurko, Saffar, Mohammad, Vaswani, Ashish, and Grangier, David. Efficient
content-based sparse attention with routing transformers. Transactions of the Associ-
ation for Computational Linguistics 9 (2021), 53–68.

[150] Saha, Swarnadeep, Zhang, Shiyue, Hase, Peter, and Bansal, Mohit. Summarization
programs: Interpretable abstractive summarization with neural modular trees. In The
Eleventh International Conference on Learning Representations (2023).

[151] Saunders, William, Yeh, Catherine, Wu, Jeff, Bills, Steven, Ouyang, Long, Ward,
Jonathan, and Leike, Jan. Self-critiquing models for assisting human evaluators,
2022.

111

[152] Schank, Roger C, and Abelson, Robert P. Scripts, plans, goals, and understanding:
an inquiry into human knowledge structures, 1977.

[153] Schick, Timo, Dwivedi-Yu, Jane, Dessì, Roberto, Raileanu, Roberta, Lomeli, Maria,
Zettlemoyer, Luke, Cancedda, Nicola, and Scialom, Thomas. Toolformer: Language
models can teach themselves to use tools. arXiv preprint arXiv:2302.04761 (2023).

[154] Schulman, John. Approximating kl divergence. http://joschu.net/blog/
kl-approx.html, 2020.

[155] Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan, Michael I., and Abbeel,
Pieter. Trust region policy optimization, 2017.

[156] Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan, Michael, and Abbeel, Pieter.
High-dimensional continuous control using generalized advantage estimation, 2018.

[157] Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, and Klimov, Oleg.
Proximal policy optimization algorithms, 2017.

[158] Shaham, Uri, Ivgi, Maor, Efrat, Avia, Berant, Jonathan, and Levy, Omer. Zero-
SCROLLS: A zero-shot benchmark for long text understanding. In Findings of the
Association for Computational Linguistics: EMNLP 2023 (Singapore, Dec. 2023),
Houda Bouamor, Juan Pino, and Kalika Bali, Eds., Association for Computational
Linguistics, pp. 7977–7989.

[159] Shaham, Uri, Segal, Elad, Ivgi, Maor, Efrat, Avia, Yoran, Ori, Haviv, Adi, Gupta,
Ankit, Xiong, Wenhan, Geva, Mor, Berant, Jonathan, and Levy, Omer. Scrolls:
Standardized comparison over long language sequences, 2022.

[160] Shaham, Uri, Segal, Elad, Ivgi, Maor, Efrat, Avia, Yoran, Ori, Haviv, Adi, Gupta,
Ankit, Xiong, Wenhan, Geva, Mor, Berant, Jonathan, and Levy, Omer. SCROLLS:
Standardized CompaRison over long language sequences. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing (Abu
Dhabi, United Arab Emirates, Dec. 2022), Association for Computational Linguistics,
pp. 12007–12021.

[161] Sharan, Vatsal, Kakade, Sham, Liang, Percy, and Valiant, Gregory. Prediction with
a short memory. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing (New York, NY, USA, 2018), STOC 2018, Association for
Computing Machinery, p. 1074–1087.

[162] Shen, Sheng, Dong, Zhen, Ye, Jiayu, Ma, Linjian, Yao, Zhewei, Gholami, Amir,
Mahoney, Michael W., and Keutzer, Kurt. Q-bert: Hessian based ultra low precision
quantization of bert. Proceedings of the AAAI Conference on Artificial Intelligence
34, 05 (Apr. 2020), 8815–8821.

[163] Shen, Zhiqiang, Tao, Tianhua, Ma, Liqun, Neiswanger, Willie, Liu, Zhengzhong,
Wang, Hongyi, Tan, Bowen, Hestness, Joel, Vassilieva, Natalia, Soboleva, Daria, and
Xing, Eric. Slimpajama-dc: Understanding data combinations for llm training, 2023.

112

http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html

[164] Shi, Weijia, Min, Sewon, Yasunaga, Michihiro, Seo, Minjoon, James, Rich, Lewis,
Mike, Zettlemoyer, Luke, and tau Yih, Wen. Replug: Retrieval-augmented black-box
language models, 2023.

[165] Shinn, Noah, Labash, Beck, and Gopinath, Ashwin. Reflexion: an autonomous agent
with dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366 (2023).

[166] Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhut-
dinov, Ruslan. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research 15, 56 (2014), 1929–1958.

[167] Stelmakh, Ivan, Luan, Yi, Dhingra, Bhuwan, and Chang, Ming-Wei. ASQA: Factoid
questions meet long-form answers. In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing (Abu Dhabi, United Arab Emirates,
Dec. 2022), Association for Computational Linguistics, pp. 8273–8288.

[168] Stevick, Philip. The Chapter in Fiction: Theories of Narrative Division. Syracuse,
NY: Syracuse University Press, c1970., 1970.

[169] Stiennon, Nisan, Ouyang, Long, Wu, Jeff, Ziegler, Daniel M., Lowe, Ryan, Voss,
Chelsea, Radford, Alec, Amodei, Dario, and Christiano, Paul. Learning to summarize
from human feedback, 2022.

[170] Stock, Pierre, Fan, Angela, Graham, Benjamin, Grave, Edouard, Gribonval, Rémi,
Jegou, Herve, and Joulin, Armand. Training with quantization noise for extreme
model compression. In International Conference on Learning Representations (2021).

[171] Su, Dan, Li, Xiaoguang, Zhang, Jindi, Shang, Lifeng, Jiang, Xin, Liu, Qun, and
Fung, Pascale. Read before generate! faithful long form question answering with
machine reading. In Findings of the Association for Computational Linguistics:
ACL 2022 (Dublin, Ireland, May 2022), Association for Computational Linguistics,
pp. 744–756.

[172] Su, Jianlin, Lu, Yu, Pan, Shengfeng, Murtadha, Ahmed, Wen, Bo, and Liu, Yunfeng.
Roformer: Enhanced transformer with rotary position embedding, 2023.

[173] Sukhbaatar, Sainbayar, Grave, Edouard, Bojanowski, Piotr, and Joulin, Armand.
Adaptive attention span in transformers. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics (Florence, Italy, July 2019),
Association for Computational Linguistics, pp. 331–335.

[174] Sun, Haitian, Cohen, William, and Salakhutdinov, Ruslan. ConditionalQA: A com-
plex reading comprehension dataset with conditional answers. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers) (Dublin, Ireland, May 2022), Association for Computational
Linguistics, pp. 3627–3637.

[175] Sun, Haitian, Cohen, William W., and Salakhutdinov, Ruslan. Iterative hierarchical
attention for answering complex questions over long documents, 2021.

113

[176] Sun, Simeng, Krishna, Kalpesh, Mattarella-Micke, Andrew, and Iyyer, Mohit. Do
long-range language models actually use long-range context? In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing (Online
and Punta Cana, Dominican Republic, Nov. 2021), Association for Computational
Linguistics, pp. 807–822.

[177] Talmor, Alon, Herzig, Jonathan, Lourie, Nicholas, and Berant, Jonathan. Common-
senseQA: A question answering challenge targeting commonsense knowledge. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers) (Minneapolis, Minnesota, June 2019), Association for Computational
Linguistics, pp. 4149–4158.

[178] Taori, Rohan, Gulrajani, Ishaan, Zhang, Tianyi, Dubois, Yann, Li, Xuechen, Guestrin,
Carlos, Liang, Percy, and Hashimoto, Tatsunori B. Stanford alpaca: An instruction-
following llama model. https://github.com/tatsu-lab/stanford_
alpaca, 2023.

[179] Tay, Yi, Bahri, Dara, Metzler, Donald, Juan, Da-Cheng, Zhao, Zhe, and Zheng, Che.
Synthesizer: Rethinking self-attention for transformer models, 2021.

[180] Tay, Yi, Dehghani, Mostafa, Abnar, Samira, Shen, Yikang, Bahri, Dara, Pham, Philip,
Rao, Jinfeng, Yang, Liu, Ruder, Sebastian, and Metzler, Donald. Long range arena
: A benchmark for efficient transformers. In International Conference on Learning
Representations (2021).

[181] Tay, Yi, Dehghani, Mostafa, Bahri, Dara, and Metzler, Donald. Efficient transformers:
A survey, 2020.

[182] Touvron, Hugo, Lavril, Thibaut, Izacard, Gautier, Martinet, Xavier, Lachaux, Marie-
Anne, Lacroix, Timothée, Rozière, Baptiste, Goyal, Naman, Hambro, Eric, Azhar,
Faisal, Rodriguez, Aurelien, Joulin, Armand, Grave, Edouard, and Lample, Guil-
laume. Llama: Open and efficient foundation language models, 2023.

114

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

[183] Touvron, Hugo, Martin, Louis, Stone, Kevin, Albert, Peter, Almahairi, Amjad,
Babaei, Yasmine, Bashlykov, Nikolay, Batra, Soumya, Bhargava, Prajjwal, Bhosale,
Shruti, Bikel, Dan, Blecher, Lukas, Ferrer, Cristian Canton, Chen, Moya, Cucurull,
Guillem, Esiobu, David, Fernandes, Jude, Fu, Jeremy, Fu, Wenyin, Fuller, Brian,
Gao, Cynthia, Goswami, Vedanuj, Goyal, Naman, Hartshorn, Anthony, Hosseini,
Saghar, Hou, Rui, Inan, Hakan, Kardas, Marcin, Kerkez, Viktor, Khabsa, Madian,
Kloumann, Isabel, Korenev, Artem, Koura, Punit Singh, Lachaux, Marie-Anne,
Lavril, Thibaut, Lee, Jenya, Liskovich, Diana, Lu, Yinghai, Mao, Yuning, Martinet,
Xavier, Mihaylov, Todor, Mishra, Pushkar, Molybog, Igor, Nie, Yixin, Poulton,
Andrew, Reizenstein, Jeremy, Rungta, Rashi, Saladi, Kalyan, Schelten, Alan, Silva,
Ruan, Smith, Eric Michael, Subramanian, Ranjan, Tan, Xiaoqing Ellen, Tang, Binh,
Taylor, Ross, Williams, Adina, Kuan, Jian Xiang, Xu, Puxin, Yan, Zheng, Zarov,
Iliyan, Zhang, Yuchen, Fan, Angela, Kambadur, Melanie, Narang, Sharan, Rodriguez,
Aurelien, Stojnic, Robert, Edunov, Sergey, and Scialom, Thomas. Llama 2: Open
foundation and fine-tuned chat models, 2023.

[184] Tworkowski, Szymon, Staniszewski, Konrad, Pacek, Mikołaj, Wu, Yuhuai,
Michalewski, Henryk, and Miłoś, Piotr. Focused transformer: Contrastive train-
ing for context scaling, 2023.

[185] Vaithilingam, Priyan, Zhang, Tianyi, and Glassman, Elena L. Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large language
models. In Extended Abstracts of the 2022 CHI Conference on Human Factors
in Computing Systems (New York, NY, USA, 2022), CHI EA ’22, Association for
Computing Machinery.

[186] van den Oord, Aäron, Li, Yazhe, and Vinyals, Oriol. Representation learning with
contrastive predictive coding. ArXiv abs/1807.03748 (2018).

[187] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N, Kaiser, Ł ukasz, and Polosukhin, Illia. Attention is all you need. In
Advances in Neural Information Processing Systems (2017), I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30,
Curran Associates, Inc.

[188] Vu, Tu, Barua, Aditya, Lester, Brian, Cer, Daniel, Iyyer, Mohit, and Constant, Noah.
Overcoming catastrophic forgetting in zero-shot cross-lingual generation. In Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language Processing
(Abu Dhabi, United Arab Emirates, Dec. 2022), Association for Computational
Linguistics, pp. 9279–9300.

[189] Walker, Marilyn, and Whittaker, Steve. Mixed initiative in dialogue: An investigation
into discourse segmentation. In 28th Annual Meeting of the Association for Com-
putational Linguistics (Pittsburgh, Pennsylvania, USA, June 1990), Association for
Computational Linguistics, pp. 70–78.

115

[190] Wang, Alex, Cho, Kyunghyun, and Lewis, Mike. Asking and answering questions
to evaluate the factual consistency of summaries. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics (Online, July 2020),
Association for Computational Linguistics, pp. 5008–5020.

[191] Wang, Chaojun, and Sennrich, Rico. On exposure bias, hallucination and domain
shift in neural machine translation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (Online, July 2020), Association for
Computational Linguistics, pp. 3544–3552.

[192] Wang, Lei, Xu, Wanyu, Lan, Yihuai, Hu, Zhiqiang, Lan, Yunshi, Lee, Roy Ka-Wei,
and Lim, Ee-Peng. Plan-and-solve prompting: Improving zero-shot chain-of-thought
reasoning by large language models, 2023.

[193] Wang, Sinong, Li, Belinda Z., Khabsa, Madian, Fang, Han, and Ma, Hao. Linformer:
Self-attention with linear complexity, 2020.

[194] Wang, Tian, and Cho, Kyunghyun. Larger-context language modelling with recurrent
neural network. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (Berlin, Germany, Aug. 2016),
Association for Computational Linguistics, pp. 1319–1329.

[195] Wang, Xuezhi, Wei, Jason, Schuurmans, Dale, Le, Quoc V, Chi, Ed H., Narang,
Sharan, Chowdhery, Aakanksha, and Zhou, Denny. Self-consistency improves chain
of thought reasoning in language models. In The Eleventh International Conference
on Learning Representations (2023).

[196] Wang, Yizhong, Ivison, Hamish, Dasigi, Pradeep, Hessel, Jack, Khot, Tushar, Chandu,
Khyathi Raghavi, Wadden, David, MacMillan, Kelsey, Smith, Noah A., Beltagy, Iz,
and Hajishirzi, Hannaneh. How far can camels go? exploring the state of instruction
tuning on open resources, 2023.

[197] Wang, Yizhong, Kordi, Yeganeh, Mishra, Swaroop, Liu, Alisa, Smith, Noah A.,
Khashabi, Daniel, and Hajishirzi, Hannaneh. Self-instruct: Aligning language models
with self-generated instructions. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers) (Toronto,
Canada, July 2023), Association for Computational Linguistics, pp. 13484–13508.

[198] Wang, Yizhong, Li, Sujian, and Yang, Jingfeng. Toward fast and accurate neural
discourse segmentation. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (Brussels, Belgium, Oct.-Nov. 2018), Association
for Computational Linguistics, pp. 962–967.

[199] WEBBER, B., EGG, M., and KORDONI, V. Discourse structure and language
technology. Natural Language Engineering 18, 4 (2012), 437–490.

116

[200] Wei, Jason, Wang, Xuezhi, Schuurmans, Dale, Bosma, Maarten, brian ichter, Xia,
Fei, Chi, Ed H., Le, Quoc V, and Zhou, Denny. Chain of thought prompting elicits
reasoning in large language models. In Advances in Neural Information Processing
Systems (2022), Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, Eds.

[201] Wei, Xiang, Cui, Xingyu, Cheng, Ning, Wang, Xiaobin, Zhang, Xin, Huang, Shen,
Xie, Pengjun, Xu, Jinan, Chen, Yufeng, Zhang, Meishan, Jiang, Yong, and Han,
Wenjuan. Zero-shot information extraction via chatting with chatgpt, 2023.

[202] Welleck, Sean, Kulikov, Ilia, Roller, Stephen, Dinan, Emily, Cho, Kyunghyun, and
Weston, Jason. Neural text generation with unlikelihood training. In International
Conference on Learning Representations (2020).

[203] Weng, Lilian. Policy gradient. https://lilianweng.github.io/posts/
2018-04-08-policy-gradient/, 2018.

[204] Weston, Jason, Chopra, Sumit, and Bordes, Antoine. Memory networks, 2015.

[205] Wu, Yuhuai, Rabe, Markus N., Hutchins, DeLesley S., and Szegedy, Christian.
Memorizing transformers. ArXiv abs/2203.08913 (2022).

[206] Wu, Zeqiu, Hu, Yushi, Shi, Weijia, Dziri, Nouha, Suhr, Alane, Ammanabrolu, Prithvi-
raj, Smith, Noah A., Ostendorf, Mari, and Hajishirzi, Hannaneh. Fine-grained human
feedback gives better rewards for language model training, 2023.

[207] Wu, Zhanghao, Liu, Zhijian, Lin, Ji, Lin, Yujun, and Han, Song. Lite transformer
with long-short range attention, 2020.

[208] Xiao, Guangxuan, Tian, Yuandong, Chen, Beidi, Han, Song, and Lewis, Mike.
Efficient streaming language models with attention sinks, 2023.

[209] Xiong, Wenhan, Liu, Jingyu, Molybog, Igor, Zhang, Hejia, Bhargava, Prajjwal, Hou,
Rui, Martin, Louis, Rungta, Rashi, Sankararaman, Karthik Abinav, Oguz, Barlas,
Khabsa, Madian, Fang, Han, Mehdad, Yashar, Narang, Sharan, Malik, Kshitiz, Fan,
Angela, Bhosale, Shruti, Edunov, Sergey, Lewis, Mike, Wang, Sinong, and Ma, Hao.
Effective long-context scaling of foundation models, 2023.

[210] Xu, Fangyuan, Li, Junyi Jessy, and Choi, Eunsol. How do we answer complex
questions: Discourse structure of long-form answers. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers) (Dublin, Ireland, May 2022), Association for Computational Linguistics,
pp. 3556–3572.

[211] Xu, Peng, Ping, Wei, Wu, Xianchao, McAfee, Lawrence, Zhu, Chen, Liu, Zihan,
Subramanian, Sandeep, Bakhturina, Evelina, Shoeybi, Mohammad, and Catanzaro,
Bryan. Retrieval meets long context large language models, 2023.

117

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

[212] Yao, Shunyu, Yu, Dian, Zhao, Jeffrey, Shafran, Izhak, Griffiths, Thomas L., Cao,
Yuan, and Narasimhan, Karthik. Tree of thoughts: Deliberate problem solving with
large language models, 2023.

[213] Yao, Shunyu, Zhao, Jeffrey, Yu, Dian, Du, Nan, Shafran, Izhak, Narasimhan,
Karthik R, and Cao, Yuan. React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference on Learning Representations
(2023).

[214] Ye, Hongbin, Liu, Tong, Zhang, Aijia, Hua, Wei, and Jia, Weiqiang. Cognitive
mirage: A review of hallucinations in large language models, 2023.

[215] Ye, Junjie, Chen, Xuanting, Xu, Nuo, Zu, Can, Shao, Zekai, Liu, Shichun, Cui,
Yuhan, Zhou, Zeyang, Gong, Chao, Shen, Yang, Zhou, Jie, Chen, Siming, Gui, Tao,
Zhang, Qi, and Huang, Xuanjing. A comprehensive capability analysis of gpt-3 and
gpt-3.5 series models, 2023.

[216] Yogatama, Dani, de Masson d’Autume, Cyprien, and Kong, Lingpeng. Adaptive
semiparametric language models. Transactions of the Association for Computational
Linguistics 9 (2021), 362–373.

[217] Yoran, Ori, Wolfson, Tomer, Bogin, Ben, Katz, Uri, Deutch, Daniel, and Berant,
Jonathan. Answering questions by meta-reasoning over multiple chains of thought.
arXiv preprint arXiv:2304.13007 (2023).

[218] Zaheer, Manzil, Guruganesh, Guru, Dubey, Kumar Avinava, Ainslie, Joshua, Alberti,
Chris, Ontanon, Santiago, Pham, Philip, Ravula, Anirudh, Wang, Qifan, Yang, Li,
et al. Big bird: Transformers for longer sequences. Advances in Neural Information
Processing Systems 33 (2020).

[219] Zellers, Rowan, Bisk, Yonatan, Schwartz, Roy, and Choi, Yejin. SWAG: A large-
scale adversarial dataset for grounded commonsense inference. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing (Brussels,
Belgium, Oct.-Nov. 2018), Association for Computational Linguistics, pp. 93–104.

[220] Zhang, Jiacheng, Luan, Huanbo, Sun, Maosong, Zhai, Feifei, Xu, Jingfang, Zhang,
Min, and Liu, Yang. Improving the transformer translation model with document-
level context. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing (Brussels, Belgium, Oct.-Nov. 2018), Association for
Computational Linguistics, pp. 533–542.

[221] Zhang, Pei, Chen, Boxing, Ge, Niyu, and Fan, Kai. Long-short term masking
transformer: A simple but effective baseline for document-level neural machine
translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (Online, Nov. 2020), Association for Computational
Linguistics, pp. 1081–1087.

118

[222] Zhang, Shengyu, Dong, Linfeng, Li, Xiaoya, Zhang, Sen, Sun, Xiaofei, Wang, Shuhe,
Li, Jiwei, Hu, Runyi, Zhang, Tianwei, Wu, Fei, and Wang, Guoyin. Instruction tuning
for large language models: A survey, 2023.

[223] Zhang, Shun, Chen, Zhenfang, Shen, Yikang, Ding, Mingyu, Tenenbaum, Joshua B.,
and Gan, Chuang. Planning with large language models for code generation, 2023.

[224] Zhang, Susan, Roller, Stephen, Goyal, Naman, Artetxe, Mikel, Chen, Moya, Chen,
Shuohui, Dewan, Christopher, Diab, Mona, Li, Xian, Lin, Xi Victoria, Mihaylov,
Todor, Ott, Myle, Shleifer, Sam, Shuster, Kurt, Simig, Daniel, Koura, Punit Singh,
Sridhar, Anjali, Wang, Tianlu, and Zettlemoyer, Luke. Opt: Open pre-trained trans-
former language models, 2022.

[225] Zheng, Lianmin, Chiang, Wei-Lin, Sheng, Ying, Zhuang, Siyuan, Wu, Zhanghao,
Zhuang, Yonghao, Lin, Zi, Li, Zhuohan, Li, Dacheng, Xing, Eric, Zhang, Hao,
Gonzalez, Joseph E., and Stoica, Ion. Judging LLM-as-a-judge with MT-bench
and chatbot arena. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (2023).

[226] Zhou, Chunting, Liu, Pengfei, Xu, Puxin, Iyer, Srini, Sun, Jiao, Mao, Yuning, Ma,
Xuezhe, Efrat, Avia, Yu, Ping, Yu, Lili, Zhang, Susan, Ghosh, Gargi, Lewis, Mike,
Zettlemoyer, Luke, and Levy, Omer. Lima: Less is more for alignment, 2023.

[227] Zhou, Denny, Schärli, Nathanael, Hou, Le, Wei, Jason, Scales, Nathan, Wang, Xuezhi,
Schuurmans, Dale, Cui, Claire, Bousquet, Olivier, Le, Quoc V, and Chi, Ed H. Least-
to-most prompting enables complex reasoning in large language models. In The
Eleventh International Conference on Learning Representations (2023).

[228] Zhou, Hattie, Bradley, Arwen, Littwin, Etai, Razin, Noam, Saremi, Omid, Susskind,
Josh, Bengio, Samy, and Nakkiran, Preetum. What algorithms can transformers
learn? a study in length generalization, 2023.

[229] Ziegler, Daniel M., Stiennon, Nisan, Wu, Jeffrey, Brown, Tom B., Radford, Alec,
Amodei, Dario, Christiano, Paul, and Irving, Geoffrey. Fine-tuning language models
from human preferences, 2020.

119

APPENDIX A

APPENDIX FOR CHAPTER 2

120

0 2000 4000 6000 8000
max sequence length

36

38

40

42

44

46

48

pe
rp

le
xi

ty

Routing Transformer

0 2000 4000 6000 8000
max sequence length

40
42
44
46
48
50
52
54
56

Local Transformer

[-11:-1]
[-15:-5]
[-20:-10]
[-25:-15]
[-30:-20]
[-40:-30]
[-50:-40]

Figure A.1: Perplexity of target chunk of 10 tokens long near the end of sequence. The
legend indicates how far away the evaluated chunk is from the end of sequence (e.g., [-15:-5]
means evaluating the last 15 tokens to the last 5 tokens). The left plot shows the clustering
mechanism in the Routing Transformer assigns higher perplexity to around the last 15 tokens
in a sequence. Due to this artifacts, in our analysis, we avoid tokens within this range to
make comparable comparison with the Local Transformer. In the main text, our analysis are
conducted over the last 50 to last 40 tokens, which are not affected by this artifact.

A.1 Routing Transformer and end-sequence degradation
In our analysis, instead of picking the last 10 tokens in a sequence, we chose the last 50

to last 40 tokens due to an artifact introduced by the clustering heads in the RT model. We
find that in general the last 20 tokens in a sequence tend to have increasing perplexity as we
evaluate on longer and longer sequence lengths. As shown in Figure A.1, this phenomenon
is only native to the RT model and disappears when the clustering heads are replaced with
local attentions. Therefore, to make the RT and the LT comparable, we select the tokens
from the range that is not affected by the end-sequence issue. Although it’s not the last
10 tokens, this short target chunk is still located near the end of a sequence, preceded by
enough long context.

A.2 Effect of longer context
In section 2.3 we discussed that books that are fictional and continuous benefit more

from the long-range context. We also annotated the validation set by the authorship (i.e.,
whether a book is written by single author or various authors). Out of 49 books, 11 are
written by various authors, 10 of which are non-fictions. Due to this overlap, we only show
results of fic/non-fic in the main text.

In this section , we also further break down all targets to the three types of tokens we
examined in section 2.3, and display the results by book types. Perplexity of infrequent
tokens (Figure A.2), tokens inside subword clusters (Figure A.3), and tokens whose last
occurrence is more than 2K tokens away (Figure A.4). In general, for the small set of
tokens whose perplexity keep decreasing as adding in more context, the major source of
improvements are from the continuous and fictional books.

121

2000 4000 6000 8000
prefix length

1000

1500

2000

2500

3000
pe

rp
le

xi
ty

genre

nonfics
fics

2000 4000 6000 8000
prefix length

1000

1500

2000

2500

3000

pe
rp

le
xi

ty

continuity

discontinuous
continuous

2000 4000 6000 8000
prefix length

1200

1300

1400

1500

1600

pe
rp

le
xi

ty

author

various_author
same_author

Figure A.2: Perplexity of infrequent target tokens, broken down by genre (left), continuity
(middle), and authorship (right). Perplexity of infrequent tokens in fictional, continuous
and single-authored books decreases as the context length increases to around 5K. On the
other hand, the rest types of books rely on more local context while predicting the infrequent
tokens.

2000 4000 6000 8000
prefix length

3.50

3.75

4.00

4.25

4.50

4.75

pe
rp

le
xi

ty

genre

nonfics
fics

2000 4000 6000 8000
prefix length

3.50

3.75

4.00

4.25

4.50

4.75

pe
rp

le
xi

ty

continuity

discontinuous
continuous

2000 4000 6000 8000
prefix length

3.50

3.75

4.00

4.25

4.50

4.75

pe
rp

le
xi

ty

author

various_author
same_author

Figure A.3: Perplexity of target tokens inside subword clusters (i.e., excluding the first
subword in each cluster), broken down by genre (left), continuity (middle), and authorship
(right). Perplexity of these tokens in fictional and continuous books improves as the length
increases up to around 4K, whereas nonfictional and discontinuous books are not taking any
advantage of long-range context at all.

122

2000 4000 6000 8000
prefix length

165

170

175

180

pe
rp

le
xi

ty

genre

nonfics
fics

2000 4000 6000 8000
prefix length

170

175

180

185

continuity

discontinuous
continuous

2000 4000 6000 8000
prefix length

165

170

175

180

185

190

authorship

various_author
same_author

Figure A.4: Perplexity of target tokens that can only be found in the distant context, when
evaluated with the Routing Transformer on subset of PG-19 validation set, broken down
by genre (left), continuity (middle), and authorship (right). Fictional, continuous, and
single-authored books continue to have improved perplexity for this type of tokens as the
prefix length increases up to 8K. The single-authored books also contain discontinuous
books which require less modeling of long-range context. The decreasing curve indicates
the model might have acquired author specific token statistics from incorporating longer
context.

infreq in-subword distant
infreq 1. 0.09 0.08

in-subword 0.36 1. 0.1
distant 0.07 0.02 1.

Table A.1: Ratio of overlapped target tokens among different categorizations. infreq are
infrequent tokens, in-subword are tokens within a subword cluster (i.e., excluding the first
word in a subword cluster), distant are tokens only appear in the distant context (more than
2K away). Row 1 column 3 the number 0.08 indicates around 8% of the infrequent tokens
are those that can only be found in the distant context.

A.3 Token overlaps
We have shown in section 2.3 that infrequent tokens, tokens inside subword clusters,

and tokens that can only be copied from distant context benefit from context longer than
2K tokens. It is possible that these improvements come from the same set of tokens shared
across these three types of tokens. To verify if there are significant overlaps among those
three types of tokens, we compute the overlapped ratio in Table A.1. Except for in-subword
and infrequent tokens, the overlapped ratios are all below 0.1.

123

2000 4000 6000 8000
prefix length

36

37

38

pe
rp

le
xi

ty

All target tokens

RT
LT

Figure A.5: The perplexity of all target tokens plateaus after 2K prefix tokens for both
Routing Transformer and Local Transformer. The LT model is the one released in 2021
summer.

A.4 Perturbation
Perplexity with perturbed distant prefix when evaluated with Local Transformer is

shown in Figure A.7. Perplexity hardly changes when perturbing up to around 6K tokens.
Because LT doesn’t properly use long-range context, we only present the results of Routing
Transformer in the main text.

A.5 Suffix Identification
In the main text, we present the suffix identification results with 128-token long suf-

fix. Here, we provide results when evaluate the accuracy with suffix of different length.
Interestingly, the accuracy of distinguishing a gold suffix first increases with the suffix
length, reaching the best when the suffix length is around 10 to 20, then decreases as the
suffix becomes longer. This is likely because the sequence becomes more probable as
incorporating more local context (part of the suffix).

In Table A.2 and Table A.3, we present a complete example of the suffix identification
task. The prefix contains 1024 tokens, and each of the suffixes contains 128 tokens. Lower
perplexity of obviously wrong suffix (e.g. negative 1,3,4) indicates current RT model is not
properly taking advantage of distant context to make sequence-level predictions.

124

0 2000 4000 6000 8000
perturbation length

38

40

42

pe
rp

le
xi

ty

Local Transformer

LT-shuffle
LT-random
LT-8K

2500 5000
36

37

Figure A.6: Perplexity of all target tokens when evaluated with Local Transformer released
in 2021 summer.

A.6 Local Transformer checkpoint results
In the main text, we analyzed both the RT checkpoint and an LT model derived from

the same RT checkpoint by replacing the clustering heads with local attention heads. After
the submission deadline and before the camera ready deadline, the author of the Routing
Transformer released a new LT checkpoint, which has 24 layers in total1. To make sure the
behavior of our former LT is the same with an LT trained from scratch, we also conducted all
our analysis again on this new checkpoint. Overall, we find the new LT checkpoint performs
slightly better on token-level tasks but is inferior to the previous LT checkpoint on suffix
identification, a sequence-level task. Since the trends are the same, no conclusion needs to
be changed.
The Effect of Longer Context In Figure A.5 are the perplexities in aggregate over all
target tokens of both the RT and the new LT checkpoints. The target tokens are the same
ones we used in the main text. The new LT has better perplexity than the one presented in
the main text (36.5 vs. 40 as the prefix length extends to 8K).
Perturbation of long-range context Similar to the former LT (Figure A.7), the newly
released LT checkpoint(Figure A.6) is not sensitive at all to the perturbation further than
local 2K tokens. Both models are impacted by local random replacement more than shuffling,
however, the new LT checkpoint has overall better perplexity than the RT-derived LT.

1Both the RT model and the former LT model have 22 layers.

125

0 2000 4000 6000 8000
perturbation length

40

42

44

46

48

pe
rp

le
xi

ty

Local Transformer

LT-shuffle
LT-random
LT-8K

2500 5000
39.5
40.0
40.5

Figure A.7: Perplexity of all target tokens when evaluated with Local Transformer derived
from the RT checkpoint.

Sequence-level tasks Figure A.9 shows the performance of both RT and the released LT
checkpoint on sequence-level tasks. Compared to the results in the main text, the new LT
checkpoint performs better at sequence-copying task, however, the trend remains the same –
the order of tokens beyond 2K tokens is not properly encoded. On the other hand, the new
LT checkpoint is slightly worse in suffix identification while the former RT-derived LT has
almost identical performance as the RT. This implies even though the clustering heads are
removed from the previous LT, useful information is preserved by the local attention heads.

Overall, we find the released LT checkpoint has better token-level performance but per-
forms worse on suffix identification. Each plot shares the same trend with its corresponding
one in the main text, thus no conclusion needs to be modified.

126

0 2000 4000 6000 8000
prefix length

0.30

0.35

0.40

0.45

0.50

0.55

0.60

ac
cu

ra
cy

suffix-len-5
suffix-len-10
suffix-len-20
suffix-len-40
suffix-len-80
suffix-len-128

Figure A.8: Suffix identification accuracy when evaluated with different prefix length.

0 2000 4000 6000 8000
distance of duplicate from target

15

20

25

30

35

pe
rp

le
xi

ty

Sequence copying

RT
LT

0 2000 4000 6000 8000
prefix length

0.30

0.35

0.40

0.45

ac
cu

ra
cy

Suffix identification

RT
LT

Figure A.9: Left: Both models assign low perplexity if a duplicate sequence appears
within previous 512 tokens. Right: Adding context beyond 2K tokens does not improve
performance of suffix identification. Moreover, the recently released LT performs worse
than the one derived from the RT checkpoint.

127

Prefix Not a bit, sir.Out with it!I have faced death too often to flinch from it now, though I saw
it as near me as you are.""Well, well, we must go by averages of course.Shall we say two
years?I should think that you have a full two years before you.""In two years your pension
would bring you in L1,600.Now I will do my very best for you, Admiral!I will advance you
L2,000, and you can make over to me your pension for your life.It is pure speculation on
my part.If you die to-morrow I lose my money.If the doctor’s prophecy is correct I shall
still be out of pocket.If you live a little longer, then I may see my money again.It is the
very best I can do for you.""Then you wish to buy my pension?""Yes, for two thousand
down.""And if I live for twenty years?""Oh, in that case of course my speculation would be
more successful.But you have heard the doctor’s opinion.""Would you advance the money
instantly?""You should have a thousand at once.The other thousand I should expect you
to take in furniture.""In furniture?""Yes, Admiral.We shall do you a beautiful houseful at
that sum.It is the custom of my clients to take half in furniture."The Admiral sat in dire
perplexity.He had come out to get money, and to go back without any, to be powerless
to help when his boy needed every shilling to save him from disaster, that would be very
bitter to him.On the other hand, it was so much that he surrendered, and so little that he
received.Little, and yet something.Would it not be better than going back empty-handed?He
saw the yellow backed chequebook upon the table.The moneylender opened it and dipped
his pen into the ink."Shall I fill it up?"said he."I think, Admiral," remarked Westmacott,
"that we had better have a little walk and some luncheon before we settle this matter.""Oh,
we may as well do it at once.It would be absurd to postpone it now," Metaxa spoke with
some heat, and his eyes glinted angrily from between his narrow lids at the imperturbable
Charles.The Admiral was simple in money matters, but he had seen much of men and had
learned to read them.He saw that venomous glance, and saw too that intense eagerness was
peeping out from beneath the careless air which the agent had assumed."You’re quite right,
Westmacott," said he."We’ll have a little walk before we settle it.""But I may not be here
this afternoon.""Then we must choose another day.""But why not settle it now?""Because
I prefer not," said the Admiral shortly."Very well.But remember that my offer is only for
to-day.It is off unless you take it at once.""Let it be off, then.""There’s my fee," cried
the doctor."How much?""A guinea."The Admiral threw a pound and a shilling upon the
table."Come, Westmacott," said he, and they walked together from the room."I don’t like
it," said Charles, when they found themselves in the street once more; "I don’t profess
to be a very sharp chap, but this is a trifle too thin.What did he want to go out and speak
to the doctor for?And how very convenient this tale of a weak heart was!I believe they
are a couple of rogues, and in league with each other.""A shark and a pilot fish," said the
Admiral."I’ll tell you what I propose, sir.There’s a lawyer named McAdam who does my
aunt’s business.He is a very honest fellow, and lives at the other side of Poultry.We’ll go
over to him together and have his opinion about the whole matter.""How far is it to his
place?""Oh, a mile at least.We can have a cab.""A mile?

Gold suffix
(ppl=74.4)

Then we shall see if there is any truth in what that swab of a doctor said.Come, my boy,
and clap on all sail, and see who can stay the longest."Then the sober denizens of the heart
of business London saw a singular sight as they returned from their luncheons.Down the
roadway, dodging among cabs and carts, ran a weather-stained elderly man, with wide
flapping black hat, and homely suit of tweeds.With elbows braced back, hands clenched
near his armpits, and chest protruded, he scudded along, while close at his heels lumbered a
large-limbed, heavy, yellow mustached young man, who seemed to feel the exercise a good
deal more than his senior.On they dashed, helter-skelter, until they pulled up panting at the
office where the lawyer of the

Table A.2: Suffix identification example, extracted from the book Beyond the City by Arthur
Conan Doyle. For each suffix, we show the perplexity of the suffix evaluated with the
Routing Transformer. RT assigns a lot lower perplexity to examples (e.g. negative 1,3,4)
that are obviously wrong given the prefix.

128

Negative 1
(ppl=34.6):

If I can see Mr.Elberry to-day we may let you have a cheque to-morrow.Try another
pinch.No?Well, good-bye.I am very happy to have been of service."Mr.McAdam bowed
them out, for he was a very busy man, and they found themselves in the street once more
with lighter hearts than when they had left it."Well, Westmacott, I am sure I am very much
obliged to you," said the Admiral."You have stood by me when I was the better for a little
help, for I’m clean out of my soundings among these city sharks.But I’ve something to
do now which is more in my own line, and I need not trouble you any more.""Oh, it is no
trouble.I have nothing

Negative 2
(ppl=71.69):

It was not until he had signed and sent it off that the full significance of all that he had done
broke upon him.He had sacrificed everything.His pension was gone.He had nothing save
only what he could earn.But the stout old heart never quailed.He waited eagerly for a letter
from the Saint Lawrence Shipping Company, and in the meanwhile he gave his landlord a
quarter’s notice.Hundred pound a year houses would in future be a luxury which he could
not aspire to.A small lodging in some inexpensive part of London must be the substitute
for his breezy Norwood villa.So be it, then!Better that a thousand fold than that his name
should be associated with failure and disgrace.On that morning Harold Denver was to meet
the creditors of the firm, and to explain the situation to them.It was a hateful task

Negative 3
(ppl=33.54):

He hurried in, fearing that she might have taken some turn for the worse, but he was
reassured to find her sitting up in her bed, with Clara and Ida Walker in attendance upon
her.She had removed the handkerchief, and had put on a little cap with pink ribbons, and a
maroon dressing-jacket, daintily fulled at the neck and sleeves."My dear friend," said she
as he entered, "I wish to make a last few remarks to you.No, no," she continued, laughing,
as she saw a look of dismay upon his face."I shall not dream of dying for at least another
thirty years.A woman should be ashamed to die before she is seventy.I wish, Clara, that you
would ask your father to step up.And you, Ida, just pass me my cigarettes, and

Negative 4
(ppl=34.92):

look!!!"Her voice had fallen suddenly to a quivering whisper and she was pointing to the
Westmacotts’ house.Her sister gave a gasp of horror, and stood with a clutch at Monica’s
arm, staring in the same direction.There was a light in the front room, a slight, wavering
light such as would be given by a small candle or taper.The blind was down, but the light
shone dimly through.Outside in the garden, with his figure outlined against the luminous
square, there stood a man, his back to the road, his two hands upon the window ledge, and
his body rather bent as though he were trying to peep in past the blind.So absolutely still
and motionless was he that in spite of the moon they might well have overlooked him were
it not for that tell-tale light behind.

Negative 5
(ppl=47.66):

Again the Admiral burst out cheering."There remains, therefore, about L3,200 which has
to be found within ten days.No man shall lose by me.I gave them my word in the room
that if I worked my soul out of my body every one of them should be paid.I shall not
spend a penny upon myself until it is done.But some of them can’t wait.They are poor men
themselves, and must have their money.They have issued a warrant for Pearson’s arrest.But
they think that he has got away to the States.""These men shall have their money," said the
Admiral."Dad!""Yes, my boy, you don’t know the resources of the family.One never does
know until one tries.What have you yourself now?""I have about a

Table A.3: Suffix identification example, extracted from the book Beyond the City by Arthur
Conan Doyle. For each suffix, we show the perplexity of the suffix evaluated with the
Routing Transformer. RT assigns a lot lower perplexity to examples (e.g. negative 1,3,4)
that are obviously wrong given the prefix.

129

APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Dataset statistics
We collected 13,682 fanfictions from an online dump of stories posted on Archive of

Our Own (AO3) by filtering works written in English language, rated General Audience
by the author and contains at least 10K words and more than 10 chapters. For each
chapter, we remove the text within the range of “**Notes for the Chapter:**”,
“**Summary for the Chapter:**” and “**Author’s Note:**”. The meta-
comments inserted into the main text by the authors are not removed. The statistics of this
long-fic dataset are included in Table B.1. We do not apply other profanity filters to the
fictions, therefore there may still be inappropriate content for general audience as the rating
is self-labeled by each author. Besides chapter breaks introduced in the main text, we also
collected two other discourse boundaries, cause and dialogue, as comparisons to the chapter
boundary examples. We present the statistics each type of examples in Table B.2.

• Cause: The beginning of the suffix contains words or phrases ‘because’, ‘due to’,
‘owing to’. According to [3], human readers reactivate memory of global context for
comprehending statements following causes or goals.

• Dialogue: The gold suffix in this category starts with a quotation mark. This often
happens in dialogues where the continuation of one interlocutor depends heavily
on the immediately preceding utterance. We conjecture this is the type where the
prediction relies more on the local rather than the global context.

mean min max

#chapters 21.5 11 589
#words 41,513.2 10,000 636,468

Table B.1: Statistics of long fanfictions collected from AO3 story dump.

130

AO3 PG19

Suffix Type #works #examples #works #examples

cause 965 8,133 45 506
dialogue 979 8,724 46 3,165
chapter breaks 1202 7,355 17 241

Table B.2: Data statistics of CHAPTERBREAK as well as another two discourse boundary
examples.

B.2 Baselines
Bigbird [218] To reduce the quadratic complexity of self-attention in the standard Trans-
former, the Bigbird model employs a mixture of global, random and local attention mech-
anisms, which successfully reduce the complexity to linear. The idea is to insert each
sequence O(1) global tokens, which attend to all other tokens. The rest tokens attend to their
neighbor tokens, random tokens in the sequence as well as the inserted global tokens. A
very similar idea is developed concurrently in the Longformer [13]. The Bigbird model we
fine-tuned is the decoder part of the released checkpoint. We fine-tune the model with causal
LM objective on 14K books of PG-19 with peak learning rate 0.0001 for 100K steps. We
set attention type to be “original_full” instead of using “block_sparse” during fine-tuning.
Training is completed on a single RTX8000 GPU for around 6 days.
Local Transformer Rather than implementing all three types of sparse attention in
Bigbird, the Local Transformer relies only on the local attention, i.e., each token attends to
neighbors within a local window. The maximum attainable sequence length scales linearly
with the number of layers, e.g., with window size k, the token representation at layer l
theoretically covers information in a range of k × l tokens.
Routing Transformer [148] Different from previously described models which use
position-based sparse attention, the Routing Transformer employs content-based sparse
attention. Namely, each token are routed to clusters and the attention is performed only
within each cluster. The clustering operation effectively reduces the quadratic complexity in
length L to O(L1.5). Both the RT and LT checkpoint we used were trained on PG-19 [145].
For both RT and LT, we evaluate on single RTX8000 GPU.
GPT-2/3 The GPT models have a lot shorter maximum input length than the rest models
we evaluated. While GPT-2 model does not use sparse attentions at all, GPT-3 model adopts
alternated layers of sparse and dense self-attention. We use the GPT-2 large model, which
was pre-trained on data scraped from the Internet. The GPT-3 model was pre-trained on a
mixture of filtered CommonCrawl, WebText2, Books1, Books2, and Wikipedia.

131

256 512 1K 2K 3K 4K 6K 8K
Sequence Length

0.2

0.3

0.4

0.5

S
uf

fix
 Id

en
tif

ic
at

io
n

A
cc

ur
ac

y

PG19 Chapter Breaks

SuffixLM-A
SuffixLM-B
SuffixLM-C
SuffixLM-D
SuffixLM-E

Figure B.1: Performance of each SuffixLM variant. Detailed information about each variant
is included in Appendix B.3.

B.3 Finding the best SuffixLM
As there are no prior long-range segment-level LM architectures that we can borrow

from, we experiment multiple design choices and report the result of only the best performing
one in the main text. For all variants, we use RoBERTa-base [113] as the encoder to obtain
the encoded segment representation. This is done by extracting the representation of the
[CLS] token prepended at the beginning of each sequence. We describe five variants below.

• SuffixLM-A This variant contains a frozen RoBERTa-base encoder and a SuffixLM
using a 6-layer Transformer as the base architecture.

• SuffixLM-B This variant contains a frozen RoBERTa-base encoder and a SuffixLM
using a 6-layer average-attention Transformer as the backbone. The motivation of
using uniform distribution for attention weights is to encourage the model to get more
information from the distant context rather than rely too much on local context.

• SuffixLM-C This variant is essentically SuffixLM-A but during training we perform
“segdrop” – stochastically dropping prefix segments with probability 0.21 when per-
forming self-attention. When the local segments are dropped, the model has to predict
the next segments with only the distant context, which also encourages learning better
long-range prefix representations.

• SuffixLM-D Instead of freezing the encoder, this variant fine-tunes part of the encoder
and the rest is the same as SuffixLM-A. Due to limited memory capacity, we only
fine-tune the last two layers of the RoBERTa-base.

• SuffixLM-E This model is the same as SuffixLM-D except that we truncate the
encoder to just the two tunable layers and train all parameters in the encoder including
the embedding parameters.

1Tried {0.1, 0.2, 0.4}, 0.2 works the best.

132

256 512 1K 2K 3K 4K 6K 8K
Sequence Length

0.2

0.3

0.4

0.5

S
uf

fix
 Id

en
tif

ic
at

io
n

A
cc

ur
ac

y chapter breaks

256 512 1K 2K 3K 4K 6K 8K
Sequence Length

0.3

0.4

0.5

0.6

0.7

0.8

cause

SuffixLM
RT
LT

256 512 1K 2K 3K 4K 6K 8K
Sequence Length

0.4

0.5

0.6

0.7

0.8

dialogue

Bigbird
GPT-2

Evaluation on PG19

256 512 1K 2K 3K 4K 6K 8K
Sequence Length

0.20

0.25

0.30

0.35

0.40

0.45

S
uf

fix
 Id

en
tif

ic
at

io
n

A
cc

ur
ac

y chapter breaks

256 512 1K 2K 3K 4K 6K 8K
Sequence Length

0.3

0.4

0.5

0.6

0.7

0.8

cause

SuffixLMAO3
SuffixLM
RT

256 512 1K 2K 3K 4K 6K 8K
Sequence Length

0.4

0.5

0.6

0.7

0.8
dialogue

LT
Bigbird
GPT-2

Evaluation on AO3

Figure B.2: Evaluation results on both CHAPTERBREAKPG19 and CHAPTERBREAKAO3.

All SuffixLMs with frozen encoders are trained with average sequence length of 10240
tokens for up to 60k steps, and the one with trainable encoder is trained for max 120k
steps. The dimension of the model is 768, hidden dimension 2048,attention heads 8. The
peak learning rate is 0.0001 with warm up steps 4000. We train SuffixLM on entire PG-19
dataset and evaluate the best checkpoint selected by dev loss. We use segment size 128 in
all SuffixLMs we trained. Each segment starts from a new sentence, if not reaching 128
tokens, we pad with a special ‘<pad>’ token. For very long sentences, the part exceeding
128 tokens overflows to the next segment. We plot the suffix identification accuracy of
each variant on CHAPTERBREAK while feeding in prefixes of increasing length. As shown
in Figure B.1, SuffixLM-E outperforms all other variants across various prefix lengths.
Therefore in the main text, all SuffixLM refers to the SuffixLM-E variant. Note that one
limitation of SuffixLM is it exclusively models on segment-level, which prohibits it from
performing token-by-token generation and thus impossible for us to evaluate perplexity.

133

256 512 1K 2K 3K 4K 6K 8K

Sequence Length

0.4

0.5

0.6

0.7

0.8

0.9

S
uf

fix
 Id

en
tif

ic
at

io
n

A
cc

.

PG19 Chapter Breaks

in-book
out-of-book
out-of-bookAO3

256 512 1K 2K 3K 4K 6K 8K
Sequence Length

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S
uf

fix
 Id

en
tif

ic
at

io
n

A
cc

.

PG19 Chapter Breaks

slen-100
slen-110
slen-120
slen-128
RT

Figure B.3: Left: In-book vs. out-of-book. Right: SuffixLM performance when evaluated
with different suffix length. The variation in suffix length does not explain the large gap
between SuffixLM and token-level LMs.

B.4 Suffix perplexity
Although the task of CHAPTERBREAK is to identify gold suffix from negatives, we also

present the gold suffix perplexity of next-token prediction LMs. Note that all models were
trained or fine-tuned on PG-19 except for GPT-2/3. As these models use different tokenizers,
the 128-token suffix may cover different number of words, to make the results comparable,
we convert the subword-level perplexity to word-level by multiplying a constant to the log
probability value of each model. For RT/LT, we multiple by 1.248 as used in the official
repository. We multiply the value by 1.30 for GPT-2, and 1.22 for Bigbird. These values are
estimated via the subword/word ratio on validation set of PG-19. Our fine-tuned Bigbird
model achieves the lowest perplexity on PG-19, even better than Routing Transformer or
Local Transformer. This implies that context from long-range is not necessary for achieving
low perplexity since the maximum input length of Bigbird is half that of RT/LT.

B.5 In-book vs. Out-of-book
This section is better read after reading through § 3.3. In this analysis experiment, we

show why it is better that the negatives are from the same narrative as the gold suffix. We
evaluate our upper bound model SuffixLM on PG-19 set when the negatives are out-of-book
suffixes, and plot the suffix identification accuracy in Figure B.3. When evaluate against
out-of-book negatives, this suffix identification task is almost solved by our SuffixLM,
especially when the out-of-book examples are from another split in CHAPTERBREAK. The
extremely high accuracy under out-of-book setup suggests the segment representation from
different books are easy for SuffixLM to distinguish, thus we adopt a harder setup where
the negatives are from the same book. Besides, in-book negatives may contain the same
re-occurring named entities or rare words, which require solid understanding of the prefix to
differentiate the gold from the distractors.

134

B.6 Various Discourse Relationships
In addition to chapter breaks, we also evaluate the other two types of discourse boundary

examples introduced in Appendix B.1. As shown in Figure B.2, for all suffix types other
than chapter breaks, the evaluated models stop improving as the sequence length grows
to more than 2K tokens long. However, there is a significant increasing trend in chapter
breaks for SuffixLM. For the rest models, the performance is either flat or not improving.
On the AO3 split, the accuracy of SuffixLM improves for ∼ 15% as the sequence length
increases from 256 to 8K, whereas the improvement of RT is only ∼ 1.4%. This is in
contrast with SuffixLM’s ∼ 1.5% and RT’s ∼ 0.3% improvement for the ‘cause’ examples.
We draw two conclusions from these observations: (1) the chapter breaks examples form a
special case where longer prefix is preferred in order to pick the correct continuation. (2)
By comparing the relative improvement, the token-level LMs fall far behind the SuffixLM,
which is, besides the absolute performance gap, another evidence that current LRLMs do
not effectively leverage long-range context for sequence tasks requiring discourse-level
understanding.

B.7 Tackle difference in Tokenizers
As the models we evaluated use different tokenizers, there are small variations in term of

suffix length, i.e., the 128-token suffix may cover different number of words. To understand
how the difference in length impacts validity of evaluation, we evaluate SuffixLM with
various suffix lengths. Figure B.3 (right) indicates even though there are small variances
when the suffixes are of different lengths, the large gap between SuffixLM and Routing
Transformer still remains, thus the difference in suffix length does not explain the large
performance gap.

B.8 Error analysis
Models struggle with location and event shifts: Among the 300 examples we annotated
in Section 3.2, 89 examples were wrongly predicted by all models we have evaluated. By
breaking the incorrectly predicted examples into category as presented in Table 3.1, we find
that models tend to make wrong prediction when there is a shift in location or event, and
when plots are continuous in timeline.2

2Detailed numbers are included in Appendix B.8.

135

Category Definition Ratio

Events
Previous event ends and new event starts 0.74
Previous event continues into next chapter 0.26

Actors Change of perspective or character in focus 0.43
No change in POV or main character 0.57

Locations Change of location 0.64
No change in location 0.36

Continuity

Discontinuous but chronological 0.24
Continuous 0.62
Analepsis 0.03
Parallel 0.11

Table B.3: Human annotation on 89 examples sampled from CHAPTERBREAKAO3where all
models make the wrong prediction. 74% errors come from the examples where new event
starts from the new chapter and 64% errors from the change of location.

136

APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 Evaluation setup

C.2 Supplementary details of analysis

C.3 GPT-4 Multiple-choice setup performance
While our primary focus is on the generative QA setup in the main text, we provide

GPT-4’s performance under the standard multiple-choice setup here in the Appendix. On the
entire QuALITY dev set, GPT-4 achieves an accuracy of 84.4%. For the 1000 challenging
question set, GPT-4 reaches an accuracy of 78.7%, nearly 10 points higher than the GPT-4
zero-shot generative baseline. This result suggests that there is still room for improvement
in GPT-4’s generative answers. We also observe that GPT-4 is sensitive to the ordering of
the provided options. We further evaluate GPT-4 with three shuffled versions of the options
(swap A and D, B and C; swap A and C, B and D; swap A and B, C and D). While the overall
accuracy of these versions remains similar, the questions that are consistently answered
correctly across all four option orderings drop to 68.7%. This result raises the question of
whether GPT-4 truly “understands” the question and further motivates the generative QA
setup.

Human annot. category # of plans

Unnecessary steps 15
Steps can be merged 2
Plan misses information 3
Plan may lead to incorrect answer 4
Plan needs slight edit 7

Table C.1: human freeform feedback aggregation

137

{Question}

Free-from
Answer

{Question}
{Options}

Free-form
Answer

LLM

Answer:
A/B/C/D

LLM + PEARL

Figure C.1: Generic illustration of our evaluation setup. Given the article and question, we
prompt an LLM with PEARL to generate a long-form answer, which is later mapped to one
of QuALITY’s multiple-choice options by the LLM itself.

138

CONCAT

FIND_CHARACTER

FIND_ELEMENT

IDENTIFY_ELEMENT

FIND_EVENT

FIND_BEHAVIOR_REASON

FIND_RELATION

FIND_EMOTION

FIND_DETAILS

COMPARE
0

250

500

750

1000

Fr
eq

ue
nc

y

Top-10 used actions

Figure C.2: Top-10 most frequently used actions by PEARL.

Count GPT-4
PEARL

GPT-4
zero-shot

Description 320 0.73 0.73
Why/reason 316 0.79∗ 0.71∗

Symbolism/interpretation 262 0.73 0.70
Person 216 0.75∗ 0.66∗

Event 199 0.69 0.68
Not/except 118 0.70∗ 0.53∗

How/method 100 0.74 0.73
Relation 89 0.71 0.65
Entity 74 0.64 0.68
Numeric 49 0.67 0.78
Location 32 0.59 0.59
What if 21 0.71 0.76
Object 14 0.64 0.64
Duration 18 0.78 0.89
Finish the sentence 10 0.9 0.8

Table C.2: Accuracy by reasoning types. ∗ denotes statistically significant improvement
with p-val < 0.005.

139

Err. Category Question Model Generated Plan or An-
swer

Explanation

True Negative
- Error in Plan
(17.5%)

Does the tone of the pas-
sage shift at all, and if it
does, how does it shift?

(Plan) ... 3. tone_shift =
COMPARE(CTX, tone_initial,
tone_final, “tone”) : Compare the
initial and final tones of the pas-
sage to determine if there is a
shift...

Since the plan only compares the
initial and final tone, the final an-
swer fails to capture the changes
in between, thus leads to an in-
correct answer.

True Negative
- Error in Exec.
(55%)

How many adult characters
have speaking roles?

(Answer) In the input article,
there are 3 adult characters with
speaking roles...

The correct answer involves two
characters, whereas PEARL’s re-
sponse mistakenly includes an ad-
ditional name. The plan for this
question is reasonable, but the
problem stems from the execu-
tion of individual steps.

False Negative
(12.5%)

Does the story have a good
ending? (Answer: Unclear,
the story ends as Evelyn en-
ters a dangerous situation)

(Answer) ...However, the ending
of the story is somewhat ambigu-
ous and leaves several questions
unanswered. For instance, it is
unclear whether Evelyn will be
able to successfully complete her
mission ...

In this example, the model out-
put is correct, but is mapped
to an incorrect distractor option,
which contains direct contradic-
tions with the model output.

Other
(15%)

Who would most likely en-
joy this story, of the follow-
ing options?

(Answer) The target audience
of the input article is science
fiction enthusiasts, particularly
those who enjoy stories about
space exploration, alien encoun-
ters...

The model output is not neces-
sarily wrong in the absence of
options. However, when pro-
vided with options during map-
ping stage, one of the other op-
tions is clearly better.

Table C.3: Examples of errors exhibited by PEARL answers.

140

C.4 Verify Accuracy of Answer Mapping
As demonstrated in Section 4.6, the mapping stage is not always reliable. To understand

the frequency of mapping errors, we conduct a small-scale human answer mapping study. We
recruit three professionals on Upwork. We randomly select 50 questions and ask annotators
to read PEARL output and then map it to one of the provided options. On average, annotators
agree with ∼83% of GPT-4 mappings, with inter-annotator agreement on four-class settings
of κ = 0.677. For questions where annotators disagree with each other or do not concur with
GPT-4, they tend to be those that can be mapped to than one option or none of the options.
We believe this level of accuracy is decent enough to let GPT-4 perform the mapping step
for evaluation.

C.5 Can PEARL benefit from more human-written examples?
While we have employed self-refinement and executed the model-generated plan to

ensure the quality of ICL demonstrations, it is natural to ask if we can further improve PEARL

by incorporating more quality-assured human-written examples. Therefore, we evaluate
an alternative version of PEARL in which the in-context examples for plan generation are
replaced with 11 human-written examples. This variant achieves 70.3, 76.8, and 72.3 on the
long split, the short split, and the total evaluation data, respectively. These results suggest
that additional human input may not be necessary to achieve strong results.

C.6 Prompts and templates used in PEARL

C.7 Human feedbacks on model-generated plan

141

Prompt for Action Mining

[Actions]
- CONCAT(S1, S2, ...) : Concatenate the input S1, S2, ...
- EXTRACT(CTX, X) : Extract the exact wording that X is referring to from input CTX.
- FIND_X(CTX, X): Find and summarize all relevant information about X in the input CTX.
- FIND_REASON(CTX, X) : Find and summarize the cause or reason of X given input CTX.
- FIND_MORAL(CTX) : Find the intended lesson or moral of the input CTX.
- SUMMARIZE(CTX): Provides a general summary about the given CTX.
- SUMMARIZE_X(CTX, X) : Provides a summary about X given the provided input CTX.

[Instructions]
Suppose you are given a question about an article as well as a list of actions that you can execute to solve the question (shown above). You can
imagine the actions as functions in a program, where you have input arguments and output. The output of an action can be fed as input to
another action. The output of the final action will be the answer to the given question. Suppose you haven’t read the article yet, please present a
sequence of actions that you would use to answer the question.

Here are a few examples:

Question:
What is the “space cafard” that Si describes?

My new actions:
- COMPREHEND(CTX, X) : Provide a detailed comprehension of X given the input CTX.

My sequence of actions:
1. snippet = EXTRACT(CTX, "space cafard") : Extract the exact wording regarding "space cafard" from the input CTX.
2. ans = COMPREHEND(CTX, X) : Provide a detailed comprehension of the input X given the input CTX.

Question:
Why did the author write the article?

My new actions:
- None

My sequence of actions:
1. moral = FIND_MORAL(CTX) : Find the intended lesson or moral of the input CTX.

Your answer must follow the following rules: 1. The present sequence should be minimal, i.e., no unnecessary actions. 2. The sequence of
actions should be specific and cover every detail about the question. 3. The sequence of actions should use as many as existing actions as
possible. 4. It is fine to create new actions, however, the created new actions should be maximally reusable and generalizable to other reading
comprehension questions. 5. The arguments should cover all the details of the given question.

[Question]
{Question}

[Answer]
Now please provide the plan for the above question.
Your answer should follow the format:

My new actions (if any):
- my_new_action_1(here goes the arguments) : [one-sentence explanation]
- my_new_action_2(here goes the arguments) : [one-sentence explanation]
...

My sequence of actions:
1. output_1 = action_1(here goes the arguments) : [one-sentence explanation]
2. output_2 = action_2(here goes the arguments) : [one-sentence explanation]
...

Table C.4: Prompt for action mining. {Question} indicates the placeholder for filling in
training set question. In this stage, we only care about the new actions proposed by the
model.

142

Mined Actions after reducing number of actions with LLM

ANALYZE(CTX, X, Y) # Analyze the relationship, attitude, or feelings between X and Y, or the character, language, tone, or symbolism of X
given the input CTX.
COMPARE(CTX, X, Y, Z) # Compare X and Y in the context of Z, considering aspects such as abilities, assets, attractiveness, behavior,
concerns, contributions, cultures, events, experiences, feelings, ...
COMPREHEND(CTX, X) # Provide a detailed comprehension of X given the input CTX.
CONCAT(S1, S2, ...)
DEFINE(CTX, X) # Provide the definition of X given the input CTX.
DESCRIBE(CTX, X, Y) # Provide a description of X in terms of Y, such as character, genre, or introduction given the input CTX.
EVALUATE(CTX, X, Y) # Evaluate aspects such as feeling, outcome, performance, personalities, risk, or truth of X in relation to Y given the
input CTX.
EXCEPT(CTX, LIST) # Find the item that is not mentioned in the input CTX but is present in the given..
EXPLAIN_PROCESS(CTX, X) # Provide a detailed explanation of the process X given the input CTX.
FIND_BARRIERS_CAUSES(CTX, X) # Find and summarize the remaining barriers or causes related to X given the input CTX.
FIND_BEHAVIOR_REASON(CTX, X) # Find the reason behind the behavior X given the input CTX.
FIND_BENEFIT(CTX, X) # Find the direct benefit of X given the input CTX.
FIND_BEST(CTX, X, Y) # Find the best X in the context of Y given the input CTX.
FIND_CHARACTER(CTX, X) # Find and summarize the character traits, transformation, and changes of X given the input CTX.
FIND_COMMON(CTX, X, Y, Z) # Find the common ground, characteristics, or commonalities between X, Y, and Z given the input CTX.
FIND_CONDITION(CTX, X, Y) # Find the condition, outcome, or consequences related to X and Y given the input CTX.
FIND_CONFLICT_CONCERN(CTX, X, Y) # Find the conflict, concern, or disagreement between X and Y given the input CTX.
FIND_CONSISTENCY(CTX, X) # Determine if X is consistent throughout the input CTX.
FIND_DECISION(CTX, X) # Find the decision, factor, or event that influenced X’s decision in the input CTX.
FIND_DESCRIPTION(CTX, X) # Find all descriptions, characteristics, or words that describe X given the input CTX.
FIND_DETAILS(CTX) # Find all the details about a topic (e.g., contract, city-state) discussed in the input CTX.
FIND_DIALOGUE(CTX, X, Y) # Find the dialogue between X and Y in the input CTX.
FIND_DIFFICULTY_DANGER(CTX, X) # Find the most difficult aspect, challenge, or danger faced by X in the given input CTX.
FIND_ELEMENT(CTX, X, Y) # Find the element X related to Y given the input CTX. This function can cover message, method, metrics,
mismatch, mission, mistake, most likely, motif, motivation, nationalities, negative critique, negative effect, next event, normal, objective,
obstacles, ...
FIND_EMOTION(CTX, X, Y) # Find the emotion or feeling X feels towards Y given the input CTX.
FIND_ENDING(CTX, X) # Find the ending or conclusion of X’s story or the input CTX.
FIND_EVENT(CTX, X) # Find the event involving X in the input CTX (e.g., betrayal, change, climax).
FIND_EVIDENCE_EXAMPLE(CTX, X) # Find evidence or an example supporting X given the input CTX.
FIND_EXCEPTION(CTX, X, Y, Z) # Find the exception or characteristic that is not common among X, Y, and Z given the input CTX.
FIND_EXPECTATION(CTX, X) # Find the expectation, assumption, or impact about X given the input CTX.
FIND_EXPLANATION(CTX, X) # Find the most likely explanation, critique, or doubt for X given the input CTX.
FIND_FACT_FALSE(CTX, X) # Find a definite fact or false statement about X given the input CTX.
FIND_FEARS_DISTRACTIONS(CTX, X) # Find the fears, concerns, or distractions of X given the input CTX.
FIND_FEATURES(CTX, X) # Find all the features that X cares about given the input CTX.
FIND_FIRST_INSTANCE(CTX, X) # Find the first instance of X happening in the input CTX.
FIND_FLAW(CTX, X) # Find the greatest flaw of X given the input CTX.
FIND_FOCUS(CTX, X) # Find the person or object that is focused on the most in the input CTX, given a list of X.
FIND_FORESHADOW(CTX, X, Y) # Find the instance where X foreshadows Y in the input CTX.
FIND_FUTURE(CTX, X) # Find the future, predicted outcome, or action of X given the input CTX.
FIND_GRIEVANCE(CTX, X) # Find and summarize the grievance X has against something or someone in the input CTX.
FIND_HALO_EFFECT(CTX, X) # Find and summarize one halo effect of X given the input CTX.
FIND_HUMBLENESS(CTX, X) # Find the instances of humbleness presented by X in the input CTX.
FIND_HYPOTHETICAL(CTX, X) # Find the hypothetical outcome or consequence of X given input CTX.
FIND_IMAGINATION(CTX, X) # Find and summarize how X imagines something in the input CTX.
FIND_IMPACT(CTX, X, Y) # Find the event or experience that had the strongest impact on X’s Y given the input CTX.
...

Table C.5: A subset of mined actions from training set questions.

143

Prompt for Generating Plan

[Actions]
ANALYZE(CTX, X, Y) # Analyze the relationship, attitude, or feelings between X and Y, or the character, language, tone, or symbolism of X
given the input CTX.
COMPARE(CTX, X, Y, Z) # Compare X and Y in the context of Z, considering aspects such as abilities, assets, attractiveness, behavior,
concerns, contributions, cultures, events, experiences, feelings, focus, intelligence, irony, nationalities, performance, praise, reactions, reviews,
secretiveness, time periods, treatment, truth, or worlds given the input CTX.
COMPREHEND(CTX, X) # Provide a detailed comprehension of X given the input CTX.
CONCAT(S1, S2, ...)
DEFINE(CTX, X) # Provide the definition of X given the input CTX.
DESCRIBE(CTX, X, Y) # Provide a description of X in terms of Y, such as character, genre, or introduction given the input CTX.
EVALUATE(CTX, X, Y) # Evaluate aspects such as feeling, outcome, performance, personalities, risk, or truth of X in relation to Y given the
input CTX.
...
{List of Actions as shown in Table C.5}

[Instructions]
Suppose you are given a question about an article, as well as a list of potential actions (shown above) that you can execute to solve the question .
You can imagine the actions as functions in a program, where you have input arguments and output. The output of an action can be fed as input
to another action. Please present a sequence of actions that you would use to answer the question after you read the article. The sequence of
actions should be specific and cover all the details about the question. Please prioritize using the actions presented in the list above. If you
need to add new actions, please follow the format below. Please assign the output of each action with a distinct name, which can be passed
into other actions as argument. Think twice before you provide your answer. Make sure your answer is valid, clear, and easy to understand.
Keep the answer simple and remove any unnecessary steps. Do not use list comprehension or dictionary comprehension. Keep each action
minimally simple. If a question is unanswerable (e.g., requires options), collect as much information as possible from the input such that it will
be answerable when provided with options. Your answer should follow the format:
”’
New actions:
- new_action_1(arguments) : [one-sentence general explanation] or "-None" if there no need to add new actions
- new_action_2(arguments) : [one-sentence general explanation] or "-None" if there no need to add new actions

1. output_1 = action_1(here goes arguments) : [one-sentence explanation]
2. output_2 = action_2(here goes arguments) : [one-sentence explanation]
...
”’

The following are a few examples

Question: "How do Ross and Mehta view Brown’s acquisition of the magazine?"

Answer:
New actions:
- FIND_OPINION(CTX, X, Y) : Find the opinion of X about Y given the input CTX

1. ross = FIND_CHARACTER(CTX, "Ross") : Identify who Ross is in the input article
2. mehta = FIND_CHARACTER(CTX, "Mehta") : Identify who Mehta is in the input article
3. brown = FIND_CHARACTER(CTX, "Brown") : Identify who Brown is in the input article
4. magazine_acquisition = FIND_EVENT(CTX, "Brown’s acquisition of the magazine") : Find the event of Brown’s acquisition of the
magazine in the input article
5. ross_opinion = FIND_OPINION(CTX, ross, magazine_acquisition) : Find the opinion of Ross about Brown’s acquisition of the magazine
6. mehta_opinion = FIND_OPINION(CTX, mehta, magazine_acquisition) : Find the opinion of Mehta about Brown’s acquisition of the
magazine
7. ans = CONCAT(ross_opinion, mehta_opinion) : Combine the opinions of Ross and Mehta on Brown’s acquisition of the magazine to form
the final answer
... {more few-shot examples} ...

[Question]
Now you are given a question about an article:
{question}
Please provide a plan (sequence of actions) that can arrive to the answer after reading the article. As the corresponding options are not provided
for the question, when the question is not answerable without the options, simply collect as much information as possible from the input such
that it will be answerable with the options. Make sure the plan you generate is valid and faithful to the question.

[Answer]

Table C.6: Prompt for generating plan given a question, which is filled in the placeholder
{question}. 144

Prompt for Executing Single Step of the Plan

Article
{Long document}
End of Article
—
Please read the above text first, and then follow the instructions below.

[Instructions]

{Mined action and corresponding definition of current step. Example shown below.}
FIND_EMOTION(CTX, X, Y) # Find the emotion or feeling X feels towards Y given the input CTX.

{Current step in the plan generated in the previous stage. Example shown below.}
kolin_opinion = FIND_EMOTION(CTX, kolin, “becoming a tree”)

{Value assignment of input argument(s)}
X = “In the story, Kolin is a steward from the Planetary State of Haurtoz who is part of a scouting party sent to
explore a planet after their ship, the Peace State, is damaged. Kolin is unhappy with the oppressive regime on
Haurtoz and dreams of escaping it. While exploring the planet, he encounters a tree named Ashlew, which is
actually a man who has transformed into a tree. Ashlew tells Kolin about the Life, a powerful entity on the
planet that can help individuals change their form...{Output from previous step.}”
Y = “becoming a tree”

[Answer]
{A brief description of current step.}
(Find the emotion or feeling Kolin has towards becoming a tree himself in the input article)

Table C.7: Prompt for executing a step in a plan. Prompt of this step is a template with
placeholders which will be filled with the output from previous step(s).

Prompt for Answer Mapping

Relevant information for answering the question:

{Generative answer output by PEARL.}

Question: {question}
{Options}

Read the relevant information about the article and answer the question by selecting the best option above.
Only one of them is correct.

Answer (select from A, B, C, D):

Table C.8: Prompt for mapping generative answer to provided options

145

Question & Options Plan Human feedback

What was Mrs. Jamieson’s
biggest problem in the
story?
A: She did not understand
the Stinson Effect
B: She had to raise her son
alone
C: She was just able to
make ends meet
D: She had to hide her scar

1. mrs_jamieson = IDENTIFY_ELEMENT(CTX,
"Mrs. Jamieson") : Identify who Mrs. Jamieson is
in the input article
2. mrs_jamieson_problems = FIND_ELEMENT (CTX,
"problems", mrs_jamieson) : Find and list all the prob-
lems faced by Mrs. Jamieson in the story
3. biggest_problem = FIND_BEST(CTX, "problem",
mrs_jamieson_problems) : Find the biggest problem
faced by Mrs. Jamieson in the story
4. ans = CONCAT(mrs_jamieson, biggest _problem)
: Combine Mrs. Jamieson and her biggest problem to
form the final answer

Steps 2 & 3 can be combined into
one. mrs_jamieson_biggest
_problems = FIND_ELEMENT
(CTX, "biggest problem",
mrs_jamieson): Finds the
biggest problem faced by Mrs.
Jamieson in the story

Which class was the least
intense?
A: Kung Fu
B: Tai Chi
C: Aikido
D: Brazilian Jujitsu

1. classes = FIND_DETAILS(CTX) : Find all the de-
tails about the classes and their intensity levels men-
tioned in the input article
2. least_intense_class =
FIND_LEAST_DESCRIBING_WORD (classes,
“intense”) : Find the class that is least intense in the
given input CTX
3. ans = CONCAT (least_intense_class, classes) : Com-
bine the least intense class and the intensity levels of
all classes to form the final answer

Adding the details for the other
classes is unnecessary since the
question is looking for a single
answer, the least intensive class.

Do the Terrans ever come
close to winning the battle
within the story?
A: No, they continually lose
B: They win the whole bat-
tle with less casualties
C: Yes, by the surprise
squadron Evelyn leads
D: Yes, by Evelyn cloning
soldiers into battle

1. terrans = IDENTIFY_ELEMENT(CTX, "Terrans") :
Identify who the Terrans are in the input article
2. battle = FIND_EVENT(CTX, "battle") : Find and
summarize the battle event within the story in the input
article
3. terrans_battle = FIND_RELATION(CTX, terrans,
battle) : Find and summarize the Terrans’ involvement
in the battle from the input article
4. terrans_close_win = FIND_CONDITION (CTX,
"Terrans", "close to winning") : Find the condition or
events where the Terrans come close to winning the
battle in the input article
5. ans = CONCAT(terrans_battle, terrans_close_win) :
Combine the Terrans’ involvement in the battle and the
events where they come close to winning to form the
final answer

Step 2 and 3 can be combined:
Find and summarize the Terrans’
battle event within the story in
the input article

What level of depth does
the author provide on the
subjects they use to make
their case?
A: Language is really the
only thing covered in any
depth
B: A broad, but not very
deep assessment
C: They provide the reader
with deeper arguments
about the monetary system
and striking tendencies
than anything else
D: They provide deep, ex-
planatory statistics to most
arguments

1. author = IDENTIFY_ELEMENT(CTX, "author") :
Identify the author of the article
2. subjects = FIND_ELEMENT(CTX, "subjects", au-
thor) : Find and list all the subjects the author uses to
make their case in the input article
3. depth_analysis = ANALYZE(CTX, subjects, author)
: Analyze the level of depth the author provides on the
subjects they use to make their case in the input article
4. ans = CONCAT(subjects, depth_analysis) : Combine
the subjects and the depth analysis to form the final
answer for comparing with the options

Very good plan.

Table C.9: Example human feedback from annotators on PEARL-generated plans.

146

	ACKNOWLEDGMENTS
	Abstract
	List of Tables
	List of Figures
	Introduction
	Overview
	Evaluation of Long-range Context Modeling
	Towards Effective Modeling of Long-range Context
	Future directions
	Declaration of Collaborations

	Do Long-range Language Models Actually Use Long-range Context?
	Introduction
	Background & Setup
	Long-range Language Modeling
	Experimental setup
	Dataset & Models

	The effect of longer context
	The perturbation of long-range context
	Sequence-level analysis
	Related work
	Conclusion

	ChapterBreak: A Challenge Dataset For Long-range Language Models
	Introduction
	The ChapterBreak dataset
	Task overview
	Dataset overview

	Experiments
	Results & Analysis
	Related Work
	Long-range context modeling in the era of ``large language models''
	Evaluating large language models on ChapterBreak
	Models & Evaluation setup
	Results & Analysis

	General discussion on the evaluation of long-range language models

	Pearl: Prompting Large Language Models to Plan and Execute Actions Over Long Documents
	Introduction
	Related work
	Pearl: Planning and Executing Actions for Reasoning over Long Documents
	Action mining
	Plan generation
	Plan execution
	Self-correction and self-refinement

	Experiments
	Experimental setup
	Baselines

	Main results
	Analysis
	Conclusion

	SuffixRL: Train language models with segment-level signals
	Introduction
	SuffixRL
	Efficient training and regularization for SuffixRL
	Low-rank Adaptation
	KL regularization

	Validation of efficient training and alternative regularization on AlpacaFarm
	Validation setup
	Results & analysis
	Discussion

	SuffixRL experimental setup
	Results & Analysis
	Related work
	Conclusion

	Future directions
	Follow-up works of SuffixRL
	Better evaluations of long-range language models
	Better training and architectures for long-range foundation models

	Bibliography
	Appendix for Chapter 2
	Routing Transformer and end-sequence degradation
	Effect of longer context
	Token overlaps
	Perturbation
	Suffix Identification
	Local Transformer checkpoint results

	Appendix for Chapter 3
	Dataset statistics
	Baselines
	Finding the best SuffixLM
	Suffix perplexity
	In-book vs. Out-of-book
	Various Discourse Relationships
	Tackle difference in Tokenizers
	Error analysis

	Appendix for Chapter 4
	Evaluation setup
	Supplementary details of analysis
	GPT-4 Multiple-choice setup performance
	Verify Accuracy of Answer Mapping
	Can Pearl benefit from more human-written examples?
	Prompts and templates used in Pearl
	Human feedbacks on model-generated plan

