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Abstract—Predicting the functional outcomes of spinal cord dis-
order patients after medical treatments, such as a surgical opera-
tion, has always been of great interest. Accurate posttreatment pre-
diction is especially beneficial for clinicians, patients, care givers,
and therapists. This paper introduces a prediction method for post-
operative functional outcomes by a novel use of Gaussian pro-
cess regression. The proposed method specifically considers the
restricted value range of the target variables by modeling the
Gaussian process based on a truncated Normal distribution, which
significantly improves the prediction results. The prediction has
been made in assistance with target tracking examinations using
a highly portable and inexpensive handgrip device, which greatly
contributes to the prediction performance. The proposed method
has been validated through a dataset collected from a clinical co-
hort pilot involving 15 patients with cervical spinal cord disorder.
The results show that the proposed method can accurately predict
postoperative functional outcomes, Oswestry disability index and
target tracking scores, based on the patient’s preoperative infor-
mation with a mean absolute error of 0.079 and 0.014 (out of
1.0), respectively.

Index Terms—Functional outcomes, gaussian process regression
(GPR), handgrip, prediction, spinal cord disorder, target tracking,
truncated normal distribution.

I. INTRODUCTION

THERE are approximately 400 000 patients suffering from
spinal cord disorder in the United States, with nearly

15 000 new patients each year [1], [2]. The chronic or trau-
matic degeneration in the spine results in reduction of the spinal
canal diameter and compresses the spinal cord, which impairs
the transmission of electrical signals and results in partial or
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complete loss of sensory and/or motor function [1]. The phys-
iological symptoms of spinal cord disorder that are associated
with hand movements include the loss of hand dexterity, numb-
ness, stiffness, weakness, fatigue, and termor. As a consequence,
patients with spinal disorder often have problems coordinat-
ing fine movements using hand muscles, which restricts var-
ious daily activities such as eating, bathing, or lifting small
objects [3].

There exist various methods that quantify physical conditions
and/or the level of motor deficits of spinal disorder patients such
as radiological imaging (e.g., X-ray, MRI, and CT) [4], clini-
cians observations (e.g., finger-to-nose or heel-to-shin exami-
nations) [5], and patient-reported functional outcomes [6]–[8].
Among these techniques, patients’ self-ratings of perceived level
of motor function and quality of life, such as the Oswestry dis-
ability index (ODI) [6] and short form 36 (SF-36) [7], have
been widely used as primary measures for clinical effectiveness
[8] since the fundamental objective of medical treatment is to
improve the well being of patients [9].

Predicting the patient-reported functional level after medical
treatments (e.g., surgical operations, rehabilitation, or medi-
cation) has always been of great interest [10]-[12]. Regression
based on various demographic and clinical variables has been the
most commonly used prediction platform since patient-reported
outcomes are often close to real values. Most existing works
employ regression models that assume a predefined relation-
ship (i.e., often linear) between the predictors and the outcome.
Although these methods can be implemented easily and provide
clear interpretability, they have two major shortcomings. First,
the assumption of a predefined relationship (e.g., polynomial or
exponential) may not necessarily be true because one form of
measure may be more sensitive at a certain range of physical
conditions than others. Second, these types of regression meth-
ods focus on fitting the data points to minimize the prediction
error, and as a result, they produce a single best value rather
than providing a probabilistic prediction (i.e., predictive distri-
bution); predictive distribution is especially important since it
provides a comprehensive summary about the prediction. For
instance, the predictive distribution can be utilized to more ac-
curately model the distribution of target variables with restricted
value range, as will be discussed in the remaining of this paper.

This paper introduces a prediction method for postoperative
functional outcomes using Gaussian process regression (GPR),
which specifically addresses the aforementioned shortcomings
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of the existing prediction methods. Additionally, the proposed
method introduces a novel modeling of GPR based on a trun-
cated Normal distribution, which is designed to consider the
restricted value range of the target variable. The proposed pre-
diction method is performed in assistance with a simple target
tracking examination using a lightweight and inexpensive hand-
grip device, which contribute significantly to prediction perfor-
mance. Target tracking based on the grip strength is known to
effectively quantify the motor condition of patients with hand
movement deficits such as Parkinson’s disease [13], stroke [14],
chronic inflammatory demyelinating polyneuropathy (CIDP)
[15], and spinal cord disorder [16]. Note that the proposed
method is not only limited to the spinal cord disorder pop-
ulation but can also be applied to other ailments as this paper
provides the design and parametrization details of applying GPR
for motor function prediction.

II. RELATED WORKS

Predicting perceived motor function and health-related qual-
ity of life in spinal disorder patients has been of great interest
[10]–[12]. Authors in [10] used multivariate linear regression to
find correlation to the health-related instrument: Sickness Im-
pact Profile (SIP68). Similar studies have been performed in [11]
and [12], where the authors have used hierarchical multiple lin-
ear regression and step-wise linear regression as the prediction
models, respectively. Both studies compared the life satisfac-
tion to various demographic and clinical parameters including
gender, age, and number of rehospitalizations.

Prediction of perceived motor function is also an active re-
search topic in other ailments carrying motor deficits. For ex-
ample, Veerbeek et al. [17] reviewed 48 articles on prediction
of functional outcomes in patients with stroke. All studies re-
viewed by Veerbeek et al. [17] employed either linear or logis-
tic regression for prediction. Similarly, Soh et al. [18] reviewed
29 articles that predict health-related quality of life in Parkin-
son’s disease. This paper reports that multivariate regression
was the most frequently used prediction platform followed by
step-wise linear regression and hierarchical multivariate linear
regression.

Although the aforementioned works examine various vari-
ables for predicting self-reported functional outcomes, these
prediction models suffer from the shortcomings discussed in
the previous section. GPR has recently received much atten-
tion as a solution to these problems in various fields including
biomedical engineering [19] and clinical research [20]. To the
best of the authors’ knowledge, this paper is the first attempt to
apply GPR in predicting postoperative functional outcomes in
patients with movement disorders.

III. MATERIALS

A. Cohort Clinical Trial

This paper validates the prediction methods using a dataset
collected from a 24-month-long cohort trial. A total of 34 cer-
vical spinal cord disorder patients with hand movement deficits
were recruited through the UCLA Spine Center. Seven of these

patients decided to drop out of the study, and nine patients
were new patients whose three months postoperative data has
not yet been collected. Data collected from three patients were
corrupted and removed from the study due to either mistakes
during the data collection process or malfunction of the system
itself. As a consequence, this study is validated through a dataset
collected from 15 patients (mean age of 62.3 and a std. dev. of
13.1). All patients have received a surgical decompression oper-
ation that alleviates the nerve pressure on the spine, performed
by a single neurosurgeon. The examination procedure was ap-
proved by the UCLA institutional review board, and all patients
provided consent to participate in the study.

B. Measure of Self-Reported Motor Function

There exist various forms of self-reported functional out-
comes. The ODI has been used as one of the primary condition-
specific assessment tools for general spinal cord disorder pa-
tients [6] as well as patients with upper limb deficits [21]. The
ODI is a survey consisting of ten questionnaires regarding the
level of pain in the affected area and the degree of disabilities
in everyday activities such as sleeping, self-care, sex life, social
life, and traveling [21]. Each question has five or six answer
choices, and patients must select the one that best describes the
effect of pain in performing these activities. The accumulated
score is linearly scaled to [0, 1] based on the number of available
choices, where zero indicates completely disabled conditions in
performing the specified activity, and one indicates completely
healthy condition.

C. Demographic and Clinical Variables

The objective of this paper is to introduce a prediction method
for postoperative functional outcomes based on a patient’s pre-
operative information. Various clinical and demographic vari-
ables are considered in this study based on previous findings
[22]: age, narrowest diameter of the spinal canal before surgery,
and months after injury. The narrowest diameter of the spinal
canal is measured using the conventional X-ray imaging. The
number of months after injury is reported by patients.

D. Measure of Objective Fine-Motor Function

The prediction of postoperative condition is performed in as-
sistance with a especially designed handgrip device and target
tracking tests, which have been validated for its clinical effec-
tiveness in quantifying hand motor function [16]. The handgrip
device is illustrated in Fig. 1(a). All tracking tests are normal-
ized to the patient’s maximum voluntary contraction, which
represents the maximum grip strength that a patient can volun-
tarily exert, in order to accommodate patients with different grip
strengths.

The test is performed on two different target functions as
shown in Fig. 1(b): sinusoidal and step functions. The sinusoidal
function is known to examine the motor-learning capability for
fine muscle control, and the step function is known to investigate
a patient’s ability to predict and execute relatively rapid hand
movements [23]. As the test begins, the target within the screen
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Fig. 1. (a) Handgrip device using in this study to quantify the hand motor
capacity of cervical spinal disorder patients. (b) Two target functions used in
this study: sinusoidal (left) and step (right).

moves toward the left at a constant speed. The blue circle is
always located in the middle of the horizontal axis, but its ver-
tical position varies according to the applied grip strength. The
length of the test is 45 s. The objective of the test is to minimize
the error between the target and the patient’s response. Mean
absolute error (MAE) is the most frequently used motor mea-
sure [23], which computes mean absolute difference between
the target and the patient’s response over the period of the test.
This paper follows the general system performance theory that
all dimensions of human performance are in a form for which
a higher numerical value represents superior performance [24].
Therefore, the Mean absolute accuracy (MAA), which is com-
puted as (1 − MAE), is used as the primary metric for quantify-
ing motor level. Patients were asked to repeat the tracking tests
three times, and the average MAA of the three tests was used as
the final measure.

E. Longitudinal Study

Patients were asked to visit the clinic at least once prior to the
operation. Then, patients were scheduled to have a follow-up
visit at least three months after the surgery, since a three-month
period is a clinically meaningful time for recovery [8]. Both
self-reported functional outcomes and the target tracking results
were collected at each clinical visit.

IV. PREDICTION METHODOLOGY

This section discusses the prediction method in detail, which
estimates the postoperative conditions of patients given their
preoperative information. The independent variables (or predic-
tors) include preoperative ODI scores (denoted as ρ), preoper-
ative MAA scores of sinusoidal (denoted as α) and step tracks
(denoted as β), age (denoted as g), narrowest diameter of the
spinal canal before surgery (denoted as r), and months after
injury (denoted as h). Two dependent (or target) variables are
considered in this study: postoperative ODI score (denoted as
ρ′) and equally weighted average of postoperative MAA scores
of sinusoidal and step tracks (i.e., 1

2 (α′ + β′)). Some of the
important notations used in the rest of this paper are listed in
Table I.

A. Background

Prediction problems often involve a finite set of indepen-
dent variables X (i.e., preoperative data of patients) and the

TABLE I
SUMMARY OF IMPORTANT NOTATIONS USED IN THIS PAPER

Symbol Description

n Number of data points (patients)
d Size of feature dimension
X n × d training design matrix
y n × 1 training observation vector
x∗ 1 × d testing vector
y∗ prediction variable
ρ, ρ ′ ODI score at pre-, postsurgery
α , α ′ Sinusoidal MAA at pre-, postsurgery
β , β ′ Step MAA at pre-, postsurgery
g Age
r Narrowest diameter of spinal canal
h Months after injury

associated noisy observation of a dependent variable y (i.e.,
postoperative data of patients). X is an n × d matrix, where n
represents the number of data points (i.e., the number of patients
in this context) and d represents the size of variable dimension.
X can be written as X = {xi |i = 1, ..., n} where xi is a vector
of dimension d and y is the target (or observation) vector of
size n. The relationship between the input vector and the output
variable can be written as

yi = f (xi) + ε (1)

where fi = f(xi) is the latent (hidden) variable that is a function
of the data belonging to the patient i, and ε represents the noise
added to the observed variables. Then, the prediction problem
can be stated as the following: given a training dataset D =
{X,y}, find the best estimate of the dependent variable y∗ of a
new testing set.

Since the dependent variables are close to real values, the
prediction problem can be formalized in a regression setting.
GPR is a nonparametric regression model that constructs a rela-
tionship between X and y based on the geometric positions of
xi∀i within the feature space. y is considered as a collection of
samples from an n-variate Gaussian distribution, and it allows
GPR to provide not only the expected value of f∗ = f(x∗), but
also the variance of f∗.

B. GPR

This section briefly reviews the fundamental concepts of
GPR; the reader is referred to [25] for an in-depth review. The
formal definition of a Gaussian process is a collection of a
finite number of random variables, which has a joint Gaus-
sian distribution [25], and it can be completely defined by its
mean function E[f(x)] and a covariance function (also known
as kernel function) k(x,x′): f(x) ∼ GP (E[f(x)], k(x,x′)).
This study employs the squared exponential covariance func-
tion, which is defined as

k(x,x′) = σ2
f exp

(
−1

2
(x − x′)T M(x − x′)

)

where σ2
f represents the signal variance and M = diag(�)−2

where � = {�k |k = 1, ..., d}. �k represent characteristic length-
scale for each input dimension, and M forms a d × d matrix
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with its diagonal consisting of 1/�2
k and zero elsewhere. These

parameters define the relationship between each of the inde-
pendent variables and the target variable; it allows different
relationships for different independent variables.

Given the training dataset D = {X,y} and the testing input
vector x∗, the joint distribution of the observed dependent vari-
able y and the latent variable f∗ can be written in a matrix form
as [

y

f∗

]
∼ N

( [
μ

μ∗

]
,

[
K(X,X) + σ2

nI K(X,x∗)

K(x∗,X) K(x∗,x∗)

])

where K(X,x∗) is a n × 1 vector that represents covariance
between each data point in X and x∗. K(X,X), K(x∗,X),
and K(x∗,x∗) are also defined in a similar manner. I is an
identity matrix and σ2

n is the variance in the observed noise
ε in (1) assuming that ε is an independently and identically
distributed Gaussian distribution: ε ∼ N(0, σ2

n ). A collection
of free parameters θ = {�, σ2

f , σ2
n} is named hyperparameters.

A method for determining the hyperparameters from training
data will be discussed in Section IV-C.

The conditional distribution of the latent variable f∗ is also a
Gaussian: f∗ = f∗|X,y,x∗ ∼ N(μf ∗

, σ2
f ∗

). Note that μf ∗
rep-

resents the expected value of the latent variable, and the vari-
ance σ2

f ∗
can be used to compute the confidence range about

the prediction. These two values can be computed based on the
multivariate Gaussian theorem as

μf ∗
= E(f∗|X,y,x∗)

= μ∗ + K(x∗,X)
[
K(X,X) + σ2

nI
]−1(y − μ)

σ2
f ∗

= K(x∗,x∗) (2)

−K(x∗,X)
[
K(X,X) + σ2

nI
]−1

K(X,x∗).

Then, the expected value and the variance of the prediction
variable y∗ can be easily computed as μy ∗ = μf ∗

and σ2
y ∗

=
σ2

f ∗
+ σ2

n , respectively.

C. Hyperparameters

There exist various methods to find the values of hyperparam-
eters θ = {�, σf , σn} such as maximizing a posteriori estimates
or the Markov chain Monte Carlo method [25]. This paper em-
ploys a method that integrates over the hyperparameters to pro-
duce the conditional distribution of the latent variable f∗, which
is known to be more robust to relatively small sized training
sets. This method approximates the continuous integration over
the hyperparameters using a discrete summation, and the reader
is directed to [26] for more detail information.

D. Truncated-GPR

The limitation of applying GPR for predicting postoperative
ODI and MAA scores is raised by the fact that the prediction
variable y∗ assumes a Gaussian distribution, which in theory
has a distribution over an infinite range. However, the values of
ODI and MAA scores are restricted to be within [0, 1], and GPR
clearly does not account for this restricted range.

In this study, a novel mapping procedure is proposed to allow
predictions to be made in the restricted range of the prediction
variables, which is built on the fundamentals of GPR. This
mapping procedure can be divided into two major steps: 1)
evaluating the latent variable f∗ with prior knowledge that the
training observation variable y has a range of [0, 1], and 2) the
mapping from the output latent variable f∗ to y′

∗. For simplicity,
the following derivation of p(y′

∗|X,y,x∗) assumes noise-free
observations, i.e., ε = 0 and y = f (X) as opposed to (1). The
addition of noise variance will be discussed afterwards.

The prediction variable y′
∗ is assumed to be a real-valued

variable that follows Gaussian distribution within its restricted
range [0, 1]. Thus, the mapping function between the latent and
the observed variable is defined as the following [27]:

y′
∗ = f∗, if 0 ≤ f∗ ≤ 1. (3)

In other words, y′
∗ is modeled to follow a two-sided truncated

Gaussian distribution. The probability density function of y′
∗

given the distribution of f∗ can be written as the following:

y′
∗|μf ∗

, σf ∗
∼ TN(μf ∗

, σf ∗
, a = 0, b = 1)

=

{ 1
σ

f ∗
φ

(
y ′
∗−μ

f ∗
σ

f ∗

)

Φ

(
1−μ

f ∗
σ

f ∗

)
−Φ

(
−μ

f ∗
σ

f ∗

) , if 0 ≤ y′
∗ ≤ 1

0, otherwise

(4)

where TN represents the truncated Gaussian (Normal) distribu-
tion, and φ(·) and Φ(·) represent the probability density function
and the cumulative distribution function of the standard Gaus-
sian distribution, respectively.

The first step of the mapping procedure (i.e., the inference
step that evaluates f∗) can be formulated as

p(f∗|X,y′,x∗) =
∫

p(f∗|X,x∗,f)p(f |X,y′)df (5)

where p(f∗|X,x∗,f) is the equation for predicting the latent
variable as in (2) assuming noiseless observation (i.e., f = y),
and p(f |X,y′) represents the posterior probability of the latent
variable f given the training data. The relationship between f
and y′ can be defined as f = y′ based on the definition of the
mapping function in (3) and the fact that the observed training
data y′ is already in the range [0, 1]. In other words, the mapping
from y′ to f is deterministic, and thus, f is independent of X
given y′. Then, the posterior probability can be defined as

p(f |X,y′) = p(f |y′)

= δ(f − y′)

where δ(·) is a Dirac delta function. Substituting the aforemen-
tioned equation into (5) yields

p(f∗|X,y′,x∗) =
∫

p(f∗|X,x∗,f)δ(f − y′)df

= p(f∗|X,x∗,f)|f=y′

which summarizes that the inference of the latent variable is
identical to the conventional GPR procedure by substituting the
observed values y′ into f .
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The second step of the mapping procedure, i.e., the mapping
from f∗ to y′

∗, is already defined in (3). The mean and the
variance of each output y′

∗ can be, respectively, computed as

μy ′∗
= E(y′

∗|μf ∗
, σf ∗

)

= μf ∗
+

φ

(
−μ

f ∗
σ

f ∗

)
− φ

(
1−μ

f ∗
σ

f ∗

)

Φ
(

1−μ
f ∗

σ
f ∗

)
− Φ

(
−μ

f ∗
σ

f ∗

) · σf ∗
, and

σ2
y ′∗

= σ2
f ∗

[
1 +

−μ
f ∗

σ
f ∗

· φ
(

−μ
f ∗

σ
f ∗

)
−

1−μ
f ∗

σ
f ∗

· φ
(

1−μ
f ∗

σ
f ∗

)

Φ
(

1−μ
f ∗

σ
f ∗

)
− Φ

(
−μ

f ∗
σ

f ∗

)

−
( φ

(
μ

f ∗
σ

f ∗

)
− φ

(
1−μ

f ∗
σ

f ∗

)

Φ
(

1−μ
f ∗

σ
f ∗

)
− Φ

(
−μ

f ∗
σ

f ∗

)
)2]

.

(6)

The addition of noise variance to the latent variable will sim-
ply replace μf ∗

and σ2
f ∗

with μf ∗
= μf ∗

and σ2
y ∗

= σ2
f ∗

+ σ2
n ,

respectively.

E. Feature Selection

A wrapper-based feature selection algorithm is employed to
reduce redundancies in the training set of independent variables.
It evaluates feature subsets in the predefined feature searching
space, and selected a feature subset that produces the best regres-
sion performance [28]. This study defines the feature search-
ing space based on exhaustive searching, which considers all
possible combinations of feature subsets. Each feature set in
the searching space is evaluated as the following. The training
dataset {X,y} is further divided into a learning set {X l ,yl}
and a validation set {xv , yv} using a leave-one-out cross val-
idation (LOOCV). During each iteration of the LOOCV, the
learning set is trained using the GPR and a prediction is made
on the validation variable xv . Then, the mean standardized log
loss (MSLL) [25] is used to evaluate each feature subset

η = − 1
n

n∑
j=1

log p(yv,j |X l,j ,yl,j ,xv ,j ) (7)

where p(yv,j |X l,j ,yl,j ,xv ,j ) represents the predictive proba-
bility of the validation label at each LOOCV iteration j, which
can be computed using (4). The feature subset that produces the
minimum MSLL is selected.

V. EXPERIMENTAL SETUP

This paper predicts postoperative physiological condition
of patients using two different measures: postoperative ODI
and MAA scores. A more comprehensive MAA is consid-
ered by averaging the sinusoidal MAA and step MAA, i.e.,
y = 1

2 (α′ + β′), rather than predicting MAAs for sinusoidal and
step tracks separately. Preliminary investigation of postopera-
tive MAA scores showed that these two tracks share redundant

information; the coefficient of determination was equal to 0.766
with p < 1.69 × 10−7 .

The prediction performance of GPR is evaluated using an
LOOCV. The entire data are divided into a training dataset
Di = {X i ,yi} and a testing dataset x∗,i at each iteration i of
LOOCV. At each iteration, the feature selection algorithm is per-
formed on the training data, which eventually performs another
(inner) layer of an LOOCV to select the best feature subset as
discussed in Section IV-E. The GPR is trained on the dimension-
reduced training data, and a prediction is made on x∗,i to produce
μy ′∗, i

and σy ′∗, i
based on (6). This approach, which completely

isolates the testing set from selection of features and parame-
ters, provides a fair estimate of prediction performance rather
than an optimistic estimate [29]. The same evaluation procedure
has been applied to the three benchmarking models considered
for comparison: multivariate linear regressions (MLR), support
vector regression (SVR), and K-nearest neighbors regression
(KNN).

VI. EXPERIMENTAL RESULTS

A. Prediction of Postoperative ODI

The prediction results are summarized in Fig. 2. The x-axis of
Fig. 2(a) represents the actual ODI that the patient evaluated after
the surgery and the y-axis represents the predicted mean ODI
(μy ′∗

) with confidence range of one standard deviation (σy ′∗
)

based on (6). Note that the prediction variable follows a trun-
cated Gaussian distribution, and thus, the variance (or standard
deviation) does not provide any information regarding the per-
centile of the predicted values; it simply measures the amount
of dispersion from the predicted mean. Fig. 2(b) depicts the
Bland–Altman plot of the predicted mean and the ground truth.
The bias and the limit of agreements were, respectively, com-
puted as −0.025 and 0.196, which showed that the two meth-
ods were systematically producing similar results. Furthermore,
there was no trend along the x-axis and the variability of the
difference was consistent. This emphasizes that the prediction
model produced consistent predictions for different ranges.

The numerical evaluation of the prediction is summarized in
Table II using the coefficient of determination (R2), the mean
absolute difference (MAD) between the predicted mean and the
ground truth, the p-value, and the MSLL as in (7). Table II
compares the results of the proposed truncated GPR, which
considers the restricted range of the dependent variables as in
(6), against the conventional GPR as in (2). Truncated GPR
provided superior prediction performance with MAD of 0.079
(out of maximum MAD of 1.00) compared to the conventional
GPR with MAD of 0.112. The prediction performances of the
proposed method were also compared to the three benchmark-
ing prediction models: MLR, KNN regression, and SVR with
the radial basis function kernel. MLR assumes oversimplified
linear relationships between the independent and the dependent
variables, and as a consequence, it achieved the worst MAD
of 0.148. SVR is a nonparametric model similar to GPR. Es-
pecially, the radial basis function kernel SVR is considered
identical to GPR since the kernel function can be defined ex-
actly as (2). Although the examined SVR employed a simplified
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Fig. 2. Prediction of postoperative ODI using the proposed truncated GPR. (a) Scatter of predicted mean with one standard deviation, which achieved MAD of
0.079, R2 of 0.716, MSLL of 3.83, and p < 4.7 × 10−5 . (b) Bland–Altman plot of the predicted mean with the bias of −0.025 and the limit of agreement of
0.196.

TABLE II
SUMMARY OF THE NUMERICAL EVALUATION OF VARIOUS TECHNIQUES USED IN THIS STUDY FOR PREDICTING ODI (LEFT) AND MAA (RIGHT) SCORES

Prediction ODI MAA

Method MAD R2 MSLL p-value MAD R2 MSLL p-value

Truncated GPR 0.079 0.668 3.83 4.7 × 10−5 0.014 0.591 1.87 2.8 × 10−4

Conventional GPR 0.112 0.443 3.96 3.5 × 10−3 0.015 0.588 1.86 3.3 × 10−4

MLR 0.148 0.081 N/A 0.136 0.027 0 N/A 0.148
SVR 0.117 0.448 N/A 5.0 × 10−3 0.019 0.497 N/A 6.3 × 10−4

KNN 0.121 0.437 N/A 5.8 × 10−3 0.024 0.067 N/A 0.017

Note that N/A stands for “not available.”

TABLE III
SUMMARY OF THE FEATURE SETS SELECTED DURING THE LOOCV FOR

PREDICTING ODI AND MAA

Predicting ODI Predicting MAA

Selected Features Freq. Selected Features Freq.

ρ, α 10 ρ, α, g 11
ρ, α, r 3 ρ, α, β , r 1
ρ, α, β 1 ρ, α, g , r 1
ρ, α, h 1 ρ, β , r 1

ρ, r 1

Freq. represents the frequency of the selected feature set.

kernel function (i.e., k(x,x′) = exp(−(x − x′)TM (x − x′)),
where M = γI), SVR produced comparable prediction perfor-
mance (i.e., MAD of 0.117) to the conventional GPR. KNN re-
gression is another nonparametric method, which also produced
comparable MAD of 0.121. These three methods only provide
single-valued predictions rather than probabilistic predictions
and assume that the dependent variables follow Gaussian distri-
butions. It implies that these methods cannot be configured to the
restricted value range of the predictor variables, and thus, lead
to inferior prediction performances compared to the proposed
truncated GPR. Note that MSLL is not available for these three
regression models as they do not make probabilistic predictions.

A one-way analysis of variance was performed on the pre-
operative and the postoperative ODI values, and produced
p < 0.188 with MAD of 0.145, which supports the necessity

TABLE IV
MEAN AND THE STANDARD DEVIATION OF HYPERPARAMETERS (AT THE

MODE) DURING THE LOOCV

Predicting ODI Predicting MAA

Mean ± Std. Dev Freq. Mean ± Std. Dev Freq.

�ρ 0.25 ± 0.06 15 0.40 ± 0.08 15
�α 0.01 ± 0.05 15 0.23 ± 0.01 13
�β 0.05± N/A 1 0.12 ± 0.08 2
�g N/A 0 0.31 ± 0.02 12
�r 1.1 ± 0 3 4.80 ± 8.78 4
�h 4.5± N/A 1 N/A 0
σf 0.63 ± 0.03 15 0.75 ± 0.03 15

1.0 · 10−4 ± 9.8 · 10−6 ±
σn 2.9 · 10−2 0 15 1.4 · 10−1 7 15

of a prediction model. This can be considered as a result of an
elementary prediction model that assumes no difference in ODI
values. It is noteworthy that MLR produced results that are in-
ferior compared to this simple model, which seems to be caused
by the heavily nonlinear relationships between predictors (other
than the preoperative ODI) and the postoperative ODI.

As discussed in Section V, GPR predictions were made in an
LOOCV manner and as a result, n different prediction models
(i.e., selected features and the values of hyperparameters) were
created. The selected features and the values of hyperparameters
at the mode (i.e., most likely hyperparamters) are summarized
in Tables III and IV, respectively. Table III shows that {ρ, α} is
the most frequently selected feature set and is also a subset of all
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Fig. 3. Prediction of postoperative MAA using the proposed truncated GPR. (a) Scatter of predicted mean with one standard deviation, which achieved MAD of
0.014, R2 of 0.591, MSLL of 1.87, and p < 2.8 × 10−4 . (b) Bland–Altman plot of the predicted mean with the bias of −6.0 × 10−4 and the limit of agreement
of 0.047.

other selected feature sets. This demonstrates that there exists
a consistent pattern within the constructed regression models.
Table IV shows that �ρ , �α , σf , and σn were the hyperparameters
that were used more than 12 times (i.e., 80%) to construct pre-
diction models during an LOOCV. Small variances of the se-
lected parameter values support that the selected values were
consistent. Furthermore, �ρ = 0.25 and �α = 0.10 characterize
relatively flexible (nonlinear) covariance function rather than
simple linear relationship. As a consequence, the noise param-
eter is reduced to σn = 1.0 × 10−4 .

In order to quantify the contributions of the target tracking re-
sults in predicting ODI, the prediction procedure was performed
with α and β being removed from the feature set. This allows the
comparison between a feature set that contains the target track-
ing results (see Table II) and a feature set constructed solely
based on demographic and clinical variables. The prediction re-
sults without hand motor scores achieved an MAD of 0.118, a
R2 of 0.297, an MSLL of 3.89, and a p < 0.0166. These results
show that incorporating the handgrip test for predicting postop-
erative functional outcomes significantly improves the accuracy
(i.e., MAD by 0.039).

B. Prediction of Postoperative MAA

A similar procedure has been taken for predicting postop-
erative MAA. The results are illustrated in Fig. 3(a) and (b),
which show that data points #5 and #15 produced the largest
errors in the mean prediction. Patient #5 was the patient whose
hand motor score decreased with the largest drop, and patient
#15 was the patient whose hand motor score increased with
the largest gain. As a consequence, the prediction model have,
respectively, overpredicted and underpredicted the MAA scores
for these patients. This result may be due to the relatively small
size of the examined data, which does not effectively construct
models for these possibly outlying patients. Nonetheless, the
prediction results of postoperative MAA were much more accu-
rate compared to ODI as summarized in Table II. Furthermore,
the bias and the limit of agreement of the Bland–Altman plot
in Fig. 3(b) were −6.0 × 10−4 and 0.047, respectively, which
support higher consistency compared to ODI prediction.

The proposed truncated GPR model produced the most supe-
rior results (MAD of 0.014 with p < 2.8 × 10−4) compared to
other benchmarking models (see Table II). However, the differ-
ences in MAD and MSLL values compared to the conventional
GPR were negligible due to extremely small σ2

f ∗
. Consequently,

the truncated GPR, the conventional GPR, and SVR produced
comparable prediction performances.

MLR and KNN regression produced MAD of 0.027 and
0.024, respectively. Considering that the elementary prediction
model, which assumes no difference in MAA after the surgery,
produced MAD of 0.024 with p < 0.128, both MLR and KNN
regression model did not much improve the prediction accu-
racy. In particular, MLR produced results that are worse than
this simple mapping function, which again support the needs
for a nonlinear kernel in predicting postoperative conditions of
these patients.

The selected features are summarized in Table III, which
shows that {ρ, α, g} is the most frequently selected feature sub-
set. Furthermore, Table IV also shows that �ρ , �α , �g , σf , and σn

are the features that were selected at least 12 times (i.e., 80%)
during the LOOCV iterations. Similarly to the ODI results, the
values of hyperparameters characterize relatively flexible co-
variance function with small noise variance σn = 9.8 × 10−6 .

VII. DISCUSSION AND CONCLUSION

This paper introduces a prediction method for postoperative
functional outcomes by a novel use of GPR. Two functional
outcomes are considered in this paper: ODI and the target track-
ing score. The proposed method has been compared against
three widely used benchmarking prediction models (i.e., MLR,
SVR, and KNN regression), and showed superior prediction
performance.

By predicting the postoperative outcomes using preoperative
data, it is assumed that the surgical operation performed on
the patient produces a constant success pattern. The patients
in this study have received the surgical operation from a
single neurosurgeon, and thus, this assumption is valid to an
extent. The constructed model fundamentally incorporates this
pattern of surgical results, which may vary depending on the
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preoperative condition of the patient. Consequently, the model
reported in this paper may not produce the same result on
patients performed by other surgeons (especially when the data
size is small) as the surgical skill can be varied. However, the
proposed method can be easily applied to individual surgeons,
and moreover, the problem of variation in surgical skills among
different surgeons can be resolved as a large-scale dataset is
incorporated to generalize the pattern.

This study enables new opportunities for accurate prediction
of postoperative conditions of individuals with neuromuscular
deficits using GPR. It further enables clinicians to perform more
ubiquitous and convenient screening (using the handgrip device)
for predicting a patient’s functional level before the medical
treatment, which can be especially beneficial to the patients,
their care givers, and physical therapists.
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