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Abstract—With the growing cost associated with the diagnosis
and treatment of chronic neuro-degenerative diseases, the design
and development of portable monitoring systems becomes essen-
tial. Such portable systems will allow for early diagnosis of motor
function ability and provide new insight into the physical char-
acteristics of ailment condition. This paper introduces a highly
mobile and inexpensive monitoring system to quantify upper-limb
performance for patients with movement disorders. With respect to
the data analysis, we first present an approach to quantify general
motor performance using the introduced sensing hardware. Next,
we propose an ailment-based analysis which employs a significant-
feature identification algorithm to perform cross-patient data anal-
ysis and classification. The efficacy of the proposed framework is
demonstrated using real data collected through a clinical trial. The
results show that the system can be utilized as a preliminary di-
agnostic tool to inspect the level of hand-movement performance.
The ailment-based analysis performs an intergroup comparison of
physiological signals for cerebral vascular accident (CVA) patients,
chronic inflammatory demyelinating polyneuropathy (CIDP) pa-
tients, and healthy individuals. The system can classify each patient
group with an accuracy of up to 95.00% and 91.42% for CVA and
CIDP, respectively.

Index Terms—Ailment classification, grip strength tracking,
movement disorders, pervasive medical system, upper limb deficits.

1. INTRODUCTION

ILMENTS such as stroke [1], Parkinson’s Disease (PD)
A [2], spinal cord injuries [3], and many other neuro-
degenerative disorders are commonly associated with move-
ment deficits, which affect the function of motor neurons and
restrict the movements of the body such as those of the upper
limbs, gait, and speech performance [4].

Currently, the available assessment methods for the progress
of patients with associated ailments are based on human obser-
vations of motor performances (e.g., finger-to-nose test) [5], [6].
Clinical professionals use these measurements for preliminary
scanning in order to diagnose ailments in early stage. The early
detection of these ailments can dramatically reduce the risk of
the severity of motor deficits [7].
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Furthermore, medical treatments available for movement dis-
orders are typically a combination of medication, surgical op-
eration, and rehabilitation. These treatments are often evaluated
by measuring the motor performance of the patients before and
after the specific service (e.g., surgery), again, based on human
observations. However, these methods suffer from the subjective
nature of the measurements, which are often based on limited or-
dinal scales [6]. This subjectivity creates a need for quantitative
assessment methods, such that the analysis of patients’ motor
performances can be made more accurate and objective [8].

Researchers have studied various methods to objectively
quantify the level of upper limb movement. Among those meth-
ods, handgrip performance has been known as a simple, accu-
rate, and economical bedside measurement of muscle function
and the progression of the movement disorders [9]-[18]. The
grip control is of extreme importance in performing fundamen-
tal daily activities such as eating, brushing teeth, and getting
dressed. However, existing works often employ equipment that
are either very large in size or extremely expensive. Moreover,
they often lack in-depth analysis on patients’ motor performance
with respect to their ailment conditions.

Given the current standard of healthcare for movement disor-
der patients, there is a need for innovative technologies that 1)
provide wearable and portable devices that can be used on a daily
basis in many settings; 2) can be used for individuals’ stratifica-
tion so that such systems are applied on healthy individuals to
potentially provide early alarming of any movement disorders;
3) quantify the level of severity of the specific disorder for a pa-
tient; and 4) provide insight on disease symptoms by specifying
each abnormality/symptom in terms of signal-specific features.

This paper introduces a lightweight and inexpensive hand-
grip device that collects multidimensional sensory data associ-
ated with motor characteristics of individuals with upper limb
deficits. Furthermore, a data analytic framework with associated
algorithms for individuals’ ailment classification, disease sever-
ity quantification, and specification of physical symptoms is
discussed. The effectiveness of the proposed movement perfor-
mance assessment framework is demonstrated through a dataset
gathered in a clinical trial performed at St. Vincent Medical
Center in Los Angeles, CA, USA.

II. RELATED WORKS

Many studies have examined handgrip performance in order
to reflect the motor capacity of patients with movement disor-
ders. The mechanisms used to investigate the handgrip perfor-
mances can be divided into three broad categories: 1) assess-
ment based on precision grip; 2) assessment based on maximum
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voluntary contraction (MVC);' and 3) assessment based on force
tracking tasks.

Assessment methods based on precision grip focus on sim-
ulating tasks involving precise muscle control such as lifting,
holding, or transporting a small object (e.g., chopsticks or a
pencil) [19]. In [9], authors utilize a force sensor embedded ap-
paratus in order to investigate digit forces when an active and
dynamic hand grasping movement is simulated. In [20], a device
embedded with a force sensor and an accelerometer is used to
assess finger strength. In [10], an instrumented glove was used
to analyze finger movement of patients with subcortical stroke.

MVC-based assessment methods utilize various systems and
devices to measure MVC. In [21], a simple dynamometer is
used in order to measure the MVC as a measure of recovery
and a prognostic indicator for patients with stroke. The system
in [22] uses a vigorimeter, which measures the air pressure us-
ing a rubber bulb. Then, a few features of MVC are analyzed
to reflect the disease progress over time. In [12], authors inves-
tigate the handgrip strength and endurance of healthy subjects
and patients using a dynamometer, and conclude that handgrip
strength and mobility for patients are strongly correlated. The
system proposed in [13] uses instrumented objects that measure
forces applied during tasks such as manipulating a book, or a
fork.

Assessments based on force tracking tasks provide visual
feedback of patients’ hand performances, such that patients can
control their grip force to minimize the difference between the
target and the actual response [23]. The system proposed in this
paper improves upon methods that fall within this category. The
system in [23] and [14] utilizes various types of devices, such as
a nippers pinch, spherical grip, lateral grip, and cylindrical grip,
in order to capture the grip force. The system uses a sinusoidal
and ramp waveform for the target. Two features are extracted
in order to analyze the patients’ motor performance: root mean
square error and correlation between the target waveform and
the user response. In [5], authors propose a handgrip device that
measures forces generated by individual fingers using pressure
sensors. In [24], authors utilize a grasping apparatus to capture
grip forces, and provide a target waveform of a continuous and
constant force level on a computer screen.

Most of the aforementioned works (i.e., [9], [10], [12], [13],
[19]-[23], [25]) focus on introducing the developed handgrip
devices using a simple metric to validate the effectiveness of
those devices. Thus, these works often lack in-depth analysis
of the data according to their ailment conditions. Furthermore,
some of the devices such as those used in [9], [12], and [22]-[24]
are either very large in size or extremely expensive.

III. SYSTEM ARCHITECTURE

The proposed system is composed of 1) the sensing hardware
that contains a handgrip device equipped with a force sensor
in order to collect the time-varying muscle controllability of
patients; and 2) the software system that visualizes the exami-

I'MVC defines the amount of force that a patient produces when she volun-
tarily grasps the handgrip device with maximum effort.
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Fig. 1.  Graphical overview of the proposed system.
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Fig. 2. (a) Physiologically designed handgrip device of the proposed system

(left) and (b) the handgrip device currently in use (right).

nation and stores the results in the database. An overview of the
proposed system is illustrated in Fig. 1.

A. Sensing Hardware

1) Handgrip Device: The handgrip device is motivated from
medical devices that are currently used by clinical professionals
(e.g., handgrip device in [26]), as shown in Fig. 2(b). The pro-
posed handgrip device is illustrated in Fig. 2(a). The two cylin-
ders bridged by the black Derlin plastic [see Part-C in Fig. 2(a)]
are movable along the sideline [see Part-B in Fig. 2(a)] such
that patients can grasp the device. The movable component of
the handgrip device is bound to the fork-like side [see Part-A
in Fig. 2(a)] of the device by a rubber band. Patients can use
rubber bands of different tension forces in order to customize
the maximum squeeze force in the handgrip device. Addition-
ally, the fork-like side of the handgrip allows patients to further
adjust the tension force by placing the rubber band at different
widths. Finally, a force sensor is attached to Part-D in Fig. 2(a),
and it measures the force generated by the grasping action.

2) Sensing Platform and Communication System: A com-
mercial FSR force sensor (Interlink Electronics, USA) is at-
tached to the handgrip device in order to measure the grip
strength. The FSR sensor is used in the proposed system be-
cause 1) the FSR sensor responds accurately and precisely to
the general range of handgrip force; and 2) the FSR shows good
performance in terms of robustness [27].

In the proposed system, MSP430 (Texas Instruments, USA)
is employed as the communication device, which is capable
of delivering the captured sensory data in a wired or wireless
manner.
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Fig. 3. Illustration of an examination using a sinusoidal waveform.

B. Software Framework

The software is composed of the front-end and the back-end
software systems. The front-end software system provides a
graphical interface for patients to perform the tracking exami-
nation, which will be discussed in detail in Section IV. It also
provides a number of test parameters, which may change the
attributes of the examination such as test duration or difficulty
of the test. The back-end software system is a database system,
which stores the information such that an in-depth data analysis
becomes possible.

IV. EXAMINATION PROCEDURE

The examination is designed to assess a patient’s grip strength
as well as a patient’s ability to precisely control the strength [14],
[23]. Fig. 3 illustrates an example of a tracking examination us-
ing a sinusoidal waveform. When the examination begins, the
target waveform is horizontally shifted to the left at a constant
speed and, as a result, the user observes a flow of the wave-
form within the screen. The blue circle in the middle of the
screen corresponds to the level of pressure acquired from the
force sensor. The blue circle is always located in the middle of
the x-axis and its position in the y-axis changes according to
the provided pressure. The objective of the examination is to
control the grip strength to minimize the difference between the
target waveform and the patient response. The software stores
the target waveform, the patient’s response, and various test at-
tributes (e.g., duration or difficulty of the test) in the back-end
database.

Patients may have different handgrip strengths due to vari-
ous physical conditions. Therefore, the system first measures
the MVC prior to the actual examination and normalizes the
examination based on the MVC value for each patient. As a
result, the labels on the y-axis in Fig. 3 represent the percentage
of the acquired grip strength compared to the MVC measured
in the calibration process (i.e., 100% in the y-axis refers to the
patient’s MVC).

In summary, the examination considers both the maximum
strength and the preciseness of a patient’s grip control as ex-
plained in [28].

V. DATA ANALYSIS

This section provides detailed discussion about 1) metrics that
quantify general motor performance of patients and 2) a com-
parative analysis methodology that can be used to summarize
the characteristics of physical symptoms of patients.
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A. Comprehensive Metric to Quantify Motor Performance

In order to quantify comprehensive motor performance based
on a tracking examination, various metrics have been used such
as mean absolute difference (MAD) [29], root-mean- square
error (RMSE) [30], mean square error (MSE) [31], mean abso-
lute variance (MAV) [32], and the standard deviation of error
(SDE) [28] between the target waveform and the patient’s re-
sponse. In this study, MAD and MAV are employed in order to
quantify the comprehensive motor function.

B. Ailment-Specific Analysis

This section describes the in-depth data analysis method that
extracts meaningful information about the characteristics of a
group of patients by comparing the examination results with
other subjects. For example, consider a scenario where an el-
derly candidate patient experiences some upper limb movement
disorders and other symptoms related to a specific ailment, e.g.,
cerebral vascular accident (CVA) which is also known as stroke.
Then, clinical professionals can perform an ailment-specific
analysis on previously collected signals of patients with CVA,
and reflect the results to the examination outcomes of this el-
derly patient. The results will allow the clinical professionals to
observe 1) if the proposed system can make a clear distinction in
terms of motor function between the two groups, and more im-
portantly 2) which motor characteristics are uniquely observed
among patients with CVA that help such distinction. The reason
that we perform the ailment-specific analysis is because different
ailments are associated with different motor characteristics, and,
therefore, the motor performance of patients sharing the same
ailment must be analyzed based on the specific motor charac-
teristics of that ailment. For instance, patients with CVA often
carry cognitive impairments, which result in delays between the
target waveform and the patient-generated waveform due to de-
layed motor response. On the other hand, patients with chronic
inflammatory demyelinating polyneuropathy (CIDP) only carry
physical motor impairments and do not show significant delay
in the results. This ailment-specific analysis allows the clinical
professional to examine the candidate patient based on features
that represent motor symptoms of the associated ailment for the
purpose of 1) quantifying the severity of such symptoms and 2)
possibly tracking the improvement over time.

In order to address this objective, the ailment-specific analy-
sis employs the significant-feature identification algorithm [33],
[34], which utilizes feature ranking, feature selection, and clas-
sification algorithm. The significant-feature identification algo-
rithm performs the classification iteratively in order to observe
the most frequently selected feature subsets and their associated
classification accuracy.

The ailment-specific analysis begins with forming the group
of signals of interest and the group of signals to be compared
against, which are used as ground truth labels in order to eval-
uate the classification performance. Throughout this paper, the
term group of interest (GOI) is used to generically represent the
signals in which one is particularly interested to analyze. Note
that this paper also uses the term positive signals and negative
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learning set.

signals to define the signals in the GOI and the signals in the
other group, respectively.

The ailment-specific analysis method employs a hold-out
strategy which formulates the learning and the validation dataset
in order to perform the classification iteratively [35]. The entire
dataset is first divided into the learning set and the validation
set using a leave-one-out cross validation (LOOCYV). The learn-
ing set is used to extract significant features and to construct
a classification model, and the validation set is used to eval-
uate the performance of the model. Then, the learning set is
tested over the feature search space constructed by the feature
ranking and feature selection algorithms. In order to do so,
each element in the feature search space is evaluated based on
another LOOCYV within the learning set; the learning set is fur-
ther divided into the training set and the testing set [35]. The
feature extraction, feature ranking, and feature selection algo-
rithms performed on the learning set are graphically illustrated
in Fig. 4. The classification model and the signification feature
set constructed by the learning set are finally evaluated using
the validation set. Finally, the models and the feature sets con-
structed by the outer layer cross validation are further processed
by significant-feature indentification method to extract the true
significant feature set.

1) Feature Extraction: Suppose that a set of extracted fea-
tures from a single examination result is represented as a hor-
izontal array S = [sy 3 -+ - s7], where T is the number of fea-
tures. Each feature s; is computed using a feature extraction
function f; (wy[n], w,[n]), which is either in the time domain
or frequency domain.

Representing the total number of test instances (i.e., both
learning and validation sets) as M, a (M x T') feature matrix
can be computed:

1 1 1

= §1 Syt Sp
G 5% 5% e 52T
S=1|.1=1". . : (D
<M - N
M M M
Sl 82 e ST
= [§1 §2 §T] (2)

where 5/ with j € [1, M] is a horizontal array of features, and
5, with ¢ € [1,T] is a vertical array composed of values of a
feature f;(-) computed from the entire signals.

2) Feature Ranking and Feature Selection: As explained
earlier, the feature ranking and feature selection algorithms are
performed on the learning set. The reason that feature ranking
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and feature selection techniques are employed are as follows.
First, given a predefined set of features s, not all of these fea-
tures play an important role in classifying a certain GOI. This
may lead to a problem during the classification process that a
collection of many useless features can be accumulated to over-
whelm some useful features. Second, it is more computationally
efficient since it filters out features that are less useful. Finally,
information about the ranks of features according to the level
of contributions in the classification process is valuable to us
because features with higher rank can be defined as physical
symptoms found only in that GOL

The proposed system employs the estimated Pearson corre-
lation coefficients to rank the features according to the level
of correlation to the class labels (i.e., positive or negative sig-
nals). The Pearson correlation coefficient for a feature f;, can
be estimated using

L Y (s - BG)Y - E(@)
k() = M M
VEL (sl - B S (v — E@))

where y/ with j € [1, M'] represents the class of the signal
J (.e., +1 for positive and —1 for negative class signal). M’
represents the size of the learning set (i.e., M’ = M — 1 since
LOOCYV is applied). E(-) represents a function computing the
mean value of the input vector. Then, we use R(i)’ as a fea-
ture ranking criterion that estimates goodness of linear fit of an
individual feature to the class vector 7 [36].

Given the rank of all features, the well-known forward selec-
tion strategy is used to construct the search space, which starts
with the highest ranked feature and gradually adds a feature that
is the next highest. Then, the size of the search space is reduced
to 7' — 1. Each feature subset is evaluated using linear discrim-
inant analysis (LDA), and the feature subset with the highest
averaged classification accuracy is selected.

3) Identifying Significant Features: When the best perform-
ing feature subset is selected, the learning set is projected onto
the selected features and the classification model is trained.
Then, the validation set is classified and evaluated using LDA.
The classification accuracy is computed by averaging the num-
ber of correctly classified instances over M validation sets (cre-
ated by the outer LOOCYV) using LDA. Moreover, the algorithm
produces M feature subsets that are selected by the feature se-
lection technique. In order to investigate the significant feature
subsets, we compute the followings over the cross validations:
1) the most frequently appearing feature subset; 2) the top K
features for the accumulated ranking score; and 3) the asso-
ciated classification accuracy. Intuitively, the more frequently
selected feature subset carries more relevant information about
the patients that we are interested [34].

3)

VI. VALIDATION
A. Clinical Trial
We have conducted a clinical trial at St. Vincent Medical Cen-
ter (Los Angeles, CA, USA). A total of 16 subjects participated
in this clinical trial and provided 78 examination instances.

Among the participating subjects, 12 of the study’s subjects
were patients (mean age of 70.5 years with a standard deviation
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Fig.5. Randomly selected sample signals of subjects with various conditions.
The three signals in column (a) belong to patients with CVA. The signals in
column (b) belong to patients with CIDP. The signals in column (c) are sample
signals of healthy subjects.

of 10.5), and they produced a total of 67 examination results.
The remaining four subjects were healthy individuals (mean
age of 64.3 years with a standard deviation of 12.1) and the
data collected from these subjects resulted in 11 examination
instances. All patients had motor deficits in their upper limbs
and they were examined prior to any operational treatments. All
subjects performed the examination while he/she sat upright,
had the elbow flexed 90° with the arm close to the body, and
had the wrist and forearm resting on a table. Prototype software
that was designed from our laboratory was used to perform the
examination. The user interface provides real-time visual feed-
back to the subject to perform motor movements consistent with
the desirable waveform. The interface is developed in C# .NET
and it communicates with the back-end server, which is an SQL
database.

The 16 subjects that participated in the clinical study were
grouped based on their primary medical problems. For instance,
if a patient was actively diagnosed for CVA, that patient was
assigned to the CVA group. This resulted in the formation of
two primary ailment groups: 1) a group of patients with CVA
and 2) a group of patients with CIDP. These GOIs will be the
focus of our experimental validation for the rest of this paper.

These two groups are chosen such that each ailment group can
be analyzed with sufficient data that can be used for both learning
and validation. For example, the number of examination results
for the patients with CVA was 17 and the number of results
for patients with CIDP was 24. The rest of the patients were
diagnosed with various ailments with upper limb deficits such
as Parkinson’s disease and intracerebral hemorrhage but were
eliminated from the analysis due to the relatively small number
of signals (e.g., we had only one patient diagnosed with each of
these ailments).

Fig. 5 illustrates sample examination results of the two ail-
ment groups and the healthy subjects that we consider in this
analysis. As illustrated, the examination results provide clear vi-
sual distinction between the health subjects and patients. CVA
patients seem to exhibit delayed movements often having dif-
ficulties of coordinating the speed of the moving sinusoidal
waveform. It may be a result of both physical and cognitive
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problems, which are common symptoms of CVA. The signals
of CIDP have high level of noise compared to those of healthy
subjects, which may be a result of a tremor effect. On the other
hand, the signals of healthy subjects are smooth and well corre-
lated to the target waveform.

B. Features Used in the Analysis

This section presents features that are used in the data analy-
sis. A total of 45 candidate feature functions are defined, where
the first 36 feature functions are in the time-domain and the
following 9 feature functions are in the frequency domain.

The first time-domain feature extraction function, denoted
as f1, represent MAD between the target waveform and the
waveform generated by the subject. This function provides the
overall level of performance in term of preciseness. f> computes
the maximum instantaneous change in magnitude of the subject-
generated waveform in order to investigate how well a subject
manipulates the grip strength. f3 computes the minimum time
required for the subject-generated waveform to cross the target
waveform from the time that the examination begins in order
to investigate the subject’s recovery time from deviation. The
fourth time-domain function f; computes the total number of
intersections of two waveforms in order to investigate a sub-
ject’s ability to control the grip strength to stay near the target
waveform. f5 investigates the number of changes in the sign of
the slope of the patient-generated waveform in order to corre-
late the examination results to possible tremor effects. fs and f7
compute the number of times that the subject-generated wave-
form crosses horizontal lines at magnitude y = 50% and y =
25%, respectively. The time-domain functions from fg to fa9
are constructed as the following. 20 s-long waveforms generated
by subjects are quantized into 15 segments of uniform length
(i.e., each segment contains the data of 20/15 s). Then, fs to foo
contain the mean values of the magnitude of these segments.
These quantized segments are used to evaluate the changes in
grip strength over time. Furthermore, the time-domain functions
from fo3 to f36 compute the difference in mean magnitude of
the two neighboring segments. These features are used to eval-
uate how fast the grip strength of a patient changes over time.
The frequency-domain functions used in this analysis are com-
puted as the following. The first frequency-domain function f37
computes the average difference in magnitude between the DFT
of the target waveform and the DFT of the subject-generated
waveform over all the possible frequency range. The frequency-
domain functions from f35 to fy; divide the frequency range
from O to 16 Hz into 8 segments of uniform length (i.e., 2 Hz),
and compute the spectrum energy for each segment in order to
investigate the tremor effect at various frequency ranges.

C. Comprehensive Quantification of Motor Performance

This section presents the results of quantification of motor
performance based on the metrics discussed in Section V-A.
The results of the two groups of major ailments are compared
against the results of healthy subjects and they are illustrated in
Fig. 6. The comparative results of the two ailment groups to the
healthy group show that there exist significant degradations in
motor performance in the ailment groups. These results show
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that the proposed system can be used for a preliminary screening
device to quantify grip motor performance and compare the
results against healthy subjects. This further implies that 1) the
system may distinguish patients with upper limb deficits and 2)
the system provides a reference motor performance of subjects
in a healthy physical status such that the improvement of a
patient’s motor capacity can be tracked.

D. Ailment-Specific Analysis Results

This section presents the data analysis results when the signals
of patients with CVA and CIDP are compared against various
groups of subjects: 1) all patients without the ailment; 2) healthy
subjects; and 3) the union of 1) and 2) (i.e., all subjects without
the ailment). For example, when the positive-class signals are
defined as the signals of patients with CVA, the negative-class
signals are defined as 1) signals of patients without CVA (i.e.,
excluding healthy subjects); 2) signals of healthy subjects; and
3) combined signals of patients without CVA and healthy sub-
jects. In this paper, we generically use the term classification
instances for these three different positive and negative class
combinations and label each instance as 1) a non-CVA instance;
2) a healthy subject instance; and 3) a combined instance.

1) CVA Detection: The data analytic results are summarized
in Table I. The sixth and the seventh columns represent the num-
ber of the selected features and their labels, respectively. The last
column represents the top single feature with the highest accu-
mulated ranking score (i.e., K = 1 in Section V-B3). The corre-
sponding classification accuracies for the non-CVA patients in-
stance, healthy subjects instance, and the combined instance are
94.64%, 95.00%, and 92.54%, respectively. These high classifi-
cation accuracies show that the physiological signals produced
by the proposed system contain ailment-specific information,
which can be further interpreted as the motor characteristics of
that ailment. For CVA patients, interestingly, the most frequent
features for all three classification instances are identical (i.e.,
f36 and f39). Fig. 7 illustrates the empirical distributions of the
three features, which show clear separation between the positive
(blue) and the negative (shaded red) classes.

Feature f36 represents the MAD of the last two temporal
segments as was explained in the previous section, and the re-
sults in Fig. 7 show that CVA patients have relatively higher
values compared to the rest of the subjects. Thus, it may help
the physicians to see that the selected patients may dramatically
lose the preciseness of their grip control (or simply the grip
strength) as the test proceeds toward the end. Moreover, feature
f39 represents the spectrum energy of the patient response at
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the frequency range between 2 to 4 Hz, and Fig. 7 shows that
the selected patients have relatively low spectral energy at this
frequency range.

2) CIDP Detection: When the positive signals are defined
as the signals of CIDP patients and compared against non-CIDP
patients instance, healthy subjects instance, and the combined
instance, the classification accuracies are 91.07%, 91.42%, and
85.07%, respectively. According to Table I, a number of inter-
esting observations are made on the results for CIDP patients.

First, feature f35 is found in all instances and always ranked
the highest. It implies that this feature best represents the char-
acteristic of the signals of CIDP, which is selected in the most
frequent feature subsets regardless of the definition of the neg-
ative class.

Second, the most frequent feature set for the combined in-
stance seems to be the union of the feature sets of the rest of the
two instances. For example, f13 and fo are found in the patients
without CIDP instance and f7 and f1; are found in the healthy
subject instance. This may result from the fact that the signals
of the combined instance is the union of signals of the rest of
the two instances.

f3¢ represents the difference in the average magnitude errors
of the last two temporal segments, and according to our inves-
tigation, CIDP patients have relatively low value of fs4. This
result shows that the selected patients can maintain the grip pre-
ciseness (or grip strength) until the very end of the examination
as compared to the rest of the subjects. Moreover, fi3 indi-
cates the MAD between the target waveform and the patient’s
response at the sixth temporal segment, where it contains a min-
imal point in sinusoidal waveform. The empirical distribution
indicates that CIDP patients have relatively low error rates in
that segment. More interestingly fo7 which is selected as one
of the top ranked features, shows that the difference in MAD
between the fifth and sixth temporal segments is relatively high.
These results indicate that CIDP patients lose their grip muscle
control when the amplitude of the waveform starts to increase.
Thus, patients may have trouble with the required grip strength.

E. Patient-Independent Ailment-Specific Analysis

Patient-independent classification involves validating the sig-
nals of patients that are excluded from those being used to train
the classification model. (e.g., learning on CVA patient #1, #2,
#3 and validating on CVA patient #4). This preliminary study
is particularly important to investigate if the system can provide
ailment specific information without the previous history of a
new patient. Furthermore, it demonstrates the robustness and
independence of the proposed system to the data on which the
system is initially constructed. In this experiment, four differ-
ent classification instances are considered as shown in Table II.
For each classification instance, the classification accuracy is
averaged among all learning-validation dataset combinations
(i.e., leave-one-patient-out cross validation).

The selected features were different among different
learning-validating set combinations within a classification in-
stance. For the CVA versus Healthy Subject instance, the number
of features in the most frequent feature subsets for the four com-
binations were 2, 2, 3, and 3. In order to investigate the most
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TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS WHEN THE POSITIVE CLASS IS DEFINED AS (I) CVA AND (11) CIDP

Positive Negative Classification True True Size of most Most Frequent Top Ranked
Class Class Accuracy Positive =~ Negative  Frequent Subset Subset Features Feature
non-CVA Patients 0.9464 0.8889 0.9574 2 f36, f39 f36
CVA Healthy subjects 0.9500 0.8889 1.0000 2 139, f36 f36
Combined 0.9254 0.7778 0.9483 2 136, f39 f36
non-CIDP Patients 0.9107 0.9167 0.9063 7 f32, f14, f13, foa f32
f365 f26, fa5
CIDP Healthy subjects 0.9142 1.0000 0.7200 6 f32, f25, for f32
f11, f2, f19
Combined 0.8507 0.8333 0.8605 10 f32, f13, f27. f36, f2a fa2

f11, fs, f14, fo6, fas
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Fig. 7.
with CVA (f3¢ and f39), and (c) healthy subjects (f39 and f3¢).

TABLE II
SUMMARY OF THE EXPERIMENTAL RESULTS ON PATIENT INDEPENDENT
AILMENT CLASSIFICATION

Positive  Negative  Classification True True
Class Class Accuracy Positive ~ Negative
CVA Healthy 0.9167 0.9091 0.9231

Healthy CVA 1.0000 1.0000 1.0000
CIDP Healthy 0.7610 0.8276 0.5385

Healthy CIDP 0.8542 0.8462 0.8276

frequent feature subsets of this patient-independent classifica-
tion results, the following analysis has been performed.

First, the top ten ranked features from each learning-
validating combination have been extracted. The reason that
we observe the top ten features (out of 45 features) is to verify
that relatively small number of motor characteristics can gener-
alize the signals of the same ailment through patient independent
analysis. Then, the features that have appeared in all of those
four top ten feature sets are observed. These features for CVA
patients are Fi,q = [f30 f36 f13 f12 f3s f37]. In other words, the
same six features are shared among the top ten ranked features
when the classification is performed in a patient-independent
way. This is a strong evidence that similar motor characteristics
are observed among patients with CVA.

Next, the top ten ranked features are extracted from
the results of the CVA versus Healthy Subject instance
from Section VI-D (i.e., the result shown in the third row
of Table I). The top ten ranked features were Fj., =

Empirical distribution of the selected features when the signals of CVA patients are compared against (a) combined group (f3s and f39), (b) patients

[f39 f36 fa3 fao fs7 fae fas fas fao fie]. Tt can be easily ob-
served that Fi,q C Fjep, that is, similar features are observed

across all the patients with CVA. Note also that features fsqg
and f34, which were the selected features in Section VI-D, also
appeared as the top two features for all learning-validating com-
binations in the patient independent classification.

Similar observations were made with CIDP patients.

VII. DI1SCUSSION AND FUTURE WORK

Our main goal in this study was to demonstrate the efficiency
of the presented handgrip device and its back-end data analysis
for diagnosis of hand movement deficits. Given that clinical
data collection is an expensive and time-consuming process, we
decided to validate our system based on a pilot clinical trial
with limited patient population. For this, we performed an in-
depth data analysis on the grip tracking signals collected from
16 subjects at St. Vincent Medical Center (Los Angeles, CA,
USA) and have achieved promising results. We believe that this
proof-of-concept opens new routes for us to apply the proposed
methods to a larger population.

With larger datasets, the system also can be configured to
consider varying levels of granularity in the levels of motor dis-
orders. For example, the NIH Storke Scale (NIHSS) is a widely
used tool that classifies the level of impairment caused by a
stroke [37]. The proposed measurement model can be indepen-
dently constructed on each of these classes, which allows for
an accurate analysis of motor symptoms at different levels of
severity.
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The validation of the system to reflect the changes in motor
performance before and after a medical treatment (e.g., opera-
tional surgery) is also an important issue to be addressed. In an
ongoing clinical trial, we are conducting a longitudinal study
on a larger patient population through a collaboration with the
UCLA Department of Neurosurgery, which includes patients
with spinal cord injury in cervical region.

VIII. CONCLUSION

In this paper, we introduce a portable handgrip device and
its associated data analysis method, which together quantify
hand-movement performance for patients with movement disor-
ders. Two data analysis methods are discussed: a comprehensive
metric for quantifying motor performance and an ailment-based
comparative analysis. We showed that the comprehensive metric
that quantifies motor performance can successfully distinguish
patients with hand—-motor deficits from healthy subjects. More
importantly, the subset features that contribute the most to these
classification instances are discussed in detail in order to pro-
vide intuitive analysis on ailment conditions. This study enables
new opportunities for accurate quantification of an individual’s
ailment condition, disease severity, and specific physiological
Symptoms.
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