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ABSTRACT

While significant effort has been made on designing Remote
Monitoring Systems (RMS), limited research has been con-
ducted on the potential cost savings that these systems offer
in terms of reduction in readmission costs, as well as the
costs associated with human resources involved in the in-
tervention process. This paper is particularly interested in
exploring potential cost savings that an analytics engine can
provide in presence of intelligent back-end data processing
and machine learning algorithms against conventional RMS
that operate based on simple thresholding approaches. Us-
ing physiological data collected from 486 heart failure pa-
tients through a clinical study in collaboration with the
UCLA School of Medicine, we conduct a retrospective data
analysis to estimate prediction accuracy as well as associated
costs of the two remote monitoring approaches. Our results
show that analytics-based RMS can reduce false negative
rates by 61.4% while maintaining a false positive perfor-
mance close to that of conventional RMS. Furthermore, the
proposed analytics engine achieves 61.5% reduction in the
overall readmission costs.
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1. INTRODUCTION

Recent technological advances have resulted in a new health-
care intervention approach called Remote Monitoring Sys-
tems (RMS), which provide continuous monitoring of pa-
tients beyond physical borders. Development of RMS is the
result of significant advancements in electronics, pervasive
sensors, and communications over the last decade. RMS can
frequently monitor physiological status of patients using het-
erogeneous sensors such as blood pressure, weight, blood glu-
cose, and/or physical activity sensors in order to shift medi-
cal services from hospital and clinical settings to an in-home
monitoring scenario [1]. RMS are recognized as an alter-
native intervention approach that may significantly reduce
healthcare costs and improve quality of medical services [2]
for patients with Chronic Heart Failure (CHF) [3], diabetes
[4, 5], Chronic Obstructive Pulmonary Disease (COPD) [6]
and other chronic conditions [7, 8].

Studies show that successful deployment of RMS can save
approximately $81 billion in annual medical costs by im-
proving healthcare efficiency and safety [9]. Based on these
results, much engineering research has focused on developing
efficient system architectures [10] or accurate data analysis
methodology for RMS [1, 11, 12]. However, it is yet unclear
if RMS provide quality services in a cost-effective manner
when they are indeed deployed in a natural setting (i.e., pa-
tient’s home).

As of October 2012, the US government began implement-
ing the Medicare Readmission Reduction Program, which
levies financial punishment on hospitals with high readmis-
sion rates. Statistics show that nearly 20% of insured pa-
tients are readmitted to hospitals within 30 days after dis-
charge mainly due to many correctable sources of poor health
care services, which incurred approximately $17 billion in
2009 [13, 14]. Reduction in the readmission rate is typi-
cally achieved by increasing interactions between patients
and clinicians through early interventions.

Conventional RMS rely on standard medical approaches
[15]; physiological data collected by RMS are evaluated by

clinical professionals, or are processed based on simple threshold-

based methods to trigger alerts [3, 16] based on which an
intervention may be initiated. For instance, an alert can be
triggered when a patient’s heart rate exceeds 120 bpm, which
may result in an intervention by clinicians. However, this
method suffers from static thresholds that prevent the sys-
tem from being flexibly configured based on the constraints
of the systems (e.g. number of available clinical staff); there
exist far too many thresholds to be configured, which can-



not be adjusted to find a setting that minimizes the total
cost. These motivations raise the question of whether or
not conventional RMS can predict adverse events with suffi-
cient accuracy in a cost-effective manner. Furthermore, this
necessitates development of reconfigurable predictive mod-
eling that can adjust false positive and false negative rates
according to the constraints of the system. To the best our
knowledge, this study is the first attempt to address cost
benefits of analytics-based intervention using RMS.

Based on the proposed data analytics engine, which em-
ploys penalty-sensitive classifiers!, this paper aims to inves-
tigate (i) readmission prediction mechanisms of the two re-
mote monitoring systems, i.e., how to classify physiological
measurements as ‘positive’ or ‘negative’; (ii) how accurate
each remote monitoring system is in terms of false positive
and false negative rates?; and (iii) how these predictions
translate into medical costs?

2. RELATED WORKS

Several works exist involving remote patient monitoring.
The purpose of these remote monitoring and telemedicine
systems is to reduce the potential costs to patient care [1].
Furthermore, such systems [2, 17, 3, 4, 18, 5, 6] discuss the
potential of improving patient care with extensive monitor-
ing techniques, but lack a comprehensive cost analysis to
validate the effectiveness of the monitoring techniques. In
particular, the systems must provide information in a way
to reduce the workload, providing potential savings [9, 1],
but do not explicitly denote the cost figures.

Meanwhile, several works, such as [19] and [20] analyze
tele-medicine and remote health monitoring systems from a
cost-effectiveness standpoint. Indeed, [19] concluded that
comprehensive research on cost-effectiveness of these ap-
proaches needs to be conducted, while [20] suggests further
work needs to be done beyond simple cost-effectiveness and
delve into further cost savings from adopted usage.

Several tele-medicine systems have investigated the cost
savings of using the systems [21, 22, 23]. [23] examined
well-being metrics for the patients, such as fuel and dis-
tance traveled savings, days missed at work, and general
family expenses effected by necessary treatments of patients
at the University of Arkansas for Medical Sciences. [22]
studies tele-medicine intervention and its cost effectiveness
to help patients with hypertension. [21] measures the cost-
effectiveness of interventions by developing a ratio against
the quality adjusted life-years. The intervention used tele-
medicine in a rural setting for depression treatment where
no psychiatrist or psychologist existed on site. The work
concluded that the intervention was effective, but was quite
costly, on the order of $85,643 per quality adjusted life-
years.

3. PRELIMINARIES

This section provides an overview of both conventional
RMS and analytics-based RMS. It also discusses the clinical
data that are used for the analysis in the paper. This paper
uses heart failure as the pilot application where the goal of
remote monitoring is to prevent hospital readmissions.

Tt is known as cost-sensitive classifier in the field of machine
learning. This paper uses the term penalty-sensitive in or-
der to avoid confusion with the term medical cost, which is
frequently used in this paper.

Table 1: Typical alerts generated by conventional
RMS

Label Description Priority
Aq HR > 100 bpm Medium
Ay HR > 120 bpm High
As HR < 55 bpm High
Ay Systolic BP < 100 mmHg Low
As Systolic BP < 80 mmHg Medium
As Systolic BP > 160 mmHg Medium

Az W increase of 2 lbs over 1 day  Low
Ag W increase of 3 1bs over 3 days Medium
Ag W increase of 3 lbs over 1 days High

3.1 Remote Monitoring Systems

Remote monitoring systems for readmission reduction aim
to gather physiological data and analyze these data to pro-
vide insight into which patients might be at risk for being
readmitted. The data are gathered remotely and are hy-
pothesized to correlate with symptoms of critical patients
with heart failure [15]. These parameters may include weight
(W), blood pressure (BP), heart rate (H R), and self-reported
questionnaires regarding heart failure symptoms.

An RMS may include two major tiers: data gathering and
data processing as shown in Figure 1. Patients are given
wireless devices that measure weight, blood pressure, and
heart rate, which are wirelessly transmitted via Bluetooth
to a gateway such as a cellular gateway or a smartphone.
The wireless capabilities are important in order to enhance
patient compliance. The gateway then transmits the data to
a secure database for data storage and processing. From this
database, clinical professionals can view/search past read-
ings and patient’s data, and react to abnormal readings that
may be an indication of an adverse event such as a hospital
readmission.

3.2 Conventional RMS

Conventional RMS for adverse event detection rely on a
threshold-based approach. Based on predefined threshold
values, an alert is generated when a physiological measure-
ment is out of the acceptable range, and notify the nurses
to intervene on patients and possibly prevent readmission
by providing adequate medical services. For example, a pa-
tient’s heart rate may be considered normal when the value
lies between 50 bmp and 120 bpm. As a result, an alert is
generated when the patient’s heart rate deviates from this
predefined range. The alerts are usually labeled as low-,
medium-, and high-priority depending on the degree of de-
viation from the threshold. The threshold values can be
potentially personalized for each patient according to the
suggestion made by physicians. In the dataset used in this
paper, a total of 26 different alerts based on weight, blood
pressure and heart rate values are considered. A partial
list of the alerts used in this study is provided in Table 1.
The decision on the type of alerts (low-, medium-, and high-
priority) is typically made by clinicians. This decision pro-
cess is dynamic, which may change over time and may also
vary among different clinicians. In this paper, it is assumed
that clinicians provide intervention when the triggered alert
is high. In other words, it assumes that in conventional RMS
‘high’ priority alerts are classified as ‘positive’ (require an in-
tervention), and the other two types of alerts (i.e., ‘medium’
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Figure 1: Conventional and analytics-based RMS

and ‘low’) are classified as ‘negative’ (do not require an in-
tervention).

3.3 Analytics-based RMS

A remote monitoring system with analytics uses advanced
machine learning algorithms for readmission prediction. The
analytics engine is what drives the ability of the RMS to
effectively assess the risk factors for adverse events in pa-
tients and allow the call center nurses to effectively inter-
vene in such patients’ treatments. It is upon this analytics
framework in which the cost-effective system has been devel-
oped. The core of the analytics engine is a binary classifier
which classifies physiological data as ‘positive’ or ‘negative’.
More details regarding the analytics engine is described in
Section 4.3. Figure 1 shows a system architecture of RMS
platforms that are discussed in this paper. Similar to the
conventional RMS, in an analytics-based RMS classifying a
measurement as ‘positive’ indicates that the remote moni-
toring system has predicted an impending readmission and
an intervention is needed to prevent the readmission. The
analytics not only use alerts triggered by conventional RMS
but also extracts a number of statistical features, listed in
Table 2, that are fed to the classification algorithm.

3.4 Clinical Data

The data used for the analysis are gathered through an
ongoing clinical study that targets 1500 heart failure pa-
tients. The study, which is planned to end by March 2014,
is a collaboration of UCLA, UC Davis, UC San Francisco,
UC Irvine, UC San Diego, and Cedar Sinai hospital. In
this paper, data collected between October 2011 and April
2013 from patients in the intervention arm, which includes
those patients who are provided with remote monitoring de-
vices such as wireless blood pressure monitors and weight
scales, are used. The dataset includes 486 patients. The
data collection system generated a dataset containing the
history of all alerts and its raw sensory values measured by
patients. Furthermore, an adverse event report, which in-
cludes the history of readmission, is used for ground truth
labeling (i.e., either ‘positive’ or ‘negative’) of all the alerts.

An alert or a measurement was labeled as ‘positive’ if the
patient was readmitted within 6 days from the day of the
measurement.

4. READMISSION PREDICTION

As stated previously, the goal is to compare conventional
RMS and analytics-based RMS in terms of their readmission
prediction performance and the associated medical costs.
The accuracy of readmission prediction for the two remote
monitoring models is performed in a retrospective manner.
This paper assumes that the prediction algorithm aims to
predict readmission in a time frame of w days prior to the
readmission date. Therefore, alerts generated within w days
prior to the readmission should carry critical information
regarding the patient’s readmission.

4.1 Prediction Mechanism

Conventional RMS rely on threshold-based alerts that cat-
egorize severity of heart failure symptoms into high-, medium-
, and low-priority. As discussed earlier, this paper assumes
that a conventional RMS will classify high-priority alerts as
‘positive’ and other types of alerts as ‘negative’.

An exemplary scenario of readmission prediction using
conventional RMS is illustrated in Figure 2. The figure
depicts a patient’s possible interaction with RMS in four
days. The patient’s physiological measurements have trig-
gered alerts in the first two consecutive days (i.e., ‘Day 1’
and ‘Day 27), followed by one day of missing data on ‘Day
3’. Then, the patient is being readmitted (denoted by 'R’)
on ‘Day 4’. This example considers a window size of w = 3
days.

The two alerts generated on the first day have high and
medium priorities denoted by ‘H’ and ‘M’ (i.e., second row
with label Alert Type). In reality, RMS may generate more
than one alert on a specific day. Multiple alerts may be a re-
sult of taking multiple measurements of the same vital signs
(e.g., taking weight several times), or a result of heteroge-
neous measurements exceeding their predefined thresholds
(e.g., both heart rate and systolic blood pressure are out of
the acceptable ranges). In either case, only a single inter-
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Figure 2: Adverse event prediction using conventional RMS

vention is conducted by the call center nurses in responding
to all the alerts generated for a patient on a particular day.
Therefore, in the analysis, we aggregate all alerts of the same
patient on a specific day by considering only the highest pri-
ority alerts (e.g., the ‘H’ alert on ‘Day 1’) and discarding the
remaining ones (e.g., the ‘M’ alert on ‘Day 1’). We denote
a prediction made on each day as single-day prediction. As
a result, the single-day prediction on ‘Day 1’ classifies the
alerts as ‘positive’;, which is denoted by ‘P’ in the fourth
row. In a similar manner, the low priority alert on ‘Day
2’ is classified as ‘negative’, denoted by ‘N’. Then, these
single-day predictions are aggregated over 3 days to provide
time-windowed prediction under a specific rule, which will
be discussed in the following subsection.

Analytics-based RMS uses machine learning algorithms
for single-day predictions. The time-windowed prediction
is identical for both conventional and analytics-based mod-
els. Furthermore, the analytics-based system takes as input
both alters and raw measurements and computes a set of
statistical features from these data prior to executing the
classification algorithm.

4.2 False Negatives and False Positives

The single-day prediction and time-windowed prediction
compute false/true positive alerts and false negative read-
missions, which may incur unnecessary nursing costs and
readmission costs, respectively. This mechanism helps con-
vert the prediction accuracy performance of RMS into the
associated medical costs. Although further discussions about
these costs will be made in Section 5, for a brief introduction,
the readmission cost is computed based upon the number of
readmission events that were not predicted by the system
(i.e., false negative readmissions), and the nursing cost is
associated with the total number of instances that required
intervention (i.e., false positive and true positive alerts).

In order to compute the nursing cost, one must compute
the amount of time that the nurses spent on interventions.
Since the nurses respond only to the measurements predicted
as ‘positive’, the false positive and true positive rates must
be computed. Thus, single-day predictions are used to cal-
culate false positive and true positive rates.

The readmission cost is computed based on the number
of readmission events that were not predicted by the RMS
in a w-day window. Unlike general classification problems,
readmission prediction in remote monitoring environments
involves prediction in a time window. For example, when a

Table 2: features used by analytics engine

No. Description

Weight of the issued alert

Sum of the alert weights within the past 5 days
Absolute weight gain in last seven days
Normalized weight gain in last seven days

Raw Heart Rate Value

U W N =

nurse receives a positive alert, she/he provides intervention
to further investigate the physical status of the associated
patient. Under an assumption that each intervention suc-
cessfully prevents any possible readmission within w days,
positive or negative alerts that follow an intervention do not
further effect the results of predicting the readmission. This
implies that having at least one positively classified alert
within w days prior to the actual readmission must be con-
sidered as a successful prediction. Thus, we further process
single-day predictions and combine them to generate time-
windowed predictions. The time-windowed prediction labels
a window as ‘positive’ if there exists at least one positive
single-day prediction within the window, and ‘negative’ oth-
erwise. According to this rule, the three-day time-windowed
prediction in the example in Figure 2 is labeled as ‘P’.

In summary, the RMS platform (either conventional and
analytic-based model) produces (i) false positive and true
positive alert rates based on single-day prediction (denoted
as fp and tp, respectively) and (ii) false negative readmission
rates based on time-windowed prediction (denoted as ff\z)

4.3 Prediction using Analytics

The proposed analytics-based prediction model begins with
feature extraction which extracts statistical features and
alert-related features from the data. The conventional RMS
model considers only the type (high, medium, and low) of
the generated alerts, which can be considered as binary fea-
tures (e.g., HR greater than 100 bpm or not), in order to
make a decision for intervention. On the other hand, the
proposed analytics-based model includes a number of statis-
tical and physiological features in addition to those binary
features associated with the alerts. For example, in order
to consider the recent physiological status of the patient,
the alert information of the patient in the past 5 days from
the date of the issued alert is aggregated. To do so, high-,



medium-, and low-priority alerts are assigned weights of 2,
1, and 0, respectively, and the sum of the alert weights of
the past 5 days (including the weight of the issued alert) is
considered as a feature. For another example, normalized
maximum in the last 7 days, which is the percentage of the
maximum weight gain in last 7 days compared to the the
patient’s weight on the date of the issued alert, is consid-
ered is calculated as a feature. Some of these added features
are listed in Table 2.

Conventional RMS has a limitation that the system per-
formance cannot be flexibly and predictably configured to
the available clinical resources because the predefined posi-
tive and negative decision rule cannot be systematically and
predictably adjusted. In order to provide a configurable an-
alytics performance, the system employs a penalty-sensitive
classifier based on a support vector machine (SVM) classi-
fier. A penalty-sensitive classifier is a meta classifier that
makes the standard classifier (e.g., SVM) penalty-sensitive
by assigning misclassification penalties to the desired classes.
As a result, the classifier selects a class that minimizes the
expected penalty rather than the most likely class [24]. This
work employs the MetaCost algorithm, which creates an ad-
ditional layer of learning on top of the SVM to effectively
minimize the desired penalty [25].

5. COST ANALYSIS

This section discusses how the readmission and nursing
costs are derived from different prediction performances (i.e.,
false/true positive alert rates and false negative readmission
rates) based on clinical and logistical data obtained from the
conducted study. Then, this paper reports the associated
medical costs at different prediction configurations of the
proposed analytics-based model, and compares the results
against the costs of the conventional method in Section 6.

The readmission cost C is computed as

Cr=ax fnxN,, (1)

where a represents the cost of a single 6-month readmis-
sion. ﬁl represents false negative readmission rate com-
puted based on time-windowed prediction, and N, repre-
sents the number of readmissions. As a result, fr\L X N,
accounts for the number of readmission events that are not
predicted within w days prior to readmission.

The nursing cost C,, can be computed as

Cn = B x[(fpx Nn) + (tp X Np)|, (2)

where 8 denotes nursing costs per intervention. fp and tp
represent false positive and true positive alert rates com-
puted based on single-day prediction, respectively. Further-
more, N, and N, represent the number of negatively and
positively labeled (i.e., ground truth label) instances, re-
spectively. As a result, fp x N, computes the number of
false positives and tp x N, computes the number of true
positives. Since nurses provide intervention for both false
positive and true positive predictions, the total number of
alerts that have been classified as positive is multiplied by
[ in order to compute the total nursing costs.

6. EXPERIMENTAL RESULTS

The remote monitoring system is currently in the midst
of a two year on-going clinical study. A total of 486 patients
enrolled between October 2011 and April 2013 were included
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Figure 3: Readmission prediction performance of
the proposed analytic model

in this experiment. A total of 12,680 alerts were generated
as a results of monitoring these patients. This resulted in
6,435 aggregated alerts after applying the ‘Alert Aggrega-
tion’ process in Figure 2. This section reports the read-
mission prediction accuracy, the associated medical costs of
the conventional RMS model, and those of the proposed
analytics-based model.

6.1 Prediction Performance

The penalty-sensitive classifier can be configured to pro-
vide various detection performance. By carefully assigning
the penalties (weights) for the binary classes, the penalty-
sensitive classifier can analyze the entire range of the classifi-
cation performance of the base classifier. Figure 3 illustrates
the Receiver Operating Characteristic (ROC) curve of the
proposed analytics-based model. The false negative rates for
the missed readmissions are computed based on 6-day time-
windowed prediction. The Area Under the Curve (AUC) of
the ROC was 0.82.

Table 3 summarizes the false positive and true positive
alert rates, and false negative readmission rates of the con-
ventional RMS and the proposed analytics-based model at
various configurations. The analytics-based prediction can
reduce false negative readmission rates by 61.4% (from 24.1%
t0 9.3%) and enhances the true positive alert rate by 31.9%
(from 68.0% to 89.7%) while maintaining almost the same
false positive alert rates as conventional RMS. This implies
that given the same amount of false alerts, the rate for pro-
ducing true alerts has been increases and the rate of missed
readmissions has been decreases, which can reduce nursing
and readmission cost, respectively.

Figure 4 illustrates the readmission prediction results of 49
randomly selecte/d\ readmission events based on the analytics-
based model at fn =9.3% and the conventional monitoring
model (i.e., fn = 24.1%). Each readmission is colored in
‘red’ if it was not predicted by the employed RMS model,
and was left in ‘white’ otherwise.

6.2 Cost Analysis Parameters

In (1), a is a constant which represents 6-month readmis-
sion costs per hospitalization. The median 180-day inpa-
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Table 3: Prediction accuracy of conventional RMS
compared to analytics-based RMS
RMS fp tp fn
Conventional | 56.4% 68.0% | 24.1%
Analytics 79.4%  94.0% 3.7%
Analytics 70.9%  92.7% | 5.6%
Analytics 56.7% 89.7% | 9.3%
Analytics 301% 77.8% | 15.7%
Analytics 13.6% 53.4% | 39.8%
Analytics 8.7% 40.6% | 51.8%

tient cost for heart failure patients is $13,463 according to
the study in [26]. Given that the goal is to monitor patients
for 6 months, we set o = $13,463.

The parameter 3 in (2) is computed based on the results of
the conducted clinical study. Without loss of generality, this
paper assumes that the annual salary of a nurse is fixed and
is set to $150,000. Since the clinical data used in this study
was collected over about 18 months, (i.e., about 1.5 years)
and a total of 3 nurses participated, the overall nursing cost
is $150, 000 x 1.5 x 3 = $675,000. We compute 3 by dividing
this number by the total number of alerts (6435). Thus, the
average nursing cost per intervention is $104.90. Note that
this intervention cost not only includes the cost on provid-
ing actual interventions (e.g., by a phone call) but also the
cost for the associated activities such as retrieving relevant
patient information prior to the intervention, documenting
and logging the history of the intervention, participating in
study-related meetings, and interacting with the technical
support team for troubleshooting technology-related prob-
lems and data transmission issues. Thus, this nursing cost
might be study-dependent and may vary from one setting
to another.

6.3 Readmission and Nursing Costs

Based on the false negative readmission rates and false
positive alert rates of conventional RMS in Table 3 and the
parameters in Section 6.2, the readmission costs and nursing
costs of conventional RMS are computed as $350,038 and
$383, 706, respectively. This results in a combined medical
costs of $733, 744. Detailed cost information of the conven-
tional and the analytic-based RMS is provided in Table 4.
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analytics-based model as fp grows

Computed in a similar manner, the medical costs of analytics-

based RMS are illustrated in Figure 5. For analytics-based
RMS, the classification configuration of ‘?;L = 9.3% and fp
= 56.7% (which has a fp close to that of conventional RMS)
resulted in a readmission cost of $134, 630 and nursing costs
of $391, 154. This results in a total medical cost of $525, 784.
Thus with similar fp performance, the analytics-based model
achieves a readmission cost saving of 61.5% (approximately
$207,960). Furthermore, the configuration of fn = 15.7%
and fp = 30.1% provides the combined medical cost of
$443,696, which is approximately 40% lower than that of
conventional RMS (i.e., $733,744).

7. DISCUSSION AND FUTURE WORK

This paper reports readmission prediction performance
and associated medical costs based on the data collected
in a heart failure study. The nursing cost per intervention
B in (2) may be improved in a commercial setting of RMS
in various ways. The amount of required time per interven-
tion may be formulated as a function of many parameters
such as nurse expertise, the intervention procedure defined



Table 4: Performance comparison the two approaches

RMS Model fn fp Cy Ch Cr+Cy
Conventional 24.1% 56.4% $350,038 $383,706 $733,744
Analytics 3.7% 79.4% $53,852 $539,685  $593,537
Analytics 5.7% 70.9% $80,778 $484,196  $564,974
Analytics 9.3% 56.7% $134,630 $391,154 $525,784
Analytics 15.7%  30.1%  $228,871 $214,825  $443,696
Analytics 39.8% 13.6%  $578,909  $101,643  $680,552
Analytics 51.8% 8.7% $753,928 $66,399 $820,327

by physicians, and technology infrastructure that facilities
documentation of the intervention. For example, without a
good technological infrastructure, nurses may need to use
multiple systems to look up information they need for the
intervention (e.g., patient history, medications), or to docu-
ment the intervention after each call. The improvement on
these work environmental settings may reduce the amount
of average intervention time. In the conduced clinical study,
reacting to the alerts was not only daily task for the call
center nurses. They also participated in study-related meet-
ings, interacted with technical staff to troubleshoot prob-
lems with monitoring devices, and extensively documented
study-related logs.

The readmission cost C; in (1) may be overestimated since
it was assumed that all the predicted readmission events
can be prevented. For example, in [27], a randomized pilot
study shows that careful intervention may reduce readmis-
sion events by 56%. The intervention is a comprehensive
multidisciplinary treatment that involves intensive teaching,
a review of medication, early consultation with social ser-
vices, dietary teaching, and close follow-ups after discharge
[27]. However, the provided intervention was based on fre-
quent face-to-face monitoring using video technology (i.e.,
telemedicine), which does not involve monitoring of patient’s
vital signals as offered in our work. Although this paper ex-
pects the prevention can be achieved more effectively and
efficiently using the proposed monitoring system, there has
been no randomized study of remote patient monitoring for
congestive heart failure patients to the best knowledge of the
authors. Nonetheless, the primary goal in this paper was to
compare the two remote monitoring approaches. A lower
rate of preventable readmissions may affect the cost values
for both systems similarly.

This work used only physiological data such as blood pres-
sure and weight measurements for readmission prediction.
The remote monitoring system of the conducted study also
gathered symptom questionnaires as part of daily measure-
ments. These questionnaires are questions that require ‘yes’
or ‘no’ answers such as ‘Have you had any light-headedness
or dizziness in the last day?’ or ‘Have you noticed more
swelling in the last day?’. Integrating features that are ex-
tracted from these questionnaires to further improve perfor-
mance of the analytics engine is ongoing.

This study involves a subset of the data (e.g., both phys-
iological data and readmission history), which involves in-
stances that have resulted in an alert by the conventional
RMS. The rationale behind this is (i) to focus the study on
post-processing of the alerts generated by conventional RMS
and (ii) to minimize the effect of missing data, which may
be raised when analytics-based prediction is applied on the
entire collected data rather than those associated with the

alerts. The authors are currently working on using the entire
dataset with effective missing data imputation mechanisms.
Furthermore, the results of the analytics-based model in this
paper are examined in a retrospective manner. Plans to con-
duct a two-arm clinical study such that patients in conven-
tional RMS arm can be directly compared against those in
analytics-based RMS is ongoing.

In this paper, we considered ‘median’ 180-day inpatient
cost ($13,463) for calculating readmission costs. The study
in [26] also reports that the ‘mean’ 180-day inpatient cost,
which is $22,505. Our reason for using ‘median’ cost was
that the ‘mean’ estimates are skewed by outliers. A more ex-
tensive and in-depth analysis is needed to determine which
estimate (‘mean’ or ‘median’) is a better representative of
the heart failure patient population. By setting v = 22, 505,
the readmission costs will be $225,050 and $585,130 for
analytics-based and conventional RMS respectively. This
will result in a total medical costs of $616,203 and $968, 836
for for analytics-based and conventional RMS respectively.

8. CONCLUSION

This paper discusses the potential cost savings that re-
mote patient monitoring systems may offer by employing
an advanced data analytics engine. The proposed analytics
engine incorporates a penalty-sensitive classifier that offers
various readmission prediction configurations. Based on the
clinical data of 486 heart failure patients, the performance
of the proposed method is compared against that of con-
ventional RMS, which is based on a simple threshold-based
approach. Experimental results report that the proposed an-
alytic method reduces the false negative readmission rate by
61.4% while maintaining similar false positive alert rate com-
pared to the conventional method. This allows 61.5% reduc-
tion in the overall readmission costs. This study introduces
new insights on remote monitoring systems for their read-
mission prediction and the associated medical costs. This
may enable extensive research opportunities including opti-
mization of RMS for minimizing a specific medical cost class
(e.g., readmission or nursing cost), or the overall medical
costs.
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