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Abstract—Motivated by a need for accurate assessment and 

monitoring of patients with knee osteoarthritis in an ambulatory 

setting, a wearable electrogoniometer composed of a knee 

angular sensor and a three-axis accelerometer placed on the thigh 

is developed. Accurate assessment of knee kinematics requires 

accurate detection of walking amongst dynamic, heterogeneous, 

and individualized activities of daily living. This paper 

investigates four different machine learning techniques for 

detecting occurrences of walking in uncontrolled environments 

based on a dataset collected from a total of 4 healthy subjects. 

Multi-class classifier (random forest) based detection method 

showed the best performance, which supports 90% precision and 

75% recall. The in-depth analysis and interpretation of the 

results show that accurate decision boundaries are necessary 

between 1) fast walking and descending stairs, 2) slow walking 

and ascending stairs, as well as 3) slow walking and transitional 

activities. This work provides a systematic approach to detect 

occurrences of walking in uncontrolled living conditions, which 

can also be extended to other activities.  

Keywords—activity recognition; walking detection; wearable 

sensor; accelerometer; machine learning 

I. INTRODUCTION 

Knee osteoarthritis (OA) is one of the most prevalent joint 
disorder, whose progression gradually de-conditions the 
musculoskeletal system [1-2]. This significantly contributes to 
functional limitations and disability in performing daily 
activities. [1, 3]. Knee kinematics during walking, which is one 
of the most essential activities required in daily living, has been 
widely studied and has shown to be an effective clinical 
measure of knee OA [4-5]. For the treatment of OA, non-
pharmacological physical modalities (e.g., physical therapy and 
exercise) were shown to alleviate pain and improve functional 
level [6]. Physical modalities often require prolonged 
participation and thus, a system that enables longitudinal and 
continuous monitoring of gait kinematics in patients’ home and 
community settings is in great need [7].  

Motivated by these needs, a wearable platform that 
continuously measures knee kinematics and interacts with 
patients has been developed as shown in Fig. 1. The platform 
contains a biomechanically designed electrogoniometer 
composed of a potentiometer-based angular sensor that 
measures the knee angles, a three-axis accelerometer that 

analyzes data context, and a Bluetooth transceiver that delivers 
the acquired data to a mobile device (e.g., a smart phone). 
Accurate assessment and monitoring of knee kinematics in an 
ambulatory setting requires the detection of walking such that 
knee angles can be extracted and analyzed to produce clinically 
relevant reports. However, accurate detection of walking 
amongst free-living activities poses a number of challenges 
since these daily activities are highly dynamic, heterogeneous, 
and individualized. 

This paper reports unique findings of an exploratory study 
to develop a detection algorithm for occurrences of walking in 
uncontrolled free-living conditions using a three-axis 
accelerometer placed on the thigh. Participants’ daily activities 
were annotated with the help of a wearable camera that 
captured surrounding images every second. This work 
discusses the characteristics of walking data by investigating its 
location within the multi-dimensional feature space, and 
examines four different detection algorithms formulated based 
on 1) a multi-class classifier, 2) a binary classifier, 3) an one-
class classifier, and 4) a hybrid of one-class and binary 
classifiers. Note that although this work focuses on detecting 
walking for the application in knee OA, the presented detection 
mechanism can be easily extended and applied to other 
activities and applications. 

II. RELATED WORKS 

There have been many studies on activity recognition using 
wearable sensors over the past decade. However, most of these 
studies have been performed within controlled laboratory 
settings, and only a limited number of studies have investigated 
the feasibility of performing such analyses in uncontrolled 
conditions. In [8], authors proposed a classifier combining a 
rule-based tree and artificial neural networks to recognize nine 
different activities amongst activities of daily living. A total 12 
subjects annotated their own activities using a smart phone 
application. The average classification accuracy over the nine 
activities was 72% (with the average walking detection 
accuracy of 71%). Authors in [9] conducted an experiment 
involving 24 individuals. Their daily activities were labeled by 
visual inspection of accelerometer data and annotation sheets. 
An algorithm that combines principal component analysis 
(PCA) and Naïve Bayesian classifier recognized five different 
activities. The average classification accuracy achieved based 
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on a leave-one-subject-out cross-validation (LOSOCV) was 
80%. The average walking detection accuracy was also 80%. 
More recently, the work in [10] introduced a combined 
algorithm of random forest and hidden Markov model to 
recognize four different activities of 40 breast cancer survivors. 
The analysis was performed in a LOSOCV manner and the 
average classification accuracy was 86%. The average walking 
detection accuracy was 63%. The aforementioned works 
yielded reasonably accurate classification results. However, 
these algorithms are designed to recognize a set of multiple 
activities. The interest of this work lies specifically in detecting 
occurrences of walking with higher accuracy (precision), since 
the knee kinematics will be analyzed from occurrences that are 
classified as walking. Low precision may lead to the 
contamination of knee kinematic results by incorporating other 
activities with similar leg movement characteristics such as 
ascending or descending stairs. This paper proposes a detection 
mechanism that constructs a more flexible and refined decision 
boundary around the walking cluster, and thus improves the 
precision. 

III. EXPERIMENTAL SETUP 

A total of 17 healthy subjects were recruited from the 
Motion Analysis Laboratory at Spaulding Rehabilitation 
Hospital. These subjects performed sitting, standing, walking, 
going up/down stairs, riding an exercise bicycle, and using a 
rowing machine while wearing the electrogoniometer. Stairs, 
bicycling, and rowing activities were selected to provide 
similar knee movements as walking, and sitting and standing 
were selected as they are activities with more limited knee 
movements. Walking, bicycling and rowing were performed at 
slow, comfortable, and fast speeds. The data collected from this 
controlled and instructed activities are denoted as scripted data. 
Then, four of these 17 subjects performed everyday activities at 
Spaulding Rehabilitation Hospital for approximately nine hours. 
Because this study was performed within the participants’ 
workplace, they spent most of their time sitting. Thus, in order 
to promote dynamicity of their activities, participants were 

asked to visit a designated workout room within the hospital 
twice during the day and perform walking, going up/down 
stairs, bicycling, and rowing. Participants were given no further 
instructions on their activities. Participants wore a wearable 
camera facing the anterior direction of the human body, which 
captured images at 1 Hz (Fig. 1). Furthermore, patients were 
given a mobile phone with an application asking the engaged 
activities every 30 minutes. The images and the responses to 
the periodic question were then reviewed by two research staff 
members in order to infer the labels of the performed activities. 
These data collected from the uncontrolled experiment are 
denoted as unscripted data. In this work, scripted data were 
used to train the detection model and the unscripted data were 
used to validate the model.  

IV. ACTIVITY DETECTION ALGORITHM 

Fig. 2 summarizes the walking detection algorithm. The 
raw accelerometer time series were sampled at 51.2 Hz and 
low-pass filtered at 12 Hz to remove any non-human noise in 
the signal. The data were then segmented using a five-second 
window with no overlap, which acted as a single data point. 
The scripted dataset was labeled as the performed activity if the 
activity was continuously performed within the time window. 
This rule ensures to analyze knee kinematics when the subject 
was fully engaged in walking and thus, produces more robust 
analytic results.  

The same set of features were extracted from the scripted 
and the unscripted datasets. The features included 1) the mean 
and the standard deviation of the time series, 2) cross 
covariance between the first and the second (temporal) halves 
of the time series to measure consistency of the movements, 3) 
signal entropy, 4) the range (i.e., difference between maximum 
and minimum values) of the amplitude, 5) the dominant 
frequency at which the maximum of the spectrum is located, 
and the ratio of the spectrum energy at the dominant frequency 
to the entire signal energy, and 6) correlation coefficients 
between the time series of the three axes. The above features 

Fig. 1. The wearable platform that continuously monitors the engaged 

activities and knee kinematics.  

Fig. 2. A graphical summary of the activity detection algorithm. The 

algorithm utilizes the scripted activities to train a model to detect 

occurrences of walking amongst activities of daily living.  
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were computed from each of the x, y, and z-axes except for the 
correlation coefficients. These resulted in a total of 47 features.  

The detection of walking in uncontrolled conditions is not a 
conventional binary or multi-class classification problem, but 
rather a problem of detecting a unique kinematic pattern 
amongst many dynamic and unknown free-living activities 
where it is impractical to collect all possible non-walking 
activities of each individual. This creates a unique challenge to 
which there exists no clear definition of negative class. In order 
to resolve this problem, four different classification techniques 
were examined in this work.  

A. One-Class Classifier 

One-class classifier trains a model using only positive (i.e. 
walking) data, which constructs a minimal spherical decision 
boundary around the walking (slow, comfortable, and fast 
speeds) data of the scripted dataset [11]. The hypothesis behind 
this approach is that the walking data have a unique movement 
pattern that can be easily distinguished from the movements of 
other daily activities. In this work, a LibSVM implementation 
of one-class Support Vector Machine (SVM) was used [12]. 

B. Binary Classifier Based Detection Algorithm 

Binary classifier considers the walking data as positive and 
all other non-walking data of the scripted dataset as negative. 
The underlying hypothesis is that the non-walking activities of 
the scripted dataset would provide sufficient dynamics in leg 
movements to effectively reflect activities of daily living, and 
consequently allowing the construction of a more sophisticated 
decision boundary for the walking cluster. Random forest with 
100 trees was used as the classifier [13]. This work employed a 
WEKA implementation of this algorithm [14] in the MATLAB 
environment. 

C. Multi-Class Classifier Based Detection Algorithm 

Random forest with 100 trees was used as the multi-class 
classifier which is known to provide robust class probabilities 
[13]. It was trained using the scripted data with labels 
according to the performed activities. Activities performed at 
different speeds were labeled differently, e.g., slow walking, 
comfortable walking, and fast walking. This approach is similar 
to the binary classifier based detection algorithm, but it is 
hypothesized to construct more refined and sophisticated 
decision boundaries between walking and other activities that 
share similar movements. For instance, it was observed that 
ascending stairs and walking at slow speed shared very similar 
feature values since both activities involve fairly slow and less 
dynamic leg movements. Similarly, descending stairs and 
walking at fast speed shared analogous feature values. Then, 
the class probability of the walking class was compared to a 
threshold (e.g., 90%) to detect occurrences of walking from 
other activities. Note that changing this threshold acted as 
adjusting the volume of the decision sphere around the walking 
cluster.  

D. Hybrid of One-class and Multi-class Classifiers. 

As discussed in the previous subsection, descending and 
ascending stairs shared very similar movement patterns with 

walking. Thus, a one-class classifier was constructed to detect 
occurrences of walking and stairs amongst daily activities. If 
the occurrences were noted, then a multi-class classifier was 
further applied to distinguish walking (slow, comfortable, and 
fast) from stairs (descending and ascending). One-class SVM 
and random forest, as discussed previously, were used for the 
one-class and the multi-class classifiers, respectively.  

V. RESULTS 

A. Annotation of Unscripted Dataset 

As discussed earlier, two research staff members reviewed 
the captured images of the wearable camera, the accelerometer 
data, and the responses to the periodic questions to infer the 
labels of the unscripted dataset. The unscripted dataset was 
labeled as one of the scripted activities if the activity was 
continuously performed within the time window. All other 
activities including transitional activities (e.g., walking-to-
standing), activities other than the scripted activities, and any 
other unrecognizable activities were labeled as other activities. 
The percentage of these other activities within the labels of the 
unscripted dataset was 8.98%. 

B. Comparison of Classification Techniques 

Fig. 3 illustrates the precision-recall (PR) curves of the four 
classification techniques that were discussed earlier. Note that 
all the results were computed in a LOSOCV manner, which 
eliminated the scripted data of one subject when constructing 
the classification model, and evaluated the model using the 
unscripted data belonging to the left-out subject. This process 
was iterated for all subjects. PR curves were used (e.g., rather 
than receiver operator characteristic curves) to evaluate the 
performances of the classifiers because the numbers of data 
points of walking and non-walking classes were quite 
unbalanced [15]. Precision is the ratio of the number of true 
positive (i.e. walking) data points to the combined number of 
true positive and false positive data points, which intuitively 
represents the correctness of the detection algorithm. Recall is 
the ratio of the number of true positive data points to the 

Fig. 3. Precision-recall curves of the four detection algorithms considered 

in this work. The multi-class classifier based technique outperforms the 

other techniques. 
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combined number of true positive and false negative data 
points, which represent the ability of the algorithm to correctly 
select walking data amongst the daily activities. As shown in 
Fig. 3, precision and recall rates are usually inversely 
proportional since their values are closely related to the size of 
the decision boundary around the walking cluster. When the 
volume of the cluster becomes larger, the detection model 
includes more negatives within its decision boundary and thus, 
the precision decreases. However, at the same time, the recall 
increases since an increased number of actual walking data 
points are included. When the volume of the cluster becomes 
smaller, the sphere is condensed around the center of the 
cluster and consequently, the precision is increased and the 
recall is decreased. These different operating points were 
obtained by varying the size of the hyperplane for the one-class 
SVM and the walking class probability for random forest. The 
hybrid classifier had both of these parameters to adjust the 
operation points and thus, the envelope of the two dimensional 
PR pairs created by these two parameters were used as the final 
PR curve.  

Fig. 3 shows that the one-class classifier significantly 
underperforms compared to the rest of the algorithms. The 
major reason for its poor detection performance was due to its 
simple and rigid decision boundary around walking data (of 
three different speeds), which was not sophisticated enough to 
distinguish walking activities from ascending/descending stairs 
(recall that fast walking and descending stairs shared similar 
movements, and slow walking and ascending stairs shared 
similar movements). Consequently, the precision remained 
around 78% when recall was less than 70% because the 

decision boundary continuously included the stairs data even 
when the decision boundary was shrinking towards a single dot. 
When the decision boundary expanded (i.e. moving towards 
the right of the x-axis of Fig. 3), it started to include other non-
walking activities and resulted in dramatic degradation in 
precision. This result signifies the importance of a refined 
decision boundary between slow walking and ascending stairs, 
and between fast walking and descending stairs.  

Hybrid-classifier performed superior to the one-class 
classifier when recall was less than 70% because it constructed 
the decision boundary of its one-class classifier around the 
combined clusters of walking and stairs, and the multi-class 
classifier that followed provided a more sophisticated detection 
of walking. As a result, an accurate decision boundary could be 
formed between slow walking and ascending stairs, and also 
between fast walking and descending stairs. However, this 
technique started to underperform compared to the binary and 
the multi-class classifiers as the decision boundary expanded. 
When recall was greater than 70%, the decision sphere of the 
one-class cluster started to include a large number of 
transitional activities such as “walking-to-standing” or 
“standing-to-walking”. Because these activities partially 
contain the movement patterns of walking and standing, they 
were positioned between walking and standing data (but closer 
to walking) within the feature space. This is apparent in Fig. 4 
(a), which illustrates the PCA plot of the unscripted dataset 
with the inferred labels. It also includes the 95% confidence 
ellipses of walking (pink), stairs (gold), standing (blue), and 
transitional activities (purple), which show that these activities 
are located very closely in the feature space. The results of the 

(a) (b) 

(d) (c) 

Fig. 4. Principal component analysis plots of (a) the unscripted dataset with the inferred labels, (b) the detection results based on the multi-class classifier, 
which is operated at precision of 99% and recall of 51%, (c) the detection results of the multi-class classifier at precision of 90% and recall of 75%, (b) the 

detection results of the multi-class classifier at precision of 50% and recall of 99%, 
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hybrid-classifier support the necessity of an accurate decision 
boundary not only between walking and stairs, but also 
between walking and standing. 

The binary and multi-class classifiers produced comparable 
detection performances. Both of these classifiers incorporated 
the entire scripted activities to train the model, which resulted 
in constructing accurate decision boundaries that adequately 
distinguish walking from stairs and transitional activities. 
Although the transitional activities were not included in the 
scripted activities, standing data could provide a reasonable 
boundary between walking and transitional activities. This 
shows that the scripted activities, especially walking, stairs, and 
standing, could appropriately define the dynamics of leg 
movements while walking amongst daily activities. Multi-class 
classifier slightly outperformed the binary classifier. It is 
believed that constructing the decision sphere of the walking 
cluster by combining the decision boundaries (created by the 
multi-class classifier) of walking at three different speeds 
produces slightly better detection performance. Fig. 4 (b), (c), 
and (d) illustrate the detection results of the multi-class 
classifier, which was operated at three different PR pairs. Fig. 4 
(b) shows results when the classifier was operated at an 
extreme that favors precision: precision of 99% and recall of 
51%. This is when the decision boundary is shrunk to provide 
99% of precision, but it disregards 49% of the true walking 
data. As a consequence, a large number of false negatives are 
illustrated in Fig. 4 (b) (pink). Fig. 4 (d) shows another extreme 
point that favors recall: precision of 50% and recall of 90%. 
This implies the decision boundary is expanded to include 90% 
of the true walking data, but resulted in including a large 
number of stairs and transitional activities, which resulted in 
50% precision. Fig. 4 (c) shows an example of a reasonable 
operation point: 90% precision and 75% of recall. If the 
walking detection algorithm is operated at this point, the knee 
kinematics can be analyzed for 75% of all walking data with 
90% of accuracy, which may be reasonable for applications in 
knee kinematic analysis for OA patients. Most of the false 
positives (green) were from transitional activities, which were 
prevalent in daily (indoor) activities. This implies that having 
transitional data in the training set would improve the PR curve, 
especially where recall is greater than 70%. 

VI. DISCUSSION AND CONCLUSION 

This paper reported the findings of an exploratory study 
that investigated various algorithms to detect walking amongst 
uncontrolled activities of free-living using an accelerometer 
placed at the thigh. The results show that the scripted activities 
considered in this work, especially walking, stairs, and standing, 
provide sufficient dynamics in knee movement to detect 
walking amongst activities of daily living. More specifically, 
the algorithm needs to accurately recognize fast walking from 
descending stairs, slow walking from ascending stairs, and 
slow walking from transitional activities. These results provide 
relevant information regarding the movements patterns of 
walking compared to other daily activities. The presented 
techniques can be extended to other activities, which enable 
new opportunities for in-depth understanding of human context 
using wearable technologies, especially in patients with knee 
OA and other related ailments.  
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